混合动力车辆的控制装置的制造方法
【专利摘要】一种车辆的控制装置,能够使得引擎在具有良好的燃料消耗效率的运行点运行,以进行发电,而不会导致驾驶员由于噪声或振动产生不适宜感。利用控制装置,运行引擎,使得发电机的发电电力响应于车辆所需的电力而增加。因此,引擎可以在具有满意的燃料消耗效率的运行点运行。当在加速状态时,运行引擎,从而发电电力的增量被设定为大于减速状态时的发电电力的增量。当在减速状态时,运行引擎,从而抑制发电电力的增加并且限制噪声的增加。
【专利说明】
混合动力车辆的控制装置
技术领域
[0001]本发明涉及一种混合动力车辆的控制装置,该混合动力车辆的控制装置设置有行驶马达和由引擎驱动的发电机。
【背景技术】
[0002]近年来,设计为通过行驶马达和引擎的结合来获得车辆的驱动力的混合动力车辆已经发展出来并且进入了普遍的实际应用。在发展并且普遍的实际应用的混合动力车辆中有一种车辆,其由引擎驱动发电机来发电,并且为电池充电,用于供电至行驶马达(PHV),和一种车辆,其中电池甚至可以由外部的商业电源(PHEV)来充电。
[0003]这种已知的混合动力车辆能够根据运行状态在以下模式中转换:EV模式,其中驱动轮被驱动,只有行驶马达被用作动力源;串联模式,其中行驶马达被用作动力源,并且发电机由引擎驱动以将电力供给至电池和行驶马达;以及并联模式,其中引擎和行驶马达两者都用作动力源。
[0004]混合动力车辆被构造成使得发电机由引擎的运行来驱动并且发电电力为电池充电。为了驱动发电机,设定目标引擎速度和目标引擎转矩,并且发电机利用控制引擎来驱动,从而获得期望的发电电力,结果获得恒定的发电电力(参见日本专利JP-A-2003-9305)。因此,不考虑与电池的状况相应的目标充电电力,以恒定的引擎速度运行引擎,并且驾驶员从不感觉到由于引擎速度的改变而产生的不适宜感。
[0005]现有技术文献
[0006]专利文献
[0007]专利文献l:JP-A-2003-9305
【发明内容】
[0008]本发明要解决的技术问题
[0009]对于迄今已知的混合动力车辆,期望的引擎速度和转矩被设定为与所需的发电电力相符,但是目前未考虑到混合动力车辆的运行状态。因此,根据混合动力车辆的运行状态,当发电机被驱动时,实际上有引擎不能以燃料消耗的最佳效率运行的风险。
[0010]鉴于上述情形完成了本发明。本发明的目的是提供一种混合动力车辆的控制装置,该控制装置可以根据混合动力车辆的运行状态改变用于驱动发电机的引擎的运行状况。
[0011]解决技术问题的方法
[0012]为了实现上述目的,根据本发明的第一方面的一种混合动力车辆的控制装置是如下混合动力车辆的控制装置:该混合动力车辆包括:行驶马达,该行驶马达用于将驱动力传输至驱动轮;电池,该电池用于将电力供给至行驶马达;和发电机,该发电机由引擎的运行驱动,用于产生所需电力,该所需电力包括至少供给至电池的电力;该控制装置包括:燃料效率点获取部,该燃料效率点获取部用于基于引擎的旋转速度和转矩找出具有满意的燃料消耗效率的运行点;所需转矩检测部,该所需转矩检测部用于检测混合动力车辆的所需转矩以检测混合动力车辆的运行状态;和发电控制部,该发电控制部用于运行引擎,以响应于所需电力增加发电电力,从而基于由燃料效率点获取部找出的运行点来运行引擎,以控制发电机的发电,其中如果车辆的运行状态通过所需转矩检测部检测为加速状态,发电控制部将发电电力的增量设定为大于如果车辆的运行状态被检测为减速状态。
