专利名称:混合动力车辆的控制方法及混合动力车辆的制作方法
技术领域:
本发明涉及混合动力车辆的控制方法及混合动力车辆,尤其是涉及适宜于串联式混合 动力车辆的混合动力车辆的控制方法及混合动力车辆。
背景技术:
所谓串联式混合动力车辆,例如日本专利公开公报特开平11-220806号所示,是通过 内燃机驱动发电机,将该发电机所产生的电力供应给电动机,通过该电动机驱动驱动轮的 车辆。由于由发电机生成的交流的初级电流与供应给电动机的电流的波形不同,因此,上 述专利文献的结构中,在发电机与电动机之间串联连接有转换器与逆变器,发电机生成的 初级电流先利甩转换器转换为直流电流,再利用逆变器将所转换的直流电流转换为交流的 次级电流,供应给电动机。
以往,由于供应给电动机的电流始终由转换器和逆变器进行转换,因此,基于两次转 换所造成的损失会一定程度地发生,无法回避从电源装置调用的电力增大的问题。
发明内容
本发明鉴于上述问题而作,其目的在于提供能够有效利用发动机生成的电力的混合动 力车辆的控制方法及混合动力车辆。
为解决上述问题,本发明的混合动力车辆的控制方法中,上述车辆,包括,由内燃机 驱动,产生交流的初级电流的发电机;将上述初级电流先转换为直流电流,再转换为交流 的次级电流后,输出到驱动车辆的电动机的第一供电路径;将上述初级电流可直接通导到 上述电动机、与上述第一供电路径并联、可改变上述初级电流的波形的第二供电路径;该 控制方法的特征在于,包括判定上述车辆的运转状态的运转状态判定步骤;判定上述初 级电流的至少相位的初级电流判定步骤;基于上述运转状态判定步骤,判定应供应给上述 电动机的驱动电流的至少相位的驱动电流判定步骤;当上述初级电流的相位和上述驱动电 流的相位在相同相位侧时,将上述初级电流的至少一部分从上述发电机经由上述第二供电 路径供应给上述电动机的供电步骤。该技术方案中,当初级电流的相位和驱动电流的相位在相同相位侧时,由于初级电流从发电机经由第二供电路径供应给电动机,因此与进行由 转换器和逆变器执行的两次的电流转换时相比,可在降低转换损失的同时通过发电机的交 流电流驱动电动机,可以尽可能降低能量损失地使车辆行驶。
上述控制方法中,较为理想的是,上述供电步骤,是当上述初级电流的相位和上述驱 动电流的相位在相同相位侧时,将全部的上述初级电流从上述发电机经由上述第二供电路 径供应给上述电动机的步骤。该技术方案中,可提高第二供电路径的运转率,进一步在降 低转换损失的同时通过发电机的交流电流驱动电动机,可以尽可能降低能量损失地使车辆 行驶。
上述控制方法中,较为理想的是,还包括,判定从上述初级电流的振幅的绝对值中减 去上述驱动电流的振幅的绝对值后的差值的差值判定步骤;当上述初级电流的相位和上述 驱动电流的相位在相同相位侧的情况下,上述差值大于零时,使上述初级电流的一部分流 向电源装置,上述差值小于零时,从上述电源装置补充不足部分的电流的电流量调整步骤。 该技术方案中,当由发电机生成的初级电流大于驱动电流时,剩余电流流向电源装置,从 而电源装置被蓄电,高效地实现再生,当由发电机生成的初级电流小于驱动电流时,通过 从电源装置供应不足部分的电流,可维持最佳的驱动电流。另外,由于在有剩余电流时对 电源装置蓄电,仅在初级电流与驱动电流的差值为负值时从电源装置向电动机供电即可, 因此,还可节约电源装置的电流。
另一方面,本发明的混合动力车辆,包括,内燃机;由内燃机驱动,产生交流的初级 电流的发电机;将上述初级电流先转换为直流电流,再转换为交流的次级电流后,输出到 驱动车辆的电动机的第一供电路径;将上述初级电流可直接通导到上述电动机地与上述第 一供电路径并联设置、可改变上述初级电流的波形的第二供电路径;设置于上述第二供电 路径中的半导体开关;控制各供电路径的通电的控制装置;该混合动力车辆的特征在于 上述控制装置,包括,判定上述车辆的运转状态的运转状态判定部;判定上述初级电流的 至少相位的初级电流判定部;基于上述运转状态判定部的判定,判定应供应给上述电动机 的驱动电流的至少相位的驱动电流判定部;当上述初级电流的相位和上述驱动电流的相位 在相同相位侧时,控制上述半导体开关,以使上述初级电流的至少一部分从上述发电机经 由上述第二供电路径供应给上述电动机的供电控制部。
