液压驱动系统的制作方法

文档序号:4058693阅读:167来源:国知局
专利名称:液压驱动系统的制作方法
技术领域
本发明涉及一种用于人力驱动的车辆的液压推进系统,这种车辆的操作者以向蓄能器充油并控制液压油流入一个或多个马达的方式,为车辆提供推进的动力。
目前,需要一种人力驱动的市区车辆,作为填补自行车与汽车之间的空白的代用车辆。这种车辆在市区和第三世界中有很大的实用性,在那些地方,由于人口众多,空间狭窄的原因,汽车并不是万能的。在上述这些地方,还存在着另一种车辆消费要求,即它能提供良好的乘坐条件,能防风雨,并且能在拥挤的城市里方便地使用。
过去,许多试图用以替代自行车的车辆都有很多缺点。所谓斜靠背自行车,即骑行者的坐位是半坐半躺式的自行车的缺点是,座位太低,缩小了视野,增加了事故和受伤的可能性。这种车辆没有被普通的骑自行车者所接受,因而市场很有限。
最佳型式的人力驱动的车辆的特点在于它的车架,在这种车架上装有三个独立的带弹簧的轮子,两个后轮,一个转向前轮。悬挂装置能让车辆在转弯时像自行车那样倾斜,但在停止和慢速行驶时仍保持垂直。这种车辆避免了很低的座位。精心的设计还赋予这种车辆很多特点,通过对消费者爱好的调查发现,在这种车辆中这些特点是很必要的。这些特点包括一个舒适的座位。骑行者的腿只要稍稍向前凸出,就能采用料斗式的座位,这样的座位使骑行者靠在座位的背上,就能以最大的力量踩踏板,而不受限于他的体重。因而爬坡时就比较容易。还设置了穿过车架的台阶,所以骑行者上下车很方便。设置了一个能拆装的防风雨罩,需要时,它能使骑行者完全不受风雨的侵扰。同时,它还保护了后面的衣物储存区,使行李不受雨淋。在座位后面,在两个后轮之间还有一个封闭的衣物箱,以便于携带行李。当携带沉重的行李时,负载高度的降低提高了车辆的稳定性。
本发明为上述车辆提供了一种液压操作的推进装置,它可以代替目前在自行车上使用的普通链条和链轮驱动装置,这种装置与普通的自行车工作机构相比有许多优点。由于所有的驱动零件都密封在油里,所以它本身只需要极少的维修和保养。此外,液压驱动装置还包括一个能储存高压油的蓄能器,需要时,它能让车辆像汽车一样加速。在制动过程中,这种液压驱动装置能通过泵提高蓄能器内部的压力,把没有装这种装置时浪费掉的制动能量储存起来,从而不必踩踏板就能使车辆从静止状态再一次起动。
按照本发明的一个实施例,一种用于人力驱动的车辆的液压驱动装置包括一个储油罐;一台双踏板的脚踏泵;一个蓄能器;一个可变压力比液压变换器;以及至少一台液压马达。上述储油罐与泵连接,而泵与蓄能器或马达连接,而阀装置则把蓄能器与马达连接起来。可变压力比液压变换器处于蓄能器与马达之间的油路内。马达与上述储油罐连接,而且泵把高压液压油供给蓄能器,而蓄能器又把高压液压油供给马达,然后,液压油从马达流回储油罐,或流向可变压力比液压变换器。
按照本发明的另一个实施例,上述可变压力比液压变换器包括一个叶片式转子,它能在一个定子内自由转动。上述转子有一条在每一对叶片之间沿径向延伸的通道,并绕着连通出入口与转子的通道的环转动,它还有一个安装在中央的控制叶片,该控制叶片的内部有通道和出入口,用于连接上述变换器与一个压力源,并与一个与上述压力源的压力有比例关系的出口连接。还设置了用于人力控制上述控制叶片的位置以改变上述变换器的压力比的装置。
下面,参照附图详细描述本发明的实施例,将能更好地了解本发明。附图中

