线性马达充电的电动车辆的制作方法

文档序号:3931715阅读:433来源:国知局
专利名称:线性马达充电的电动车辆的制作方法
技术领域
本发明一般地涉及全电动车辆。尤其是,本发明涉及由电池或线性同步马达(LSM) 交替推进的电动车辆。本发明尤其,但并非排他地用作当由LSM推进时对它的电池再充电的电动车辆。
背景技术
众所周知的是,电动马达与发电机可以分别用于将电能转换为机械能和将机械能转换为电能。基本上,马达和发电机的运行都基于相关的物理原理。他们两者还包括相似的运行结构,即导体、磁场和电流。一方面,对于马达(电能到机械能的转换),导体位于磁场中,并且电流穿过该导体。从而,磁场将力作用于该导体上。该力于是被机械地从该导体传输来工作(例如在车辆上旋转车轮)。另一方面,对于发电机(机械能到电能的转换), 导体物理地在磁场中移动。移动的结果是在导体中产生或感应电流。该感应电流然后被储存(例如再充电电池)。线性同步马达(LSM)是一种特殊类型的电动马达,其中导体(例如三相绕组)以基本上线性结构布置。磁场然后沿着基本上与导体(绕组)的布局平行的路径移动。获得的力因此被施加以在沿着导体(绕组)的方向上移动车辆。在其结构上,LSM显著地不同于更常规的具有相互作用的磁场和导体的电动马达。 典型地,但不是必要地,在常规布置中的磁场保持静态,同时导体在磁场中旋转。尽管它们具有明显的构造差异,但是在全部其他重要的方面,线性同步马达的基础物理学和常规电动马达本质上相同。对于许多应用,并且因为许多不同的理由,电动装置(即电动马达)可以优于其他类型的马达(例如矿物燃料内燃机)。尤其是,越来越多陆地车辆装备了电动装置。例如, 许多汽车制造厂提供电池供电的汽车。LSM也正越来越多地被考虑用于在铁路线延长部分上运行的火车的推进单元。然而,将线性同步马达作为车辆的推进单元的一个重要考虑是它将车辆的行进有效地局限在已经预先放置了线性同步马达的固定构件(例如导体/绕组)的道路。然而,在某些应用中,可能需要避免这样的限制以有利于更灵活的行进轨迹。 倘若如此,能量消耗要求将成为关注的问题。根据以上所述,本发明的目的是提供由两种不同类型的推进单元(即线性同步马达和电池供电的电动马达)交替推进的全电动车辆。本发明的另一个目的是提供包括控制装置的全电动车辆,该控制装置用来选择地操作马达/发电机,使其作为电池供电的马达以推进车辆,或者当车辆由线性同步马达推进时作为再充电电池的发电机。本发明的另一个目的是提供一种易于使用,制造相对简单,并且相对经济合算的全电动车辆。

发明内容
根据本发明的一种全电动轮式车辆,其由两个电动推进单元中的任一个交替地推进。一个单元包括在车上的电池供电的电动马达/发电机。另一个装置是线性同步马达(LSM),其包括车上和外部的元件。在任一情况下,车辆的车轮都与车辆行驶的道路保持接触。作为本发明的意图,并且取决于正在使用的推进单元,马达/发电机可以以两种模式(即马达模式或发电机模式)中的任一种运行。在马达模式下,车辆使用马达/发电机作为它的推进单元利用来自电池的电能来旋转车辆的车轮以进行推进。优选地,马达是同步永磁马达,其能够在大约每分钟1200转时产生大约125马力。或者,当车辆由线性同步马达推进时,马达/发电机可以在它的发电机模式下运行。在这种模式下,车辆旋转的车轮与马达/发电机相互作用来对电池再充电。为了建立线性同步马达,车辆具有能够选择性地展开的车载磁体阵列。当展开时, 磁体阵列放置为邻近车辆行驶的道路,之间具有大约5厘米的空隙。这然后允许磁体的磁场与嵌入道路中的外部动力部分相互作用。为了线性同步马达的运行,线性同步马达的动力部分优选包括通过绕组的由外部电源提供电流的三相绕组。在这一点上,应注意的是,三相绕组只不过是示范性的。本领域技术人员可以理解,如果需要,能够使用不同的多相绕组。在结构上,电动马达/发电机、电池(例如超级电容器)和用于使马达/发电机在马达模式或发电机模式下交替运行的系统控制装置全部安装在车辆的底盘上。另外,如前面所述,车辆还装备有磁体阵列,其安装在底盘上以在缩回结构和展开结构之间移动。对于本发明,当磁体阵列处于缩回结构时,车辆在上面公开的马达模式下运行。另一方面,当磁体阵列展开时,线性同步马达作为车辆的推进单元,并且马达发电机对电池再充电。