上述混合动力车辆中,较为理想的是,上述供电控制部,是当上述初级电流的相位和 上述驱动电流的相位在相同相位侧时,使全部的上述初级电流从上述发电机经由上述第二 供电路径供应给上述电动机的装置。上述混合动力车辆中,较为理想的是,上述控制装置,还包括,判定从上述初级电流 的振幅的绝对值中减去上述驱动电流的振幅的绝对值后的差值的差值判定部;当上述初级 电流的相位和上述驱动电流的相位在相同相位侧的情况下,上述差值大于零时,使上述初 级电流的一部分流向电源装置,上述差值小于零时,从上述电源装置补充不足部分的电流 的电流控制部。
采用上述的混合动力车辆,可以得到与上述控制方法同样的作用效果。
图l为本发明一实施方式所涉及的混合动力车辆的概略结构图。
图2为表示图1的旁通电路的半导体开关细节的电路图。
图3为表示作为图l所示的混合动力车辆的控制装置的控制单元的方框图。
图4为表示本实施方式所涉及的控制例的流程图。
图5为表示本实施方式所涉及的控制例的流程图。
图6为基于图4及图5的控制例的时序图的一例。
具体实施例方式
以下,参照
本发明的优选实施方式。
图l为本发明一实施方式所涉及的混合动力车辆的概略结构图。该图所示的混合动力 车辆为具有内燃机10和由该内燃机10驱动的发电机20的串联式混合动力车辆。
内燃机10为例如多气缸四冲程汽油机,其具有由气缸盖与气缸体构成主要部分的
主体ll;形成在该主体11中的多个气缸12;将新鲜空气导入各气缸12的进气歧管14;
以及将各气缸12中的己燃气体排出的排气歧管15。在主体11中,安装有对应于各气缸 12设置的燃料喷射阀16以及火花塞17。并且,通过使设置于各气缸12中的活塞升降, 来驱动连接于该活塞的曲轴10a。另外,在进气歧管14上,设置有用于调整新鲜气体流 量的节流阀18,该节流阀18由节流阀阀身的致动器19驱动。
发电机20为连结于内燃机10的曲轴10a的例如三相的多相发电机,其由内燃机10 驱动从而输出交流电流,而且还通过接受交流电流的供给而发挥作为起动内燃机10的电 动机的功能。发电机20中,设置有未图示的发电机转矩控制器,经由该发电机转矩控制 器,通过后述的控制单元100进行控制。发电机20连接于第一逆变器21。第一逆变器21具有对应于发电机20的相数n的多 组元件。各元件分别由晶体管、二极管等构成。第一逆变器21的输出端子连接于DC总 线22。电容器C1连接于DC总线22。
本实施方式中,第二逆变器23连接于该DC总线22,由上述的第一逆变器21、 DC 总线22、以及第二逆变器23构成三相的第一供电路径。
第二逆变器23具有对应于作为负载的多相电动机25的相数的多组元件。各元件分别 由晶体管、二极管等构成。另外,第二逆变器23连接于电动机25。而且,将从第一逆变 器21输出的直流电流转换为作为次级电流的交流电流,供电给电动机25。
电动机25,连接于混合动力车辆的差速机构26,其通过该差速机构26,驱动连接于 混合动力车辆的后轮27的车轴28。电动机25中,设置有未图示的电动机转矩控制器, 经由该电动机转矩控制器,通过后述的控制单元100进行控制。
此外,电源装置30连接于DC总线22。
另外,在发电机20与电动机25之间,与第一供电路径并联地设置有构成第二供电路 径的旁通电路40。
旁通电路40中,对应于发电机20等的各相(u相、v相、w相)逐相分别设置有AC 旁路开关41 43。
图2为表示图1的旁通电路40的AC旁路开关41 43细节的电路图。参照图2,各 AC旁路开关41 43,具体而言,是由控制从发电机20流向电动机25方向的电流的顺向 用晶体管41a 43a和控制从电动机25流向发电机20方向的电流的逆向用晶体管41b 43b两个为一组构成的半导体开关。各晶体管41a 43a、 41b 43b的接通/断开动作由稍 后详述的控制单元100控制。