[0013]利用根据第一方面的发明,运行引擎,从而根据混合动力车辆的运行状态,响应于所需电力增加发电电力,从而控制发电机的发电。如果,在这种情况下,所需转矩是在加速状态(缓慢加速状态和稳定状态),则发电电力的增量被设定为大于如果所需转矩在减速状态的发电电力的增量。因此,可以根据混合动力车辆的运行状态来改变驱动发电机的引擎的运行状态。因此,引擎的运行点可以改变至最佳水平以调节发电电力。
[0014]也就是说,根据混合动力车辆的运行状态,引擎在具有良好的燃料消耗效率的运行点的附近运行。如果所需转矩在加速状态(缓慢加速状态和稳定状态),运行引擎,从而发电电力增加。在减速状态的情况下,运行引擎,限制发电电力的增加并且抑制噪声的增加。因此,引擎在具有良好的燃料消耗效率的运行点运行,从而可以进行发电,而不会导致驾驶员由于噪声或振动产生不适宜感。
[0015]如果所需转矩在加速状态(缓慢加速状态和稳定状态),则发电电力的增量被设定为较大。因此,单位时间充电率的增量大于减速状态下的增量。在加速状态的情况下,在充电期间充电率随着时间变化的斜率大于在减速状态的情况下的斜率。
[0016]根据本发明的第二方面的混合动力车辆的控制装置是根据第一方面的混合动力车辆的控制装置,其进一步包括充电状况检测部,该充电状况检测部用于检测电池的充电状况,其中当由充电状况检测部检测到的充电率等于或小于预定充电率时,发电控制部对发电机实行发电控制。
[0017]具有根据第二方面的发明,当电池的充电率等于或小于预定充电率时,引擎的运行点被改变至最佳水平以调节发电电力。因此,当电池的充电率超过预定充电率时,引擎的运行时间被缩短(通过行驶马达的行驶时间被延长),例如,通过停止引擎的运行并且从电池供给电力至行驶马达,从而可以进行发电控制。这样一来,可以防止在电池的充电率过高以至超过预定充电率并因此导致大电流的流动和高电压的状态下进行充电。
[0018]也就是说,如果由运行引擎进行充电,从而发电电力在电池的充电率过高以至超过预定充电率并且充电所需的电力低的区域内增加,则向电池的供电增加,导致大电流流动的状态。如果电流流动过大,出现过高电压,在电池上强加重的负载。在电池的充电率过高以至超过预定充电率的状态下,可以不进行充电。因此,可以抑制电压变得过高以致电池负载很大的情形。
[0019]根据本发明的第三方面的混合动力车辆的控制装置是根据第一方面或第二方面的混合动力车辆的控制装置进一步包括海拔检测部,该海拔检测部用于检测混合动力车辆的行驶位置的海拔,其中发电控制部被构造成:当混合动力车辆的行驶位置的海拔高于参考海拔时发电电力的增量被设定为小于当混合动力车辆的行驶位置的海拔为参考海拔时发电电力的增量。
[0020]当行驶位置的海拔高于参考海拔时,引擎的旋转速度需要为高的旋转速度,以便获得与在参考海拔时相同的输出或者相同的发电电力。
[0021]利用根据第三方面的发明,发电控制部被构造成:在高地时发电电力的增量被设定为小于在参考海拔、在低地(水平地面)时的发电电力的增量。因此,如果行驶位置是高地,则发电电力保持在低于低地(水平地面)时的发电电力,并且引擎的旋转速度被降低至低速度。因此,可以抑制由于引擎速度产生的噪声。
[0022]由于在行驶位置是高地时发电电力的增量被设定为小于低地(水平地面)时发电电力的增量,因此单位时间充电率的增量较小,并且在充电期间充电率随着时间变化的斜率在高地也小于在低地(水平地面)。
[0023]根据本发明的第四方面的混合动力车辆的控制装置是根据第一方面至第三方面的任一个的混合动力车辆的控制装置,其中发电控制部以串联模式对发电机实行发电控制,在该串联模式中,行驶马达被用作混合动力车辆的行驶动力源,并且发电机由引擎驱动以将电力供给至电池和行驶马达的中至少一个。
[0024]利用根据第四方面的发明,根据混合动力车辆的运行状态的驱动发电机的引擎的运行状态在串联模式中被改变,以将引擎的运行点改变至最佳水平,从而可以调节发电电力。