更详细地,磁体阵列优选包括安装在支撑件上的永磁体。另外,该支撑件优选地是背铁并且该永磁体是Halbach型阵列。重要的是,该Halbach型阵列(永磁体)被设置为建立与动力部分的三相绕组中的电流相互作用的磁场。优选地,线性同步马达以大约15赫兹运行并且绕组产生线性同步马达场,其具有沿着动力部分大约每小时15英里的波形速度。 本领域技术人员应会理解,线性同步马达以15赫兹和每小时15英里的波形速度运行是示例性的。如果需要,能够使用相应地不同的线性同步马达频率和波形速度。另外,车辆的动力系统包括连接在车轮和电动马达之间的差动装置,该差动装置具有大约10. 9比1的齿轮传动比。另外,可变频率逆变器-整流器连接在电动马达和电池之间,用于当马达/发电机在发电机模式下运行时利用直流电压给电池充电,并且用于在马达模式下运行时提供交流电压来给电动马达供电。


关于结构和运行,本发明的新颖特征,以及发明本身,根据附图并结合说明书会得到更好的理解,其中相似的附图标记指代相似的部分,并且其中图1是根据本发明的全电动车辆的透视图,其中示出的车辆朝着嵌入到车辆行驶的道路内的动力部分行驶;图2是本发明用于全电动车辆的电气系统的框图;图3A是器磁体阵列处于缩回结构的全电动车辆的侧视图,并且如沿着图1中的线 3-3看到的那样以剖面示出磁体阵列;图;3B是如图3A中所示的其中磁体阵列处于展开结构的车辆的视图;和
图4是如沿着图1中的线3-3看到的那样的磁体阵列的一部分和动力部分的一部分的代表性横截面视图。
具体实施例方式首先参考图1,示出了根据本发明的全电动车辆并标记为10。如图所示,车辆10是轮式车辆,其典型地具有多个车轮,但是必须具有至少一个车轮12。本领域技术人员可以理解的是,车辆10本质上可以是现有技术中任何种类的轮式陆地车辆。图中示出的车辆(拖拉机)10只是示范性的。图1还示出磁体阵列14基本上如图所示地安装在车辆10上,并且车辆10带有至少一个电池16。为了本发明的目的,电池16优选地包括具有大约8兆焦耳电能容量的超级电容器。注意实际上车辆10上可以装有多个电池16。图1还示出了其行驶时间的至少一部分,预计车辆10沿着道路18行驶,道路18包括优选嵌入其中的动力部分20。更具体地,动力部分20包括三相绕组22,其接收来自外部电源(未示出)的电流。现在参考图2,示出了用于车辆10的部件的示意性框图,其中部件布置在车辆10 的底盘对上。在这种布置中,车辆10的车轮12通过轮轴观连接到差动器沈。接着,差动器26直接连到马达/发电机30。为了本发明的目的,差动器沈优选地具有10. 9比1左右的齿轮传动比,并且马达/发电机30优选地包括永磁马达,其在每小时15英里的速度时以大约每分钟1445转运行。图2还示出了马达/发电机30通过交流线路34连接到逆变器-整流器32,并且电池(超级电容器)16通过直流线路36连接到逆变器-整流器32。进一步地,图2通过虚线38表示,车辆10车载的控制系统40可用于交替操纵逆变器-整流器32,从而引起马达/发电机30在马达模式或者在发电机模式下运行。为了在其马达模式下运行马达/发电机30,控制系统40用来指示逆变器-整流器 32将来自电池16的直流电压转换为交流电压,以使马达/发电机30作为马达运行。于是, 马达/发电机30提供功率来旋转车轮12。因而,当马达/发电机30在其马达模式下运行时,其作为车辆10的推进单元。或者,为了使马达/发电机30在其发电机模式下运行,逆变器一整流器32由控制系统40控制,以将来自马达/发电机30的交流电压转换成直流电压,用于对电池16再充电。在该发电机模式下,车轮12的转动引起马达/发电机30产生交流电压,其由逆变器-整流器32转换为直流电压以对电池16再充电。如上所述,车辆10交替地使用两种不同的推进单元。如上面公开的,当马达/发电机30在其马达模式下运行时,建立一个推进单元。另一推进单元是线性同步马达(LSM)。 因而,本发明的一个重要的方面涉及线性同步马达(LSM)如何被建立作为车辆10的推进单元。参照图3A和;3B能够更好地理解这是如何完成的。在图3A中,示出磁体阵列14处于缩回结构,其中磁体阵列14有效地离开道路18。 图3A还示出了磁体阵列14包括永磁体42,其安装在可作为永磁体42的背铁的支撑件44 上。