图1是本发明的液压操作人力驱动车辆简化后的视图;图2是上述车辆液压系统的示意图;图3是说明液压驱动装置的控制装置和主要构件的总体布置图;图4是上述液压系统中用脚踏方式操作的液压泵的一侧示意图;图5是踏板拆卸后的泵的顶视图;图6是用于控制踏板与活塞连杆之间的可变行程的连接件的联杆的侧视图;图7是通过按照本发明的轮子马达的断面图;图8是为简化起见以展开的方式表示的双向离合器的机械示意图;图9是图8的详图;图10是沿图7中的8-8线的视图;图11是通过图2中的控制阀的断面图;图12是通过图2中的阀1、2、3的横断面图;图13是图2中的阀24的示意图;图14是通过图2中的可变液压变换器的断面图;图15是图14中的出入口环的平面图;图16是图14中的出入口环的正视图;图17是图14中的控制叶片的平面图;图18是图14中的控制叶片的正视图;如19是上述压力变换器的转子的轴向视图;图20是图19中的转子的端视图;图21是图14中的变换器的端板的平面图;图22是一种四腔室变换器的示意图;图23是图22中的中央控制轴和出入口的图。
图1表示一辆人力驱动的车辆,它包括能连续输入动力和储存能量的装置,能通过带有蓄能器的整体的液压系统回收能量的装置,一台固定排量叶片马达,一台可变行程活塞泵,以及其他部件。上述车辆10由车架11,可转向的前轮12,以及一对有独立悬挂的后轮13组成。为骑行者设置了座位14,而由骑行者操纵的转向机构15则用于控制独立地用弹簧支承的前轮的位置。
骑行者处于半垂直的位置上,他的手握住转向手把15,脚踏在脚踏板16上。脚踏板16操作一对可变行程和可变排量的活塞泵20,该活塞泵是上述液压驱动装置中的一个部件。
请参阅图2,该车辆动力输入装置具有能让操作者对操纵可变行程活塞泵20的踏板发挥合适的力量的装置。在动力学上,可变行程的长度是由将在下面描述的,连接在普通活塞泵上的,用人力控制的联杆来完成的。在正常情况下,在泵里装有单向阀(图中未表示),以便把液压油从低压储油罐21泵入液压系统的高压侧22。在一个优选实施例中,在车辆后部设有两台液压马达30,每一台马达驱动一个后轮。这两台马达是固定排量的叶片式马达,这两台马达可以在起动时和正常行驶时像一台马达那样运行,并且还能在减速时像泵那样工作,产生再生制动能量。设置了一个如下的控制系统,它在车辆从静止到加速,稳速,减速和制动各个阶段控制车辆的运行。这种车辆还具有辅助制动器,一般是内胀鼓式制动器,以便在需要时补充上述再生制动。
按照本发明,在上述液压系统中有液压可变压力比变换器25,它大大提高了车辆运行的效率。
请参阅图2,图中公开了图1中的车辆的液压操作系统的示意图。一台双活塞脚踏泵20从储油罐21中抽油,并将其输送到高压管线22中。油在高压管线中顺序流向阀24或23。阀24把液压油供给可变压力比液压变换器25,然后通过一个控制阀26流入蓄能器27。于是,高压油便能通过阀23、24和26从变换器25流入轮子马达30内,也可以通过阀23或任何必要的阀的组合直接从脚踏泵20流入轮子马达30。在再生制动的情况下,所有从轮子马达30中流出的油与其他的油流汇合在一起流入管子22内,并通过阀24流入变换器25。当液压系统的高压侧压力过高时,泄压阀28、29使液压系统中的高压油流回储油罐21。因此,轮子马达30在阀23的控制下推动车辆运动,并在再生制动的过程中向蓄能器27充油。
储油罐21通常是一种油上方有空气的储油罐,设有隔膜,以保持液压系统的清洁。而蓄能器27也可以是带有隔膜的油上方有空气的蓄能器。
如上所述,两台轮子马达30是固定排量的叶片马达,它也可以倒转,在再生制动时将油泵入蓄能器27内。马达30安装成与轮子同轴线,马达的轴承也用作轮子的轴承。所有输入轮子或从轮子输出的能量都要通过轮子马达,而且没有链条、齿轮、皮带链轮或其他机械的驱动部件。单独一台轮子马达的细节将在下文中参照图7和10进行描述。在每一台马达30上还设有双向离合器,这种离合器与轮子马达做成一个整体,以便使马达的转子与轮轴脱开,并在滑行时去除牵引力,并且还能使这种车辆达到比自行车还好的滑行性能。当马达30驱动轮子时,这种离合器能自动啮合,也可以为了再生制动而用人力使它啮合。
蓄能器27是一种容积大约为4立升的压力储存装置,它利用隔膜后面的压缩空气的压力,以高压油的形式储存能量。无论是它本身,还是与脚踏泵组合在一起,它能输出的能量都要比骑行者自身所能输出的能量多得多,这有利于迅速地加速。在减速时,它能以再生的方式储存制动的能量。控制阀26控制流向蓄能器和变换器25的液压油。这种控制阀的目的是防止或延长蓄能器的泄漏,其结构示于图11。控制阀26也可以用作流量限制器,或者用作轮子速度的控制器。
