电动机械的连续可变传动装置的制作方法

文档序号:3968607阅读:127来源:国知局
专利名称:电动机械的连续可变传动装置的制作方法
技术领域
本发明涉及一种传动系统,其用作车辆的推进系统或者固定设备的驱动器,该系统使机械动力和电力系统相结合。
背景技术
电力传动系统通常被用于大型车辆或固定设备。但是,随着输出/输入速比的增加,电动机和发电机不再以它们最佳的运转速度运转。这在驱动器运转范围的上半区降低了驱动器的整体效率。这一问题可通过设定多个传动档,以便使电动机和发电机以处于或接近它们的最佳速度运转而克服,但是所得到的传动装置的复杂性否定了使用电力传动的益处。
电力传动系统的另一种替代方式为机械传动系统。但是,常规的机械传动系统局限于不连续的传动比,这就不允许像在电力传动中的无级传动比的情况。在所有输出速度下,发动机和传动装置之间的大量动力管理对于传动效率是必要的。纯机械传动由于不连续的传动比不足以保证发动机的可用动力的有效利用,而纯电力传动在较高运转速度下固有地具有较低效率。
随着燃料成本的增加及越来越严格的排放要求,大型和小型车辆以及固定设备需要更有效的传动系统,以替代传统的电力和机械传动系统。
本发明的一个目的是通过结合电力和机械动力系统,提供一种用于大型和小型车辆以及固定设备的更有效的传动系统(drive system)。本发明的另一目的是提供一种传动系统(transmission system)以最优化使用该组合的传动系统。

发明内容
本发明包括电动机械的连续可变传动装置(EMCVT),其使用行星齿轮系统以便向车辆或固定设备提供电力和机械动力的组合。该EMCVT包括离合器和制动器系统,其允许来自能量存储单元的动力与主动力输入(典型地为发动机)的动力结合在一起,从而提供比单独由主动力输入可提供的扭矩输出更大的扭矩输出。
EMCVT也可包括范围副变速器(range splitter)系统,用于扩大车辆或固定设备的运转参数。
EMCVT可进一步包括再生转向系统(regenerative steeringsystem),用于控制在主输出轴的两个端部之间的动力分配。
EMCVT还可包括连接到电力分支输入的锁定制动器,在传动装置输出以预先选定百分比的最大速度运转时,该锁定制动器工作以锁定电力分支并迫使所有的动力通过机械分支。
尽管EMCVT可提供正向和反向方向的输出,其可选择地包括连接在主动力输入或主输出轴上的换向齿轮机构。该换向齿轮机构允许EMCVT沿反向方向提供输出,而电力和机械中的部件以与正向方向相同的方式操作。


当结合附图阅读下面的详细描述时,本发明本身,即其结构和操作方法,以及附加的目的和优点将变得很明显图1是具有两个输出、平行轴配置和SRC行星齿轮组的EMCVT方框图;图2是三个行星的行星齿轮组的简图;
图3是具有两个输出、同轴配置和SRC行星齿轮组的EMCVT方框图;图4是具有一个输出、同轴配置和SRC行星齿轮组的EMCVT方框图;图5是具有双速范围倍增器的图1的EMCVT的方框图;图6是具有再生转向系统的图1的EMCVT的方框图;图7是具有双速范围倍增器和再生转向系统的图1的EMCVT的方框图;图8示出了一图表,列出了用于EMCVT不同操作模式的发动机、制动器和离合器的配置;和图9是具有连接到动力输入的齿轮传动换向机构的图1的EMCVT的方框图。
具体实施例方式
示于图1的电动机械的连续可变传动装置(EMCVT)被设计用来将来自输入40的动力在电力传动分支20和并联的机械传动分支21之间分开,并将来自每一个分支的动力重新合并到单独一个主输出26,该电力传动分支20使用发电机22和电动机24,该机械传动分支21使用轴和/或齿轮。
在图2中更详细的示出的简单行星齿轮组10包括中心齿轮12、行星齿轮14、行星齿轮架16和环形齿轮18,用于将来自内燃机或其它主动力源(未示出)的输入40的动力分开到电力传动分支20和机械传动分支21。