另外,可以看到磁体阵列14包括多个离开地面的车轮,其中离开地面的车轮46是示范性的。在图3B中,示出磁体阵列14的展开结构,其中磁体阵列14朝着道路18展开(即降低),直到离开地面的车轮46与道路18接触。随着这种接触,磁体阵列14的永磁体42与道路18的表面相距距离48。优选地,该距离48是大约5厘米。为了本发明的目的,永磁体42可以是现有技术中公知的任何类型的磁体,比如图4中示出的Halbach型阵列。在任何情况下,如图4中所示出,当磁体阵列14已经展开使得其足够靠近三相绕组22时,永磁体42的磁场从而直接与三相绕组22的电场相互作用。这种相互作用然后提供车辆10的推进力。在这种线性同步马达的布置中,三相绕组22优选以大约15Hz运转,来产生大约每小时15英里的波形速度(即车辆10的速度)。在它的运行中,车辆10可以通过选择性地使用两个推进单元中的其中任何一个沿着道路18行驶。然而,该选择取决于是否车辆10行驶在嵌入的动力部分20上。具体地, 当车辆10行驶在动力部分20上时,能够在车辆10的磁体阵列14和嵌入道路18中的三相绕组22之间建立线性同步马达推进单元。当车辆10接近动力部分20时使磁体阵列14下降为展开结构(看图3B)来实现这一点。通过使车辆10的速度基本上与波形的速度(例如每小时15英里)对应来完成磁体阵列14的磁场与三相绕组22的电波的接合。一旦建立,该线性同步马达可以然后有效地用作车辆10的推进单元。重要的是,对于本发明的目的,当车辆10正由线性同步马达在道路18上的动力部分20上推进时,电池16可以被再充电。具体地,当车辆10在线性同步马达的影响下沿着道路18向前移动时,车轮12通过与道路18的接触而旋转。车轮12的这种转动用于利用马达/发电机30产生交流电压(即马达/发电机30处于它的发电机模式)。交流电压然后被逆变器-整流器32变为直流电压,用于对电池16再充电。当车辆10没有行驶在动力部分20上,因此不再能利用它的磁体阵列14建立线性同步马达时,磁体阵列14升高到它的缩回结构(看图3A)。在这种情况下,车辆10用电动马达作为它的另一个推进单元来运行。具体地,随着马达/发电机30现在由控制系统40 指示以马达模式运行,电池16的电力通过逆变器-整流器32而到达马达/发电机30,来运行马达/发电机30作为马达(即马达/发电机30处于它的马达模式)。因而,马达/发电机30作为推进单元来旋转车轮12用于车辆10的推进。虽然在此所示出和所详细披露的具体线性马达充电电动车辆完全能够实现这些目标并提供前面所述的优点,但是,应当明白,这仅仅是为了说明本发明的优选实施例,除附带的权利要求书中所述之外,对在此所示的构造或设计的细节是没有任何限制的。
权利要求
1.一种沿着道路移动的全电动车辆,其中所述道路具有至少一个其中嵌入有三相绕组的动力部分,所述车辆包括底盘;安装在底盘上的电动马达; 安装在底盘上用于运行电动马达的电池; 安装在底盘上用于在缩回结构和展开结构间移动的磁体阵列; 电气系统,其安装在底盘上用于交替地在马达模式和发电机模式下运行,在马达模式下利用来自马达的功率沿着道路移动车辆,以及在发电机模式下对电池再充电;和控制系统,用于在发电机模式下操纵车辆,以通过选择地移动所述磁体阵列到它的展开结构以在所述磁体阵列和在道路的动力部分中的所述三相绕组之间建立线性同步马达 LSM从而沿着道路移动车辆,来对电池再充电。
2.根据权利要求1所述的车辆,其中所述磁体阵列包括 支撑件;和安装在所述支撑件上的永磁体。
3.根据权利要求2所述的车辆,其中所述支撑件是背铁,并且所述永磁体是Halbach型阵列。
4.根据权利要求1所述的车辆,其中动力部分中的三相绕组建立LSM场,所述LSM场具有沿着动力部分大约每小时15英里的波形速度。
5.根据权利要求4所述的车辆,其中LSM以大约15赫兹运行。
6.根据权利要求1所述的车辆,其中,处于其展开结构的所述磁体阵列被定位于距离动力部分中的三相绕组大约5厘米处。
7.根据权利要求1所述的车辆,还包括安装在底盘上的车轮,在车辆沿着道路移动期间所述车轮与道路接触并因此转动。
8.根据权利要求7所述的车辆,其中电动马达是同步永磁马达,其在大约每分钟1200 转时产生大约125马力。