参照图l,该图所示的混合动力车辆,通过控制单元(PCM: Powertrain Control Module) 100进行控制。
控制单元100为具有CPU、存储器等的微处理器,其通过程序模块,读取来自输入 装置的检测信号,执行规定的运算处理并将控制信号输出至输出装置。另外,在图示的例 子中,将控制单元100表示为一个单元,但作为具体的实施方式,其也可以是将多个单元 组合而成的模块组件。
图3为表示作为图1所示的混合动力车辆的控制装置的控制单元100的方框图。参照图1及图3,作为控制单元100的输入装置,包含用于判定混合动力车辆的运转 状态的车速传感器SN1、加速踏板开度传感器SN2、以及制动传感器SN3。另外,为了 控制从发电机20向电动机25的供电,设置有如以下所说明的各种传感器。
首先,为了检测发电机20的状态,在发电机20中设置有检测其的输出电流的发电机 电流传感器SN4和检测转速的发电机转角传感器SN5,它们连接于控制单元100。
另外,为了控制供电方向和基于电源装置30的供电/再生等,在DC总线22中设置有 检测该DC总线22的电压的DC总线电压传感器SN6,在电源装置30中设置有蓄电池电 压(蓄电量检测)传感器SN7,它们分别连接于控制单元100。
此外,为了控制电动机25自身的运转状态、供电方法等,在电动机25中设置有电动 机电流传感器SN8和电动机转角传感器SN9,它们连接于控制单元100。
另外,作为控制单元100的输出装置,包括燃料喷射阀16、火花塞17、节流阀致动 器19、第一、第二逆变器21、 23、 AC旁路开关41 43等。
在图示的例子中,控制单元100逻辑性地构成运转状态判定部101、初级电流判定部 102、驱动电流判定部103、差值判定部104、供电控制部IIO、电流控制部lll、发动控 制部112、再生运转控制部113、以及内燃机控制部114。
运转状态判定部101,是根据各传感器SN1 SN9的检测结果判定混合动力车辆的运 转状态的逻辑性模块。在本实施方式中,运转状态判定部101还具有在混合动力车辆行驶 时,判定由转速和输出电流决定的发电机20的工作点的功能。
初级电流判定部102,是根据发电机电流传感器SN4的检测值判定由发电机20运转 而生成的交流电流的相位、振幅、频率的逻辑性模块。
驱动电流判定部103,是通过基于运转状态判定部101的判定及电动机25的规格这 些控制参数等来判定电动机25的运转所需的交流电流的相位、振幅、频率的逻辑性模块。
差值判定部104,是运算从由初级电流判定部102判定的初级电流Gi的振幅的绝对 值中减去由驱动电流判定部103判定的驱动电流Di的振幅的绝对值的差值、以将之作为 控制参数并进行判定的逻辑性模块。
供电控制部110是掌管用于运作电动机25的供电控制的逻辑性模块,该供电控制, 具体而言,是选择性地判定将供应源设定为发电机20、或设定为电源装置30、或设定为 这两者的控制。电流控制部111是控制电流的逻辑性模块,以在通过供电控制部110从发电机20向 电动机25供电之际,运算差值,当出现电流过剩时使之流向电源装置30,当出现电流不 足时从电源装置30向电动机25补充不足部分的电流。
发动控制部112是掌管使用发电机20起动内燃机10的控制的逻辑性模块。
再生运转控制部113是控制电源装置30的蓄电池再生时的运转的逻辑性模块。
内燃机控制部114是通过控制燃料喷射阀16、火花塞17及节流阀致动器19等,来 控制内燃机10的转速,从而控制发电机20的转速的逻辑性模块。
图4及图5为表示本实施方式所涉及的由控制单元100的各模块所进行的控制例的流 程图。另外,图6为基于图4及图5的控制例的时序图的一例。
首先,参照图4,在本实施方式中,控制单元IOO读取车速传感器SNI、加速踏板开 度传感器SN2、制动传感器SN3、蓄电池电压传感器SN7等各种输入装置的信号,由此 检测车辆的运转状态(步骤SIO)。
接下来,控制单元100根据所读取的输入装置的信号,判定混合动力车辆是否处于驱 动中(步骤Sll)。.