[0025]本发明的技术效果
[0026]根据如上所述的本发明,用于驱动发电机的引擎的运行状态可以根据混合动力车辆的运行状态而改变。
【附图说明】
[0027]图1是装载了根据本发明的实施例的控制装置的混合动力车辆整体的示意性构造简图;
[0028]图2是用于执行发电控制的方框图;
[0029]图3是示意了发电电力的运行点的图表;
[0030]图4是示意了车辆速度和发电电力(所需电力)之间的关系的图表;
[0031 ]图5是示意了在加速期间充电率(充电状态或SOC;发电控制)的时间进程(随着时间的变化)的图表;
[0032]图6是示意了在减速期间的充电率(S0C;发电控制)的时间进程的图表;
[0033]图7是示意了在低地和高地的充电率(S0C;发电控制)的时间进程的图表;
[0034]图8是发电控制的流程图。
【具体实施方式】
[0035]实施本发明的模式
[0036]将基于图1描述混合动力车辆的整体构造。图1示出装载了根据本发明的实施例的控制装置的混合动力车辆整体的示意性构造。
[0037]如图所示,混合动力车辆(车辆)I配备有行驶马达3和引擎4,行驶马达3用于将动力传输至驱动轮2。行驶马达3的驱动力经由变速机构5传输至驱动轮2。电池7经由诸如换流器的电路6连接至行驶马达3。响应于乘坐者的踩踏,将电力从电池73经由电路6供给至行驶马达3。
[0038]发电机9经由输出系统8连接至引擎4,并且发电机9经由电路6连接至电池7(和行驶马达3)。输出系统8—方面连接至发电机9,并且另一方面经由离合器10连接至变速机构5。
[0039]当引擎4根据车辆I的运行状态而运行时,引擎4的驱动力经由输出系统8传输至发电机9。发电机9通过引擎4的运行而旋转(驱动)以进行发电。由发电机9产生的电力被供给至电池7和行驶马达3。当输出系统8和变速机构5根据车辆I的运行状态由离合器10连接时,引擎4的驱动力被传输至发电机9和驱动轮2。
[0040]车辆I设置有控制装置11,用于全面控制各种装置,并且关于引擎4的旋转速度的信息以及来自车辆速度传感器12的信息被输入至控制装置U。车辆I设置有充电状况检测部15,该充电状况检测部15用于检测电池7的充电状况(充电率或者充电状态,S0C),并且来自充电状况检测部15的信息被输入至控制装置11。车辆I还配备有加速器位置传感器(APS)13,作为所需转矩检测部,并且从APS 13检测到的信息(关于所需转矩的信息)被输入至控制装置U。车辆I还配备有大气压力测量部14,作为海拔检测部,并且从大气压力测量部14检测到的信息被输入至控制装置11。
[0041]关于所需转矩检测部,可以使用用于基于行驶马达3的旋转速度获取所需转矩的获取部件代替(附加到)加速器位置传感器(APS) 13。
[0042]如上构造的车辆I具有:EV模式,该EV模式中行驶马达3被用作行驶车辆的动力源;以及串联模式,该串联模式中行驶马达3被用作行驶车辆的动力源,并且引擎4被用作发电机9的动力源。车辆I还具有并联模式,该并联模式中行驶马达3和引擎4被用作行驶车辆的动力源。根据车辆I的行驶状态适宜地选择并且转换各个运行模式。
[0043]根据本发明的实施例的混合动力车辆的控制装置的特征在于,例如,在串联模式运行期间对发电机9的发电控制。将基于图2至图8具体描述根据本发明的实施例的发电控制。
