一种高胶合强度环保超分子物理凝胶黏合剂及其制备方法与流程

文档序号:16014874发布日期:2018-11-20 21:20阅读:489来源:国知局
一种高胶合强度环保超分子物理凝胶黏合剂及其制备方法与流程

本发明属于水基胶黏剂技术领域,具体涉及一种高胶合强度环保超分子物理凝胶黏合剂及其制备方法。

背景技术

水基胶是由能分散或能溶解于水中的成膜材料制成胶粘剂,也常称为水性胶粘剂。其中,成膜材料包括有机聚合物、动物胶、淀粉、糊精、血清蛋白、白蛋白、甲基纤维素及聚乙烯醇都等等,还有一些酚醛与脉醛树脂的可溶性中间体亦属于此类。现有的一些水基胶比如人造板行业中最常用的胶黏剂、酚醛胶和脲醛胶,虽然成本低,胶合强度高,应用很广,但这些胶黏剂不仅在加工过程中存在空气、水污染等问题,在使用过程中还会释放出游离甲醛和苯酚等致癌物质,给环境和人类的健康造成了严重威胁。因此,开发一种无毒无害绿色环保的新型水基胶黏剂是很有必要的。

水凝胶是一类具有化学或物理交联的三维网络结构、含大量水分的高分子材料。组成凝胶的聚合物链能够与水结合,但交联网络的存在阻止了水凝胶在水中的溶解,使得凝胶能溶胀但不溶于水。物理交联的水凝胶一般是基于静电、氢键、配位键、链缠结、主客体相互作用等分子间弱相互作用力而形成的超分子聚集体,大多不需要釆用化学修饰,因此毒性较低,特别适用于生物医疗领域。另外,特定的物理水凝胶具有很好的延展性、压缩性以及较强的韧性,所以物理水凝胶作为黏合剂使用时可很好的渗入被粘物体表面的微小凹穴和孔隙中,这时凝胶表面的特定作用基团会与待粘接表面基团作用,待水分挥发后,凝胶黏合剂实现固化就可机械地锁住粘接材料。水凝胶由于粘度大,流动性较小,便于运输与存储,良好的延展性使凝胶黏合剂可封装在管中挤出使用。

目前可大规模应用的凝胶黏合剂不多,cn105462523a公开了一种基于聚合物复合物制备高粘合性能水基黏合剂的方法,其利用两种聚合物溶液进行共混,得到沉淀复合物,经过离心可得到致密的高粘合性能的水基凝胶黏合剂。由于该凝胶为共混过程中的沉淀部分,因此会产生大量废水,且需要离心步骤来收集凝胶黏合剂。因此优化凝胶黏合剂制备工艺流程,保留其环保及高胶合强度的性质是很有意义且充满挑战的。



技术实现要素:

本发明的目的是提供一种高胶合强度环保超分子物理凝胶黏合剂及其制备方法,所述方法的步骤如下:

1)预聚合溶液的制备:将纳米粒子溶于去离子水中,搅拌10~50分钟至完全溶解,浓度为5.0~20.0mg/ml;再向其中加入单体,搅拌20~70分钟至完全溶解,配成单体浓度和为7~15wt%的预聚合溶液;

2)超分子物理凝胶的制备:将引发剂溶于去离子水中,超声10~30分钟,至完全溶解,得到浓度为4~18mg/ml的溶液;取1~7ml该溶液加入到10~17ml步骤1)的预聚合溶液中,最后加入与引发剂质量比为1:10~10:1的催化剂,搅拌3~10分钟后于室温下静置10~20小时,即得到本发明所述的高胶合强度环保超分子物理凝胶黏合剂。

本发明所述的一种高胶合强度环保超分子物理凝胶黏合剂,其特征在于是由上述方法制备得到。

本发明使用的纳米粒子为氧化石墨烯、碳纳米管、蒙脱土、纤维素纳米晶或纳米碳点中的一种或二种以上,粒径为10~200nm;单体为丙烯酸、二甲基丙烯酰胺、丙烯酰胺、2-丙烯酰胺-2-甲基丙磺酸、甲基丙烯酸或甲基丙烯酸羟乙酯中的一种或二种以上;当使用两种单体时,两种单体间的物质的量比为1:5~5:1;引发剂为过硫酸钾、过硫酸铵、偶氮二异丁腈、硝酸铈铵中的一种或二种以上;催化剂为亚硫酸钠、n,n-二甲基环已胺、四甲基乙二胺、n-乙基吗啉中的一种或二种以上。

本发明提供了一种基于超分子物理凝胶制备的高胶合强度环保凝胶黏合剂及其制备方法。本发明制备方法简单,仅通过制备纳米粒子与单体的水溶液,然后加入引发剂和催化剂,常温静止聚合即可以得到超分子物理凝胶水凝胶。这种凝胶黏合剂是基于聚合物之间的多重弱相互作用氢键、链缠结、纳米粒子与聚合物间物理吸附作用而形成的,形成过程简单高效,不需要复杂的仪器设备以及大量人力,制备过程中无需添加有机溶剂,无异味无毒环保,所用原料均常见化工原料,价格低廉。这种凝胶黏合剂可以应用于光学玻璃、金属、木材、塑料等多种材料的粘合,并且具有很高的粘合强度,该黏合剂使用方便,只需均匀涂抹在所需粘接材料的表面,压紧粘接表面后,常温下即可固化实现粘合。除此之外,该黏合剂保质期在24个月以上,方便储存。本发明所制备的凝胶黏合剂有望在广泛的领域中得到应用。