虽然可以为六个行星元件的组合,但是优选实施例是SRC结构,即连接到电力分支20的中心齿轮12,连接到机械分支21的环形齿轮18,以及连接到输入40的行星齿轮架16(见图1)。
电力传动分支包括主发电机22和主电动机24,并且连接到能量存储系统100。该能量存储系统包括电池组130、可选的电容器组140、逆变器110和120及控制器150。功率通量通过控制器150通常控制在发电机22和电动机24之间。逆变器110和120与发电机22、电动机24、电池组130和电容器组140的不同动力特性(电流,电流类型,电压和频率)相匹配。电池组130可通过以下两种方法中的一种进行充电通过从输入40吸收动力或从制动吸收能量。
组合器齿轮组28将电力分支20连接到主输出轴26。所示出的组合器齿轮组28为一对正齿轮,但是,对于更高级的动力控制系统也可使用行星齿轮组(在图3和4中示出)。来自电力分支20的动力与来自机械分支21的动力在这一点上结合在一起。
所示出的机械传动分支21是将行星齿轮组10中的一个元件直接连接到主输出轴26的简单轴,但是也可是轴和齿轮的更广泛的组合,用于适应传动装置的实际布置的需要。
示于图1的几个制动器和离合器可用于控制机械分支21和电力分支20之间的不同方面的动力分配。锁定制动器80选择性地将行星齿轮组10的电力输出元件(SRC结构的中心齿轮12)接地或断开接地,以防止行星齿轮组10的元件传动任何动力。
发电机输入离合器160选择性地将行星齿轮组10的电力输出元件连接到主发电机22或与其断开。啮合输入离合器160以便连接行星齿轮组10的电力输出元件(SRC结构的中心齿轮12)也允许主发电机22吸收来自行星齿轮组10的动力。
发电机输出离合器170选择性地将主发电机22连接到组合器齿轮组28或与其断开。这允许发电机22将由主电动机24提供的动力补充到组合器齿轮组28。
机械传动离合器90选择性地将行星齿轮组10的机械输出(SRC结构的环形齿轮18)连接到机械分支或与其断开。
分离式速度离合器(split speed clutch)180选择性地将行星齿轮组10的两个元件锁定在一起或解锁,以防止该两元件之间存在任何差速。在特定操作模式过程中,想要将行星齿轮组10的所有三个元件(中心齿轮12,环形齿轮18,行星齿轮架16)锁定在一起。在图1中,分离式速度离合器180定位在行星齿轮架16和中心齿轮12之间。离合器180也可以定位在中心齿轮12和环形齿轮18之间,或环形齿轮18和行星齿轮架16之间。
接通分离式速度离合器180以便将行星齿轮架16和中心齿轮12锁定在一起。由于行星齿轮组10的特性,环形齿轮18被迫以与其它两个元件相同的速度旋转。此时只有是三个元件中的两个需要反扭矩,并且行星齿轮组10此时作为三个输入/输出之间的刚性联结。对于“突发”(“Burst”)模式以及下述的发动机起动模式来说,需要以这种方式来锁定行星齿轮组10的能力。
能量存储系统在电力分支20中包含能量存储系统100可以用以下两种方法提高传动性能和效率在常规机械方法的制动过程中损失的能量可被回收以便稍后再用;和在作用峰值发动机功率的同时,存储在系统100中的能量可施加到传动装置输出26,这将导致比单独使用发动机所可能产生的动力输出更高的动力输出。
在主输出轴26需要低动力的过程中,在输入40从发动机得到的一些动力可通过控制器150使用发电机22引向电池组130,以便将这些动力转换为电能。发动机输出动力将不得不略微地增加,以适应额外的动力需求。充电的具体要求在不同操作模式的讨论中被涵盖。
在制动操作过程中,通常由常规制动器所吸收的能量可通过传动装置引回到发动机(发动机制动)。电动机24起到发电机的作用,同时发电机22起到电动机的作用。通常流回至发电机22的动力可通过控制器150转移到电池组130。在大量制动或长时间制动的情况下,可能超过电池的充电率或总容量。在这种情况下,过剩的动力可引回至发动机或电容器组140,该电容器组140具有比电池组130高得多的充电率。当停止制动要求时,存储在电容器组140中的能量可用于对电池组130充电。不同的制动过程在下面作更详细的讨论。