[0044]图2示出了通过根据本发明的实施例的混合动力车辆的控制装置实行发电控制的模块构造。图3示出了一个图表,示意了与引擎的转矩和旋转速度之间的关系相关联的发电电力的运行点。图4示出了一个图表,示意了车辆速度和发电电力(所需电力)之间的关系。图5示出了在加速期间充电率的时间进程(随着时间的变化)(发电控制的时间进程)。图6示出了在减速期间充电率的时间进程(发电控制的时间进程)。图7示出了在低地(水平地面)和高地行驶期间的充电率的时间进程(发电控制的时间进程)。图8示出了一个流程图,示意了在根据本发明的实施例的混合动力车辆的控制装置中的发电控制的过程的示例。
[0045]如图2所示,从APS13检测到的信息、从大气压力测量部14检测到的信息和从充电状况检测部15检测到的信息被输入至控制装置U。控制装置11配备有燃料效率点获取部21,该燃料效率点获取部21基于引擎4的旋转速度和转矩获得具有良好的燃料消耗效率的运行点。控制装置11还配备有发电控制部22,该发电控制部22根据发电的所需电力运行引擎4,并且还配备有增量设定功能单元23,该增量设定功能单元23根据车辆I的运行状态运行引擎4,从而增加发电电力(参见图1)。
[0046]燃料效率点获取部21存储图3所示的图表。如图3所示,与引擎4的转矩和旋转速度之间的关系相关联的满足燃料消耗效率的区域,例如通过相等燃料效率线P1、P2、P3(通过连接具有相同燃料效率的点形成的线;在图中由画线表示;Pl的燃料效率〈P2的燃料效率〈P3的燃料效率)设定。例如,设定运行点S(在图中由实线表示),在该运行点S,引擎4的燃料效率有助于附图中由虚线表示的发电电力x0kW、xlkW、x2kW和x3kW(xO〈xl〈x2〈x3)的产生。
[0047]根据图3所示的图表,发电电力根据车辆I的运行状态而增大。这样一来,发电机9被驱动,并且引擎4的运行被控制为旋转速度和转矩在具有良好的燃料消耗效率的运行点S,以产生所需电力(发电控制部22)。
[0048]增量设定功能单元23用于当引擎的所需转矩(基于从APS检测到的信息获取的转矩)在加速状态(缓慢加速状态和稳定状态)时将发电电力的增量设定为大于在减速状态。也就是说,增量设定功能单元23存储图4所示的图表。如图4中的虚线所示,作为参考的所需电力根据车辆速度而设定,并且根据所需转矩,当在加速状态(缓慢加速状态和稳定状态)或在减速状态时,发电电力被设定为增大。当所需转矩在加速状态(缓慢加速状态和稳定状态;在图4中由实线表示)的发电电力的增量设定为大于在减速状态时(在图4中由点画线表示)的增量。
[0049]如果引擎4在相等燃料效率线Pl以外的区域(Pl以外、具有低燃料消耗效率的区域),例如在图1所示的图表中在参考的所需电力XOKW处运行,则其燃料消耗效率低于P1,并且引擎的运行在具有不良燃料消耗效率的区域中进行。在本实施例中,发电电力根据运行状态而增大,并且当在加速状态(缓慢加速状态和稳定状态)或减速状态时,发电电力响应于所需转矩而增大。因此,发电电力增大至XlkW、x2kW,并且引擎4在图3所示的图表中的相等燃料效率线P2、P3的区域内运行,从而在具有良好燃料消耗效率的区域内运行。
[0050]在加速状态(缓慢加速状态和稳定状态),发电电力的增量设定为大于在减速状态的增量。因此,当在加速状态(缓慢加速状态和稳定状态)时,运行引擎4,使发电电力增加。当在减速状态时,引擎4在这样一种状态下运行:抑制发电电力的增加并且限制噪声增加。因此,引擎可以在具有良好的燃料消耗效率的运行点运行,而不会导致驾驶员由于噪声或振动产生不适宜感,从而可以进行发电。
[0051]如后文具体描述的,当车辆I的所需转矩在加速状态(缓慢加速状态和稳定状态)时,相比于减速状态,发电电力的增量被设定为较大,并且单位时间充电率的增量也变大。在加速状态的情况下,在充电期间充电率随着时间变化的斜率大于在减速状态时在充电期间充电率随着时间变化的斜率。