假若步骤S11中,混合动力车辆不处于驱动中的情况下,即混合动力车辆处于停止中 或蓄电池再生运转中时,控制单元100判定混合动力车辆是否处于再生运转中(步骤S12), 如为再生运转中,则经由由再生运转控制部113执行的再生运转控制子程序(步骤S13) 移到步骤SIO。关于再生运转控制子程序,可直接采用公知的控制步骤,因此此处省略其 详细说明。另外,在步骤S12中,若不处于再生运转控制中时(停止时等),直接移到步 骤SIO。
另一方面,在步骤S11中判定为车辆驱动中的情况下,控制单元100判定发电机20 的初级电流特性、电动机25的驱动电流特性、电源装置30的充放电量(步骤S14)。此 处,"电流特性",是包含该电流的振幅、相位、频率、周期等参数的概念。
上述的电流特性、充放电量等被确定后,控制单元100判定是否需要由发电机20进 行发电(步骤S15)。假若为无需发电机20的发电的情况下,通过第二逆变器23的开关 控制将电源装置30的电力供应给电动机25 (步骤S16),然后移到步骤SIO。
在步骤S15中,若判定为处于需要发电机20的发电的运转区域时,如图5所示,控 制单元100判定内燃机10是否正在驱动(步骤S18)。假若为内燃机IO未驱动的情况下, 控制单元100使发电机20发挥作为起动电动机的功能,执行通过发电机20进行的内燃机 IO的发动控制(步骤S19),直至内燃机10驱动。该发动动作中,通过从电源装置30
9向第一逆变器21供电,并通过第一逆变器21的开关控制使来自电源装置30的电流流入 发电机20来进行。内燃机10驱动后,控制单元100读取发电机电流传感器SN4的检测 值和电动机电流传感器SN8的检测值(步骤S20),判定根据各检测值判定的发电机20 的初级电流Gi的相位与电动机25的驱动电流Di的相位是否在相同相位侧(步骤S21)。 此处,"相位在相同相位侧",是指发电机20的初级电流Gi的正负方向与电动机25的驱 动电流Di的正负方向相同(参照图6)。
假若初级电流Gi的相位与驱动电流Di的相位不在相同相位侧的情况下(图6中,相 位角范围P1、 P3等的情况下),控制单元100与以往技术相同地,通过第一、第二逆变 器21、 23的开关控制将初级电流Gi先转换为直流,再转换为适合作为驱动电流Di的交 流电流后,供应给电动机25 (步骤S22),然后移到步骤SIO。
另一方面,若初级电流Gi的相位与驱动电流Di的相位在相同相位侧的情况下(图6 中,相位角范围P2、 P4等的情况下),控制单元100运算从初级电流Gi的振幅的绝对 值中减去驱动电流Di的振幅的绝对值的差值,判定该差值是否大于0 (步骤S23)。例如, 在图6的例子中,在相位角范围P22、 P42中,初级电流Gi的振幅的绝对值比驱动电流 Di的振幅的绝对值大。在这样的相位角范围P22、 P42中,通过旁通电路40的AC旁路 开关41 43的开/关控制修正初级电流Gi的波形,向电动机25供应电力(步骤S24), 然后移到步骤SIO。该步骤S24中进行AC旁路开关41 43的开/关控制时,通过将DC 总线22的电位差控制得较低,可将一部分剩余电流对电源装置30充电(参照图6)。
另一方面,在步骤S23中,若差值为0时,或为负值时(即,驱动电流Di的振幅的 绝对值大于初级电流Gi的振幅的绝对值时),控制单元100首先接通旁通电路40的AC 旁路开关41 43 (步骤S25),接下来,判定差值是否为0 (步骤S26),若差值为0时, 直接移到步骤SIO,相反,若差值为负值时(图6中,相位角范围P21、 P41、 P43等的 情况下),从电源装置30输出不足部分的电力,由第二逆变器23转换并进行修正后供应 给电动机25 (步骤S27),然后移到步骤SIO。