在高需求期间,来自电池组130的动力可用作补充在输入40从发动机获得的动力。因此,发动机可降低至更经济的尺寸以在仍然得到相对高性能的峰值的同时满足平均运转条件。下面,在正向操作模式下讨论“突发”模式。
布置EMCVT的核心显示为三种基本的布置,但并不限于此。
图1示出了具有两个输出的平行轴布置。行星齿轮组10同轴地设置在主输出轴26周围,并且主发电机22和主电动机24与主输出轴26呈平行轴配置。输入40使用单独的平行轴。该输入40也可使用垂直于主输出轴26的一个轴,通过锥齿轮组(未示出)将输入传递到行星齿轮组10。该平行轴布置适合于传动装置的宽度是个难题但是主元件可垂直或前后层叠的应用中,但不限定于此。这样的一个示例可以是用于履带之间宽度有限的履带式车辆的驱动器。
图3示出了具有两个输出和平行轴输入的同轴布置。此处,除能量存储系统100是单独定位外,电力分支20和机械分支21的元件都同轴地设置在主输出轴26周围。组合器齿轮组28为行星齿轮组。输入40使用平行于主输出轴26的一个轴。该输入还可以使用垂直于主输出轴26的一个轴,通过锥齿轮组将输入传递到行星齿轮组10。同轴的、双输出布置适合于几乎没有或无宽度限制、需要相对紧凑的传动装置的应用,但不限定于此。这样的一个示例可以是使用横置发动机的前轮驱动车辆。
图4示出了具有一个输出和一同轴输入轴的同轴布置。除了动力输入40设置在主输出轴26的一端,而仅留下一个端部用于输出外,这些部件的设置示于图3中。该布置建立了适合于窄长传动跨度的窄长的直列动力驱动器。这种情况的一个示例可以是传统的发动机前置、后轮驱动的车辆。
操作参照图1和图8,几种操作模式是可能的,但五个正向动力模式、三个反向动力模式和四个制动模式被认为是有用的。在典型的工作循环期间,可在可用的模式之间几次转换传动,以便优化效率和输出动力。
传动装置的操作模式与用于每一模式的发动机、离合器和制动器设置一起列在图8中的表中。这些模式可分为四种正向、反向、制动和发动机起动。
正向操作五种操作模式可用于输出的正向旋转,即车辆前进运动。对于EMCVT的任何给定的应用来说,并不需要所有的模式。
正向完全电力模式在正向完全电力模式中,发电机输出离合器170处于接合状态。主发电机22和主电动机24均用作电动机,并且获得存储在电容器组和电池组140,130中的能量。没有发动机功率从输入40获得,允许主动力源(发动机)空转或完全关闭。这种模式是短时期、高扭矩输出的最佳模式,例如在初始起动和迅速加速到较高速度期间。电力模式也消耗电容器组140和电池组130的电能。
正向完全电力+发动机模式(“突发”模式)在“突发”模式中,发动机处于运转状态,并且机械传动离合器90、发电机输出离合器170和分离式速度离合器180全部处于接合状态。主发电机22和主电动机24均用作电动机,并且获取存储在电容器组和电池组140,130中的能量。发动机功率从输入40获取,并通过行星齿轮组10(通过分离式速度离合器180锁定的所有元件)和机械传动离合器90直接传递至输出轴26。这种模式用于在短时期(突发)提供超出单独由主输入40所能提供的最大扭矩输出。突发模式也消耗电容器组140和电池组130的电能。
正向经济模式在经济模式中,没有离合器接合。只有主电动机24用于向主输出轴26供应动力。从电容器组和电池组140,130中获得能量以向电动机24供给动力。没有发动机功率从输入40获得,可允许主动力源(发动机)空转或完全关闭以最大量的节省燃料。这种操作模式的持续时间由电池组和电容器组130,140的容量所决定。这种模式用于使燃料经济性最大化和/或以最小的噪音水平来运转。