[0052]发电控制部22基于图3中示出的图表运行引擎4,当由充电状况检测部15检测到的SOC等于或小于预定充电率时(例如,仅当其为30%或者更小时),也就是说,仅当电池7的SOC等于或小于预定充电率时,在发电机9上实行发电控制(参见图1)。
[0053]也就是说,如图5和图6所示,随着通过行驶马达3(参见图1)开始行驶时,电池7(参见图1)的SOC减小。当SOC降低至预定充电率SI或者更低,并且进一步降低几个百分点到达充电率S2(时刻tl)时,引擎4(参见图1)运行以进行充电。当SOC等于或小于预定充电率SI时,在预定充电率SI和充电率S2之间重复进行充电和放电。
[0054]如上所述,当车辆I的所需转矩在加速状态(缓慢加速状态和稳定状态)时,发电电力的增量被设定为大于在减速状态的增量。因此,当如图5所示在加速状态(缓慢加速状态和稳定状态)时,在预定充电率SI或者更低的区域内,单位时间充电率的增量大于图6所示的减速状态时的增量。因此,在加速状态下充电期间的充电率的时间进程的斜率(参见图5)大于在减速状态下充电期间的充电率的时间进程的斜率(参见图6)。
[0055]在电池7的SOC为预定充电率SI或者更低的区域中,引擎的运行被停止,并且电力从电池7继续供给至行驶马达3,直到SOC到达充电率S2。因此,即使在SOC为预定充电率SI或者更低的区域中,可以执行发电控制,引擎4的运行时间被缩短(通过行驶马达3的行驶时间被延长)。
[0056]因此,可以抑制在电池7的SOC过高以至超过预定充电率SI并且大量的电流流动使电池7的电压升高的状态下发电。
[0057]在电池7低于预定充电率SI的状态下,充电所需的电力(所需电力)过低以至引擎4用于产生该所需电力的运行可能是在具有低的燃料消耗效率、低的旋转速度和低转矩的区域内运行。在本实施例中,当电池7的SOC等于或小于预定充电率SI时,引擎4的运行点被改变至最优点,从而调节发电电力并进行发电。因此,可以抑制引擎4在低燃料消耗效率的区域内运行。
[0058]如果在电池7的SOC过高以至超过预定充电率SI的区域,S卩,所需电力低的区域内进行充电,则供给至电池7的电力被假定为很大,导致强电流流动。过高电流流动至电池7导致过高电压,在电池7上强加重的负载。根据本实施例,在电池7的充电率过高以至超过预定充电率SI的状态下,可以不进行充电。因此,可以防止电池7由于过高电压而承受重的负荷。
[0059]在上述实施例中,当电池7的SOC等于或低于预定的充电率SI时,引擎4的运行点根据加速状态或减速状态被改变至最佳水平,从而调节发电电力。然而,不考虑电池7的S0C,也可以根据加速状态或者减速状态,随时将引擎4的运行点改变至最优点,从而调节发电电力。
[0060]增量设定功能单元23能够将发电电力的增量设定为,当车辆I的行驶位置的海拔(该海拔基于从大气压力测量部14检测到的信息获取)(在高地)高于参考海拔(在低地)时大于在低地时的发电电力的增量。当车辆I的行驶位置的海拔高于参考海拔时,即当行驶位置是高地时,引擎需要高的旋转速度,以便提供与在低地时相同的输出或相同的发电电力的转矩。
[0061 ]在本实施例中,当在高地时的发电电力的增量被设定为小于在低地时的发电电力的增量。因此,当行驶位置是高地时,发电电力保持低于在低地时的发电电力。因此,可以减小由于引擎的旋转速度产生的噪声。
[0062]如图7所示,当电池7的SOC减小至预定充电率SI或更小时,在预定充电率SI和充电率S2之间重复进行充电和放电。对于行驶位置为高地时,发电电力的增量被设定为小于对于低地时的发电电力的增量。因此,对于高地,单位时间充电率的增量小于低地。因此,在充电期间在高地的情况下的充电率随着时间变化的斜率(该斜率由点划线表示)小于在充电期间参考充电率(在低地的情况下的充电率)随着时间变化的斜率(该斜率由实线表示)。