9.根据权利要求8所述的车辆,其中所述电气系统包括连接在车轮和电动马达之间的差动器,该差动器具有大约10. 9比1的齿轮传动比;和连接在电动马达和电池之间的可变频率的逆变器-整流器,用于在电气系统在发电机模式下运行时用直流电压给电池充电、并且用于在电气系统在马达模式下运行时提供交流电压来给电动马达供电。
10.一种用于移动轮式车辆的双模式动力单元,包括安装在车辆上的发电机组件,其在发电机模式下运行以响应于车辆的车轮的旋转给电池充电,其中当车辆响应于线性同步马达LSM而移动时车轮旋转,并且其中LSM是通过车辆上的磁体阵列与位于车辆外部的三相绕组的相互作用而建立的;安装在车辆上的马达组件,其在马达模式下运行以旋转车轮来移动车辆,其中通过电池给电动马达供电;和安装在车辆上的控制系统,用于交替地激活发电机模式和马达模式。
11.如权利要求10所述的动力单元,其具有传动系统,包括连接在车轮和电动马达之间的差动器,该差动器具有大约10. 9比1的齿轮传动比;和连接在电动马达和电池之间的可变频率的逆变器-整流器,用于在动力单元在发电机模式下运行时用直流电压给电池充电、并且用于在动力单元在马达模式下运行时提供交流电压来给电动马达供电。
12.根据权利要求10所述的动力单元,进一步包括连接到控制系统的磁体阵列,用于当车辆沿着道路移动时,所述磁体阵列选择地移动成展开结构以在所述磁体阵列和道路的动力部分中的三相绕组之间建立线性同步马达LSM。
13.根据权利要求12所述的动力单元,其中所述磁体阵列包括支撑件;和安装在所述支撑件上的永磁体。
14.根据权利要求13所述的动力单元,其中所述支撑件是背铁,并且所述永磁体是 Halbach型阵列。
15.根据权利要求12所述的动力单元,其中动力部分中的三相绕组建立LSM场,所述 LSM场具有沿着动力部分大约每小时15英里的波形速度,并且进一步其中LSM以大约15Hz 的频率运行。
16.根据权利要求12所述的动力单元,其中处于其展开结构的磁体阵列被定位于距离动力部分中的三相绕组大约5厘米处。
17.一种沿着道路移动全电动轮式车辆的方法,其中道路具有至少一个其中嵌入有三相绕组的动力部分;其中车辆具有安装在底盘上的电池供电的电动马达,并包括安装在底盘上的磁体阵列,用于在缩回结构和展开结构之间移动磁体阵列,并且进一步其中所述方法包括以下步骤在马达模式下操纵车辆,以利用来自电动马达的动力旋转车轮,使车辆沿着道路移动;禾口选择地移动所述磁体阵列成为它的展开结构以在所述磁体阵列和在道路的动力部分中的三相绕组之间建立线性同步马达LSM,以在发电机模式下沿着道路移动车辆,从而旋转车轮给电池再充电。
18.根据权利要求17所述的方法,其中所述磁体阵列包括支撑件;和安装在所述支撑件上的永磁体。
19.根据权利要求18所述的方法,其中所述支撑件是背铁并且永磁体是Halbach型阵列,其中动力部分的三相绕组建立LSM场,所述LSM场具有沿着动力部分大约每小时15英里的波形速度,并且其中LSM以大约15Hz运行。
20.根据权利要求19所述的方法,进一步包括以下步骤将差动器连接在车轮和电动马达之间,所述差动器具有大约10.9比1的齿轮传动比, 以在大约每分钟1200转时产生125马力;和将可变频率逆变器-整流器连接在电动马达和电池之间,用于在电气系统在发电机模式下运行时利用直流电压给电池充电,并且用于在电气系统在马达模式下运行时提供交流电压来给电动马达供电。
全文摘要
一种全电动的轮式车辆具有磁体阵列,其可在缩回位置和展开位置之间选择性移动,以分别在马达模式或发电机模式下运行。当在马达模式下,它的磁体阵列缩回,通过车载电池来使得车轮旋转以移动车辆。或者,在磁体阵列展开的发电机模式下,车辆由线性同步马达(LSM)驱动。具体地,展开的磁体阵列与嵌入车辆行驶的道路中的多相绕组(即LSM)相互作用。进一步,在发电机模式下的车辆移动期间的车轮的旋转对电池再充电。
文档编号B60L9/00GK102448764SQ201080007753
公开日2012年5月9日 申请日期2010年2月8日 优先权日2009年2月12日
发明者库尔特·M·绍贝特, 胡萨姆·居罗尔, 菲利普·L·杰特 申请人:通用原子公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1