正向并联模式在并联模式中,机械传动离合器90和发电机输入离合器160处于接合状态,并且发动机处于运转状态。由主动力源提供的动力从EMCVT的输入40获取,并在机械分支21和电力分支20之间进行分配。由于行星齿轮组10根据固定比分配输入扭矩,根据连接到每一分支的特定元件的速度来分配动力。起初,由于机械分支21直接连接到输出轴26,因此它不旋转。主发电机22被迫以接近于最大速度极限的速度旋转。主发电机22产生的电能由控制器引到主电动机24。然后主电动机24迫使输出轴26旋转。调节电动机24和发电机22的电流/频率特性,以改变电力分支20的有效传动比。在EMCVT速度带的下半区,动力主要是电力地传动。
随着输出速度的增加,机械分支21的速度也增加。由于输入速度保持恒定,主发电机22的速度必须降低。为此,通过调节电流/频率特性来改变电力分支20的有效传动比,以减小由主电动机24供应至组合器齿轮组28的动力。最终结果是机械传递的输入动力越多,电力传递的就越少。
最终,在EMCVT速度范围的上端附近,主发电机22几乎不旋转,因此在电力分支20中产生非常低的动力水平,而来自输入40的动力几乎完全通过机械分支21传送至输出26。理论上,主发电机22完全停止旋转,而仅产生用以抵抗相应的行星齿轮组元件10的保持转矩。下面将讨论在“完全机械”模式下如何得到EMCVT运转的独特阶段。
在RPM范围的中间阶段,少量电力(约10%)可从主电动机24转换出来并用于为电池组130充电。存储的能量稍后可用于上述的其它操作模式。
并联模式是大多数EMCVT应用的主要操作模式,并且被设计用于遍及可变输出速度下的中等动力要求,即常规驱动。并联模式允许使用更小、更有效的主动力源(发动机)来适应巡航动力,同时与传统的(非并联)混合内燃/电力传动相比,降低了电池/电容器组的尺寸。
正向完全机械模式机械模式是并联模式的延伸。如上所述,在并联模式中,在EMCVT速度范围的上端,主发电机22几乎不旋转并且在理论上应当停止。当前电动机/发电机技术的局限使得发电机22保持在零速度是不切实际的。为了以完全机械模式旋转EMCVT,引入了锁定制动器80,通过将电力输出元件(SRC结构中的中心齿轮12)锁定至地面(典型地为传动装置的外壳),该锁定制动器80提供了抵抗行星齿轮组10的必要的反扭矩。结果,发电机22被锁定,并且机械分支21负责将所有的动力提供到输出轴26。否则,运转与并联模式时相同。机械模式被设计用于当EMCVT以接近或处于最大速度运转一段时间时使用。
反向操作三种操作模式可用于输出的反向旋转。与正向突发模式和机械模式等效的模式不可以用于反向操作。如果对于反向操作需要正向模式的全部范围,那么可以在变速装置的输入40上安装可选的齿轮传动的换向机构。参见该部分后的“可选部件”。
反向完全电力模式发电机输出离合器170像上述正向电力模式那样被接合。不同之处在于发电机22和电动机24反向旋转以实现反向输出。电力模式用于需要高扭矩的短时期反向操作。
反向经济模式在经济模式中,所有的离合器均像上述正向经济模式那样被分离。主电动机24反向旋转以实现反向输出。经济模式可用于有低动力要求的短时期反向操作。
反向并联模式在并联模式中,机械传动离合器90和发电机输入离合器160像上述正向并联模式那样被接合。由主动力源(未示出)提供的动力从EMCVT的输入40获取,并在机械分支21和电力分支20之间分流(分开)。为了在并联模式期间实现反向输出速度,主电动机24用于反向转动主输出轴26。连接到机械分支21的行星齿轮组10的元件(因此,主输出轴26)被迫以与其正常(正向模式)方向相反的方向转动。连接到输入40和电力分支20(主发电机22)的行星齿轮组10的元件沿与正向模式相同的方向转动。由于施加到行星齿轮组10的每一元件的扭矩沿着与正向模式相同的方向,机械分支21中的所得的负功率通量必须通过增加电力分支20的功率通量来补偿。对于并联模式中反向的相同输出速度,电力分支20必须传递比正向时更大的动力。电力分支20的部件的容量必须增加或者反转必须被限制在低至中等速度。在该模式期间,将发生电池/电容器组130,140的充电。