[0063]将基于图8描述由如上所述的混合动力车辆的控制装置控制的发电过程的一个示例。
[0064]所需电力基于用于驱动车辆I的电力、电池7的充电电力和配件的消耗电力而设定。响应于所需电力,根据驾驶员的直接意图或者车辆I的运行状态进行发电。例如,当由驾驶员处理以进行充电,或者当车辆1(电池7)的状态是需要强制充电的状态时,确定车辆是否在充电模式,该充电模式是引擎4被驱动以为电池7充电的模式。
[0065]当该过程的开始时,在步骤S5中确定电池7的SOC是否等于或小于预定充电率SI。如果在步骤S5中确定电池7的SOC超过预定充电率SI,判断车辆在未充电模式且SOC较高的状态下行驶。由于车辆行驶而不需要由引擎4发电(EV行驶),该过程结束。
[0066]如果在步骤S5中确定电池7的SOC等于或小于充电率SI,S卩,实现了如图5和图6所示的充电率等于或小于预定充电率SI的状态,则在步骤S6中确定所需转矩是否在加速状态(缓慢加速状态和稳定状态)ο也就是说,基于从APS 13检测到的信息获取的车辆I的所需转矩,可以确定所需转矩是否在加速状态(缓慢加速状态和稳定状态)。
[0067]当在步骤S6中确定所需转矩在加速状态(缓慢加速状态和稳定状态)时,在步骤S7中与加速状态的发电电力相符的充电被设定。也就是说,发电电力被设定为加速状态下的预设增量(大于减速状态下的增量;参见图3、图4),从而经过一段时间之后,在时刻tl开始充电(充电率为S2),直到判断出车辆I的所需转矩。
[0068]在步骤S8中设定SOC的上限(预定充电率SI)。然后,在步骤S3中,运行请求被发送至引擎4,从而获得加速状态下的发电电力,并且由发电机9进行发电,使该过程结束。通过重复该过程,当SOC等于或小于设定的上限(预定充电率Sl)(参见图5)时,在预定充电率SI和充电率S2之间重复进行充电和放电。
[0069]如果在步骤S6中确定车辆I未在加速状态(缓慢加速状态和稳定状态),即车辆I在减速状态,则在步骤S9中与减速状态的发电电力相符的充电被设定。也就是说,发电电力被设定为减速状态下的预设增量(小于加速状态下的增量;参见图3和图4),从而经过一段时间之后,在时刻11开始充电(充电率为S2),直到判断出车辆I的所需转矩。
[0070]在步骤S8中设定SOC的上限(预定充电率SI)。然后,在步骤S3,运行请求被发送至引擎4,从而获得减速状态下的发电电力,并且由发电机9进行发电,使该过程结束。通过重复该过程,当SOC等于或小于设定的上限(预定充电率Sl)(参见图6)时,在预定充电率SI和充电率S2之间重复进行充电和放电。
[0071]在步骤S7和步骤S9的充电设定中,如果行驶位置是高地,则发电电力保持在低于低地时的发电电力,并且通过降低引擎4的旋转速度,调节发电电力以便减少由于引擎速度产生的噪声。也就是说,与加速状态下的发电电力和减速状态下的发电电力相关联地进行调节,从而如果行驶位置是高地,则与低地时相比,发电电力的增量变小。
[0072]具有如上所述的混合动力车辆的控制装置,由发电机9发电的电力通过运行引擎4来控制,从而发电电力响应于根据车辆I的运行状态的所需电力而增加。因此,引擎4可以在具有满意的燃料消耗效率的运行点运行。在这种情况下,如果所需转矩是在加速状态(缓慢加速状态和稳定状态),则发电电力的增量被设定为大于在减速状态下的发电电力的增量。因此,当在加速状态(缓慢加速状态和稳定状态)时,运行引擎4,从而发电电力将变高。当在减速状态时,运行引擎4,从而抑制发电电力的增加并且限制噪声的增加。因此,引擎4在具有良好的燃料消耗效率的运行点运行,而不会导致驾驶员由于噪声或者振动产生不适宜感。通过这样的方式,可以进行发电。