附图说明

图1:高胶合强度环保超分子物理凝胶黏合剂的状态照片,可以看出黏合剂呈透明的凝胶态,对应实施例1;

图2:为镊子取出小块凝胶黏合剂的状态照片,可以看出黏合剂有很强的粘性,对应实施例1;

图3:高胶合强度环保超分子物理凝胶黏合剂在常温条件下对木材有很强粘合力的状态照片,对应实施例1;

图4:基于高胶合强度环保超分子物理凝胶黏合剂在常温条件下作为木材黏合剂大规模制备以杨木夹芯皮为原料的9mm厚胶合板的状态照片(原板长2.6米宽1.3米),该胶合板不含醛,胶合强度经测试达到国家三类胶合板强度要求,对应实施例2;

图5:高胶合强度环保超分子物理凝胶黏合剂在常温条件下粘接两块玻璃的状态照片,对应实施例3;

图6:高胶合强度环保超分子物理凝胶黏合剂应用于不同基底时的拉伸剪切强度柱状图,由左向右依次对应木块和玻璃,用于黏合木块材料时,黏合剂胶合强度高达5.1mpa对应实施例1;用于黏合玻璃材料时,黏合剂胶合强度为4.3mpa对应实施例3;

具体实施方式

以下通过一些实例来进一步阐明本发明的具体实施和结果,而不是要用这些实例来限制本发明

实施例1:

a.预聚合溶液的制备:将100mg纤维素纳米晶(粒径约120nm)溶于15ml去离子水中,加入摩尔比1:1的二甲基丙烯酰胺单体与丙烯酸单体,搅拌20分钟至单体完全溶解,配成单体浓度和为12wt%的预聚合溶液;

b.超分子物理凝胶的制备:将引发剂偶氮二异丁腈溶于去离子水中,超声10分钟,至完全溶解为浓度10mg/ml的溶液,取1ml该溶液加入到10ml步骤a得到的预聚合溶液中;最后加入催化剂n-乙基吗啉30mg。搅拌5分钟,停止搅拌。静置20小时即可得到高胶合强度环保超分子物理凝胶黏合剂。

样品的粘结:将制得的凝胶黏合剂取下适量的小块,置于木片一端,另一块木片平行覆盖,粘接面积为25mm*25mm,对粘接部位施以的压力,使两块木块紧密接触,待凝胶黏合剂中的水分挥发干后即可以粘接牢固。

将此粘合后的木块应用于搭接拉伸剪切测试,测试此凝胶黏合剂的胶合强度。本实施例测得拉伸断裂应力为3187n。经过计算得到本实施例凝胶黏合剂应用于木块表面的拉伸剪切强度(应力除以粘接面积)为5.1mpa。

实施例2:

a.预聚合溶液的制备:将250mg纳米碳点(粒径约50nm)溶于20ml去离子水中,按照摩尔比1:4的比例加入单体丙烯酰胺和甲基丙烯酸,搅拌20分钟至完全溶解,配成单体浓度和为14wt%的预聚合溶液。

b.超分子物理凝胶的制备:将引发剂硝酸铈铵溶于去离子水中,超声10分钟,至完全溶解为浓度7mg/ml的溶液,取2ml该溶液加入到15ml步骤a得到的预聚合溶液中,最后加入催化剂过硫酸钠15mg。搅拌3分钟,停止搅拌。静置10小时即可得到高胶合强度环保超分子物理凝胶黏合剂。

样品的粘结:将制得的凝胶黏合剂分别均匀涂抹在多张杨木夹芯皮两面,然后整齐叠加在一起形成多层结构的复合板,用冷压机对整张复合板施以一定压力(10mpa),使各层杨木夹芯皮紧密接触,待凝胶黏合剂中的水分挥发干后即可以粘接牢固制得9mm厚的多层胶合板。

将此粘合后的胶合板送去专业机构测试,检测按照国家标准gb/t9846-2015中对三类普通胶合板的要求进行,测试此凝胶黏合剂的胶合强度。本实施例测得该黏合剂粘合强度为1.7mpa,该数值表明用本发明中的凝胶黏合剂制得的普通胶合板完全符合国家标准中对三类胶合板的强度要求(≥0.7mpa)。

实施例3:

a.预聚合溶液的制备:将300mg蒙脱土和纤维素纳米晶(质量比1:1,粒径分别约为30nm和150nm)溶于40ml去离子水中,加入甲基丙烯酸羟乙酯单体,搅拌20分钟至单体完全溶解,配成单体浓度为8.5wt%的预聚合溶液;

b.超分子物理凝胶的制备:将引发剂过硫酸铵溶于去离子水中,超声10分钟,至完全溶解为浓度13mg/ml的溶液,取3ml该溶液加入到14ml步骤a得到的预聚合溶液中;最后加入催化剂n,n-二甲基环已胺18mg。搅拌8分钟,停止搅拌。静置15小时即可得到高胶合强度环保超分子物理凝胶黏合剂。

样品的粘结:将制得的凝胶黏合剂分别均匀涂抹在玻璃片表面一端,然后将另一玻璃片压在涂有黏合剂的区域,室温放置至黏合剂固话即可。

将此粘合后的玻璃片用于拉伸测试,经过计算得到本实施例凝胶黏合剂应用于玻璃表面的拉伸剪切强度(应力除以粘接面积)为4.3mpa。

这些实施例表明,由本发明所述制备水基胶劲剂的方法简单便捷,所使用的材料安全无毒,粘合效果好,应用范围广,具有广阔的应用前景和商业价值。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1