并联模式是用于反向方向的主要操作模式。对于在低到中等输出速度变化期间、具有中等动力要求的长时间反向操作,或者当几乎没有或没有能量已经存储在电池/电容器组130,140中时,可以使用该并联模式。
制动操作EMCVT优于常规传动装置的显著优点是再生制动的使用——制动能的回收和存储以便在稍后再用。常规制动(减速)系统通过从车辆或机器消除动能并将其作为热量消散而降低速度。这些常规系统可包括机械、水力或电磁制动系统。EMCVT消除动能并将其作为电能/化学能存储在电池/电容器组130,140中。由于额外的制动力可由传动装置来提供,合并到整个设计中的常规制动系统可极大地降低尺寸。应该注意机械制动系统未示于任何配置中,但如果需要可被添加。
根据所需的制动力和电池/电容器组130,140的充电状态可得到四个制动模式。
制动—最大再生对于最大再生制动,发电机输入离合器160和发电机输出离合器170被接合。输入40(发动机)不使用或吸收任何动力,事实上可被关闭。主电动机24和主发电机22均用作对电池/电容器组130/140进行充电的发电机。大量的动能可从传动装置的输出26吸收,直到电池/电容器组130/140被完全充电为止;该模式的制动能力由组130,140所能吸收的能量的大小所限定。在这一点上,必须使用常规的制动系统或完全发动机制动(在下面描述)。
最大再生制动用于短时间内的高制动载荷期间,例如车辆的紧急停车或固定机器的紧急切断。
制动—轻度再生对于轻度再生制动,没有离合器接合。除了只有主电动机24起到发电机的作用外,像上面最大再生模式中所描述的那样处理能量。如上所述,电池/电容器组130,140的容量限制了所吸收的制动能量的大小。
轻度再生模式用于短时间内的低制动至中等制动期间,与在正向或反向中的“经济模式”交替使用。这样的一个例子可以是在“停和走”交通信号下行驶的车辆。
制动—并联在并联制动模式中,机械传动离合器90被接合,从而引起动力在发动机输入40和电力分支20之间分配(分流)。结果,从传动装置输出26吸收的动能也可被分流。一部分能量可如上述那样被转换,并由电池/电容器组130/140存储起来,并且由发动机(如常规发动机的制动)吸收/消耗该平衡。
并联模式最适用于将被吸收/消耗的制动能超过电池/电容器组130,140的存储容量的情况,但不限于此。这种模式的一个示例可以是在非常陡的坡度上控制重型车辆的下行。
制动—完全发动机模式在完全发动机制动模式中,除了机械传动离合器90和发电机输入离合器160外,锁定制动器80也被接合。动能从传动装置输出26被吸收,并且仅通过发动机以与常规的发动机制动相同的方式被消耗。当电池/电容器组130,140是满的并且需要最大制动时,可应用该模式。
发动机起动如上所述,传动装置的工作循环可能需要多次经过不同模式循环。为了实现最大燃料经济性,主动力源(发动机)应该在不需要动力源的模式(具有再生制动的完全电力模式和经济模式)中被切断。如果主动力源正巧是内燃机,这样就尤其准确。当然,主动力源随后将需要被起动或重新起动以进入其它操作模式中的一种。
可以使用常规的发动机起动机的电动机,但是它具有两个主要缺点发动机不能在其运转速度附近起动,并且起动机电动机不具有高频率的发动机重新起动需要的工作循环。通过使用主发电机22作为发动机的起动电动机,不会添加额外的部件,并且发动机可在其所需的运转速度附近被起动,这降低了排放并增加了燃料经济性。
起动—停止时输出随着主输出轴26停止,发电机输入离合器160和分离式速度离合器180被接合。主发电机22起到电动机的作用,从电池/电容器组130,140中获取存储的能量。由于所有其它的制动器和离合器都分离了,因此主发电机22能够通过行星齿轮组10使发动机旋转,其中该行星齿轮组10通过分离式速度离合器180将其元件锁定在一起。一旦发动机运转起来,分离式速度离合器180分离,并且任意的正向/反向模式被接合。