如上所述,本实施方式所涉及的混合动力车辆,包括,内燃机10;由该内燃机10驱 动,产生交流的初级电流的发电机20;将初级电流Gi先转换为直流电流,再转换为交流 的次级电流后输出到驱动车辆的电动机25的第一供电路径(第一逆变器21、 DC总线22、 第二逆变器23);与第一供电路径并联设置以将发电机20直接连接于电动机25、可改变 发电机20生成的初级电流Gi的波形的第二供电路径(旁通电路40);设置于第二供电 路径中的作为半导体开关的AC旁路开关41 43;作为控制各供电路径的通电的控制装置的控制单元100;其中,控制单元100包括,判定车辆的运转状态的运转状态判定部101; 判定发电机20生成的初级电流Gi的至少相位的初级电流判定部102;基于运转状态判定
部101的判定,判定应供应给电动机25的驱动电流Di的至少相位的驱动电流判定部103; 当初级电流Gi的相位和驱动电流Di的相位在相同相位侧时,将初级电流Gi的至少一部 分从发电机20经由AC旁路开关41 43供应给电动机25来进行供电控制的供电控制部 110。
因此,采用本实施方式,当初级电流Gi的相位和驱动电流Di的相位在相同相位侧时, 由于初级电流Gi从发电机21经由第二供电路径(旁通电路40)供应给电动机25,因此 与进行由转换器和逆变器执行的两次的电流转换时相比,可在降低转换损失的同时通过发 电机20的交流电流驱动电动机25,可以尽可能降低能量损失地使车辆行驶。
另外,本实施方式中,上述控制单元100执行的控制动作中包含,判定从初级电流 Gi的振幅的绝对值中减去驱动电流Di的振幅的绝对值后的差值的差值判定步骤(步骤 S23);当初级电流Gi的相位和驱动电流Di的相位在相同相位侧的情况下,若差值大于 0时,使发电机20的电流的一部分流向电源装置30,若差值小于O时,从电源装置30 补充不足部分的电流的电流量调整步骤(步骤S24 S27)。因此,本实施方式中,当由 发电机20生成的初级电流Gi大于驱动电流Di时,剩余电流流向电源装置30,从而电源 装置30被蓄电,高效地实现再生,当由发电机20生成的初级电流Gi小于驱动电流Di 时,通过从电源装置30供应不足部分的电流,可维持最佳的驱动电流Di。另外,由于在 有剩余电流时对电源装置30蓄电,仅在初级电流Gi的振幅的绝对值与驱动电流Di的振 幅的绝对值的差值为负值时从电源装置30向电动机25供电即可,因此,还可节约从电源 装置30供应的电流。
上述实施方式仅仅表示本发明的优选具体例,但本发明并不限定于上述实施方式。
例如,当初级电流Gi的相位和驱动电流Di的相位在相同相位侧时,供电步骤(步骤 S24 S27)也可以是将全部的初级电流Gi从发电机20经由第二供电路径(旁通电路40) 供应给电动机25的步骤。此时,可提高第二供电路径的运转率,进一步在降低转换损失 的同时通过发电机20的交流电流驱动电动机25,可以尽可能降低能量损失地使车辆行驶。
另外,作为其他实施方式,也可替代图l、图3所示的第一逆变器21而设置二极管整 流器。
此外,旁通电路40可以采用可改变初级电流Gi的波形的各种转换电路,例如,其可 以由具有双向的接通/断开开关的、在输入侧配备滤波电路的矩阵转换器构成。此外,在图5的流程图中,作为用于判定相位的输入装置,也可替代步骤S20的各电 流传感器SN4、 SN8而采用各转角传感器SN5、 SN9。或者也可采用各电流传感器SN4、 SN8和各转角传感器SN5、 SN9这双方进行判定控制。
另外,毋庸置疑,在本发明的专利请求范围内,还可进行各种各样的变更。
权利要求