[0073]因此,用于驱动发电机9的引擎4的运行状态可以根据车辆I的运行状态(缓慢加速状态和稳定状态,或减速状态)而改变。因此,引擎4在具有良好的燃料消耗效率的运行点运行,从而可以调节发电电力。
[0074]工业实用性
[0075]本发明可以应用在涉及具有行驶马达和由引擎驱动的发电机的混合动力车辆的控制装置的工业领域中。
[0076]字母或者数字的说明
[0077]I混合动力车辆(车辆)
[0078]2驱动轮
[0079]3行驶马达
[0080]4引擎[0081 ]5变速机构
[0082]6电路
[0083]7电池
[0084]8输出系统
[0085]9发电机
[0086]10离合器
[0087]11控制装置
[0088]12车辆速度传感器
[0089]13加速器位置传感器(APS)
[0090]14大气压力测量部
[0091]15充电状况检测部
[0092]21燃料效率点获取部
[0093]22发电控制部
[0094]23增量设定功能单元
【主权项】
1.一种混合动力车辆的控制装置,所述混合动力车辆包括: 行驶马达,所述行驶马达用于将驱动力传输至驱动轮; 电池,所述电池用于将电力供给至行驶马达;和 发电机,所述发电机由引擎的运行驱动,用于产生所需电力,所述所需电力包括至少供给至电池的电力; 其特征在于,所述控制装置包括: 燃料效率点获取部,所述燃料效率点获取部用于基于所述引擎的旋转速度和转矩找出具有满意的燃料消耗效率的运行点; 所需转矩检测部,所述所需转矩检测部用于检测所述混合动力车辆的所需转矩,以检测所述混合动力车辆的运行状态;和 发电控制部,所述发电控制部用于运行所述引擎,以响应于所述所需电力增加发电电力,从而基于通过所述燃料效率点获取部找出的所述运行点来运行所述引擎,以控制所述发电机的发电; 其中,如果车辆的运行状态通过所述所需转矩检测部检测为加速状态,所述发电控制部将所述发电电力的增量设定为大于所述车辆的运行状态被检测为减速状态。2.如权利要求1所述的混合动力车辆的控制装置,其特征在于,进一步包括: 充电状况检测部,所述充电状况检测部用于检测所述电池的充电状况; 其中,当通过所述充电状况检测部检测到的充电率等于或小于预定充电率时,所述发电控制部对所述发电机实行发电控制。3.如权利要求1或2所述的混合动力车辆的控制装置,其特征在于,进一步包括: 海拔检测部,所述海拔检测部用于检测所述混合动力车辆的行驶位置的海拔; 其中,所述发电控制部被构造成:当所述混合动力车辆的行驶位置的海拔高于参考海拔时,所述发电电力的增量被设定为小于当所述混合动力车辆的行驶位置的海拔为参考海拔时所述发电电力的增量。4.如权利要求1或2所述的混合动力车辆的控制装置,其特征在于,其中: 所述发电控制部以串联模式对所述发电机实行发电控制,在所述串联模式中,所述行驶马达被用作所述混合动力车辆的行驶动力源,并且所述发电机由所述引擎驱动以将电力供给至所述电池和所述行驶马达中的至少一个。5.如权利要求3所述的混合动力车辆的控制装置,其特征在于,其中: 所述发电控制部以串联模式对所述发电机实行发电控制,在所述串联模式中,所述行驶马达被用作所述混合动力车辆的行驶动力源,并且所述发电机由所述引擎驱动以将电力供给至所述电池和所述行驶马达中的至少一个。
【文档编号】B60W10/08GK105936268SQ201610124167
【公开日】2016年9月14日
【申请日】2016年3月4日
【发明人】池田谷文, 池田谷文一, 平尾忠义, 平野重利
【申请人】三菱自动车工业株式会社