起动—运转中输出在EMCVT最初在列于表1的一种正向/反向模式的状态下,其中发动机处于关闭状态并且输出轴26处于运转状态,发电机输入离合器160和分离式速度离合器180接合。主发电机22作为发动机的起动电动机工作。一旦发动机运转,传动装置转换到列于图8的正向/反向模式中的一种,图8中发动机开启。
可选择地,EMCVT可以在不是正向就是反向并联模式操作,并且使用存储在电池/电容器组130,140中的能量以保持动力至输出轴26,并提供动力以起动发动机。
可选部件齿轮传动的换向机构正如在“反向操作”部分中所述,正向模式的整个范围通常不能在反向模式中得到。这适合于最普通的车辆和对于反向操作的性能要求很低或根本没有需要的工业应用中。但是,一些应用在反向模式中可能需要所有正向操作模式(包括所有的制动模式)。该问题的简单解决办法是在EMCVT的输入40或输出26安装齿轮传动的换向机构。
如图9所示,将换向机构190置于传动装置的输入40处仅仅是颠倒了输入40下游的所有元件的方向。由于所有的速度和扭矩方向已被颠倒,不存在负功率通量流经任何分支。传动装置将使用任意的正向模式但具有反向输出旋转而工作。
一个替代方式(未示出)是将换向机构190置于输出26。结果是传动装置部件不管最终输出方向如何而仅仅沿一个方向旋转。输出换向机构的主要缺点是,与安装在传动装置输入40的换向机构相比,需要在该换向机构部件上设置更高的扭矩。结果尺寸和重量增加,使得输入换向机构成为了更好的选择。由于传动装置用于增加在传动装置输入上可用的扭矩,所以安装在输出26的换向机构必须比安装在输入40的换向机构更坚固。结果重量和复杂性增加,使得输出换向机构不适合于大多数的应用情况。
范围副变速器由于当前发电机/电动机技术的局限性,范围副变速器或倍增器可被包含在主输出轴26处,以便增加传动装置的工作范围。图5示出了具有基于行星齿轮组30和低速离合器32以及高速离合器34的双速范围副变速器的平行轴EMCVT。双速范围副变速器适用于大多数的应用情况,但是如果需要,也可包括三速(或更多)范围的副变速器。
再生转向系统当EMCVT用于驱动具有两个输出的履带式车辆时,精确的转向可由示于图6的再生转向系统来完成。如果要求一个输出比另一个输出转动的慢一些,则动力从较慢的一侧传送至较快的一侧,而不是像在传统的制动—转向系统中那样作为热量排出。
转向发电机54由传动装置的输出40直接或经由空转轮驱动。当动力在输出之间平均分配时,阻止了零轴58通过转向电动机56而转动并且转向行星齿轮60的输出以相等的速度旋转。如果需要更多的动力使一个输出比另一个转动地更快,那么转向电动机56沿一个方向或其它方向转动零轴58,改变转向行星齿轮60的输出的相对速度。可替换地,从电池/电容器组130/140、主发电机22、主电动机24或这些元件的组合向转向电动机56提供动力时,可省略转向发电机54。
EMCVT的另一显著优点在于图1和3所示的配置系统的能力,即能够通过共同的输出轴26在传动装置的两端上实现从动输出。在需要连到两个驱动器例如履带和/或差速器的双重输出轴的车辆或固定设备上,这特别有用。而且,一个或两个输出可被接合或分离,消除了配置用于多个输出驱动器的分动箱的需要。
EMCVT速度可通过任何常规的方式来控制,但是电子控制系统是优选的,即该电子控制系统在以正向或反向并联模式操作时最优化与输出速度相关的动力分配。而且,电子控制系统也可包括对可选范围的副变速器和再生转向系统以及上面讨论的不同离合器和制动器的控制装置。