1. 一种混合动力车辆的控制方法,所述车辆,包括,由内燃机驱动,产生交流的初级电流的发电机;将所述初级电流先转换为直流电流,再转换为交流的次级电流后,输出到驱动所述车辆的电动机的第一供电路径;将所述初级电流可直接通导到所述电动机、与所述第一供电路径并联、可改变所述初级电流的波形的第二供电路径;该控制方法的特征在于,包括判定所述车辆的运转状态的运转状态判定步骤;判定所述初级电流的至少相位的初级电流判定步骤;基于所述运转状态判定步骤,判定应供应给所述电动机的驱动电流的至少相位的驱动电流判定步骤;当所述初级电流的相位和所述驱动电流的相位在相同相位侧时,将所述初级电流的至少一部分从所述发电机经由所述第二供电路径供应给所述电动机的供电步骤。
2. 根据权利要求1所述的混合动力车辆的控制方法,其特征在于 所述供电步骤,是当所述初级电流的相位和所述驱动电流的相位在相同相位侧时,将全部的所述初级电流从所述发电机经由所述第二供电路径供应给所述电动机的步骤。
3. 根据权利要求1或2所述的混合动力车辆的控制方法,其特征在于,还包括 判定从所述初级电流的振幅的绝对值中减去所述驱动电流的振幅的绝对值后的差值的差值判定步骤;当所述初级电流的相位和所述驱动电流的相位在相同相位侧的情况下,所述差值大于 零时,使所述初级电流的一部分流向电源装置,所述差值小于零时,从所述电源装置补充 不足部分的电流的电流量调整步骤。
4. 一种混合动力车辆,包括, 内燃机;由所述内燃机驱动,产生交流的初级电流的发电机;将所述初级电流先转换为直流电流,再转换为交流的次级电流后,输出到驱动所述车 辆的电动机的第一供电路径;将所述初级电流可直接通导到所述电动机地与所述第一供电路径并联设置、可改变所 述初级电流的波形的第二供电路径;设置于所述第二供电路径中的半导体开关;控制各供电路径的通电的控制装置;该混合动力车辆的特征在于 所述控制装置,包括,判定所述车辆的运转状态的运转状态判定部; 判定所述初级电流的至少相位的初级电流判定部;基于所述运转状态判定部的判定,判定应供应给所述电动机的驱动电流的至少相位的 驱动电流判定部;当所述初级电流的相位和所述驱动电流的相位在相同相位侧时,控制所述半导体开 关,以使所述初级电流的至少一部分从所述发电机经由所述第二供电路径供应给所述电动 机的供电控制部。
5. 根据权利要求4所述的混合动力车辆,其特征在于所述供电控制部,是当所述初级电流的相位和所述驱动电流的相位在相同相位侧时, 使全部的所述初级电流从所述发电机经由所述第二供电路径供应给所述电动机的装置。
6. 根据权利要求4或5所述的混合动力车辆,其特征在于 所述控制装置,还包括,判定从所述初级电流的振幅的绝对值中减去所述驱动电流的振幅的绝对值后的差值 的差值判定部;当所述初级电流的相位和所述驱动电流的相位在相同相位侧的情况下,所述差值大于 零时,使所述初级电流的一部分流向电源装置,所述差值小于零时,从所述电源装置补充 不足部分的电流的电流控制部。
全文摘要
一种混合动力车辆的控制方法,所述车辆包括将发电机(20)生成的初级电流(Gi)转换后输出到电动机(25)的第一供电路径、和将发电机直接连接于电动机的第二供电路径,该控制方法中包括,判定车辆的运转状态的运转状态判定步骤(步骤S10);判定发电机生成的初级电流的至少相位的初级电流判定步骤(步骤S20);基于运转状态判定步骤,判定应供应给电动机的驱动电流(Di)的至少相位的驱动电流判定步骤(步骤S21);当初级电流和驱动电流的相位在相同相位侧时(在相位角范围P2、P4时),将初级电流的至少一部分从发电机经由第二供电路径供应给电动机的供电步骤(步骤S24~S27)。采用该控制方法,能够有效利用发动机生成的电力。
文档编号B60L11/08GK101450627SQ20081018224
公开日2009年6月10日 申请日期2008年11月20日 优先权日2007年12月3日
发明者濑尾宣英, 米盛敬 申请人:马自达汽车株式会社