因此,尽管已经参照说明性实施例对本发明作出了描述,但是这种描述不应被认为具有限定的意义。参照这些描述,说明性实施例的各种改进以及本发明的其它实施例,对于本领域的普通技术人员来说是明显的。因此应该考虑到所附的权利要求将覆盖落在本发明范围内的任何这样的改进或实施例。
权利要求
1.一种电动机械的连续可变传动装置,包括a)行星齿轮组;b)电力分支,其具有发电机、电动机和能量存储单元,具有连接到所述行星齿轮组的第一元件的输入,和连接到所述传动装置的主输出轴的输出;c)机械分支,其具有连接到所述行星齿轮组的第二元件的输入和连接到所述主输出轴的输出;d)主动力输入,其连接到所述行星齿轮组的第三元件;e)发电机输出离合器,其连接到所述发电机的输出,并且工作时可选择性地将所述发电机的所述输出连接到所述主输出轴或者使所述发电机的输出从所述主输出轴断开;f)机械传动离合器,其连接到所述机械分支的所述输出,并且工作时可选择性地将所述机械分支的所述输出连接到所述主输出轴或者将所述机械分支的所述输出从所述主输出轴断开。
2.如权利要求1所述的传动装置,进一步包括行星齿轮式分离式速度离合器,其工作时将所述行星齿轮组的任意两个元件锁定在一起,从而当所述发电机输出离合器、机械传动离合器和行星齿轮式分离式速度离合器当被接合时工作着,以便启动助推模式,该助推模式将存储在所述能量存储单元中的动力与来自所述主动力输入的动力结合在一起,以便允许所述传动装置在高于单独使用所述主动力输入可得到的扭矩水平的扭矩水平工作。
3.如权利要求1所述的传动装置,其中所述能量存储单元包括电池组。
4.如权利要求1所述的传动装置,其中所述能量存储单元包括电容器组和电池组。
5.如权利要求1所述的传动装置,还包括连接到所述发电机的发电机输出离合器,其工作时允许来自所述发电机的动力输出用于对所述能量存储单元充电。
6.如权利要求1所述的传动装置,其中所述发电机输入离合器也可被接合,以允许所述发电机提供动力以起动连接到所述主动力输入的发动机。
7.如权利要求1所述的传动装置,还包括连接到所述电力分支的锁定制动器,其工作时锁定所述电力分支,以便由所述机械分支将全部动力传送到所述主输出轴。
8.如权利要求1所述的传动装置,还包括范围副变速器,其连接到所述输出轴,以便能够实现用于所述传动装置的两个或更多的分开的工作范围。
9.如权利要求1所述的传动装置,还包括再生转向系统,当使用所述主输出轴以便在所述主输出轴的两端提供驱动力时,该再生转向系统工作时在输出端之间将动力分开。
10.如权利要求1所述的传动装置,还包括再生制动系统,用于将来自制动的能量存储在所述能量存储单元。
11.如权利要求1所述的传动装置,其中所述电力分支布置在平行于所述主输出轴的轴周围。
12.如权利要求1所述的传动装置,其中所述电力分支同轴地布置在所述主输出轴周围。
13.如权利要求1所述的传动装置,其中所述电力分支同轴地布置在所述主输出轴周围,并且所述主动力输入位于所述主输出轴的一端。
14.如权利要求1所述的传动装置,还包括连接到所述主动力输入的换向齿轮机构,用于使所述传动装置的输出方向反转。
15.如权利要求1所述的传动装置,还包括连接到所述主输出轴的换向齿轮机构,其工作时使所述传动装置的输出方向反转。
全文摘要
本发明包括电动机械的连续可变传动装置(EMCVT),它使用行星齿轮系统以便向车辆或固定设备提供电力和机械动力的组合。该EMCVT包括离合器和制动系统,其允许来自能量存储单元的动力与主动力输入(典型地为发动机)的动力结合在一起,从而提供比单独由主动力输入可提供的扭矩输出更高的扭矩输出。
文档编号B60K6/445GK1849469SQ200480026094
公开日2006年10月18日 申请日期2004年8月16日 优先权日2003年8月15日
发明者杰拉尔德·迪克, 保罗·德赖斯, 穆赫辛·巴盖普尔, 约翰·采帕克 申请人:西尔瓦技术全球系统有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1