图3是说明液压驱动装置的控制和原理的机械设计图,图中表示了活塞泵20,它从储油罐21中抽吸液压油,并把加压后的油送到液压系统的高压侧。随后,高压油用能量控制模块34或者送到蓄能器27中,或者送到轮子马达30中。上述能量控制模块34包括阀机构23、24和26(见图2),以及可变压力比液压变换器25。在手把(图中未表示)上设有摩托车控制领域所公知的普通旋转式左右把手31、32,以及制动杠杆35、33。右手的把手31控制向前加速(f.a.),闭锁中心(d.c.),以及再生制动(r.g.)。左手的把手32控制脚踏泵20中的排量,这将在下面描述。能量控制模块34也从装有杠杆的左手把手32接受马达脱开的控制,从右手的把手31接受向前加速,闭锁中心,以及再生制动的控制。能量控制模块又控制轮子马达30的再生制动离合器,这一点将在下文中详细描述。
当右手的把手31处于闭锁中心(d.c.)的位置时,踏板泵20的运转可用于驱动轮子马达,推动车辆前进。将右手的把手31转到向前加速(f.a.)位置时,将使蓄能器27与轮子马达30连接,使车辆加速,如果有需要可以超过常规自行车的加速能力,甚至接近于内燃机汽车的加速能力。泵20持续工作时,将继续向蓄能器输入液压油,并根据需要向轮子马达输入液压油。将右手控制器31转到再生制动(r.g.)位置时,将开动马达30的再生制动离合器,而改变阀门的油路使得马达把油压入蓄能器27内。如图2所示,泄压阀28和29能防止液压系统的高压侧或蓄能器27中的压力过高。
踏板泵20的细节示于图4、5和6。要想为液压驱动的车辆提供最好的泵,必须考虑下列因素(1)成本效果;(2)效率;(3)可变的排量;(4)脚踏板的设计,以便减少脚所需要的面积,降低膝部必须达到的高度,离地的空隙,并且还能允许部分的脚踏行程;以及(5)改变泵的排量所需要的力量很小。
按照本发明,很重要的一点是要避免使用带曲柄踏板的旋转泵,诸如由普通的齿轮泵,叶片泵或者轴向活塞泵所构成的,因为当液压系统中连接有蓄能器时,这种泵在整个旋转过程中的阻力都很大,尤其是当踏板处于上死点或下死点位置上时。在普通的自行车上,人们可以在蹬踏过程中根据需要用很大的力量或很小的力量,因为,只要自行车在行驶中,很容易就能使踏板的曲柄旋转。这使得踏板能很容易通过上死点或下死点,而在这两处是难以施加多少力量的。如果在液压系统中连接有蓄能器,阻力恒定的旋转泵就很难通过这两个死点,特别是当用力踏踏板时。
脚踏踏板的接近于线性的运动就能够避免这个问题。除非能解决上面提到的问题,否则旋转踏板是不适用的。所以,附图中所示的脚踏泵是运转这种液压系统理想的泵。
请参阅图4,驱动弧形板40安装在枢轴41上,能够转动,并且它的带有细齿的弧形表面42可与活塞泵44的连杆43上的爪46连接。脚踏在弧形板40上的压力使得弧形板向着推动连杆43的方向运动,并使得活塞45压缩油缸44中的油,然后把油压入液压系统的高压侧22中。连杆43上的爪46用图4中所示的啮合齿与弧形板40连接。表面42和爪46的弧线具有同一个圆弧中心,即销子47。在爪46和表面42上都有啮合用的齿,能防止在载荷下滑脱。
图中所示的弧形板40处于行程的终点,在这一点上,由于活塞行程的停顿,在爪46与表面42之间有了小的间隙,例如,是图5中由于销子48到达臂49上长槽的终点而形成的。很容易理解,活塞在缸筒内的端部也要停顿。爪46能绕着销子48转动,但是,如图所示,固定在中心的弹簧和滚珠却要让它的弧形表面与表面42接合。带槽臂49用曲柄销47把连杆43夹持在它的位置上。带槽臂49绕着销子50转动,在图中,当活塞45处于其行程底部时,销子50与曲柄销47同轴线。上述槽臂装置还有一个操作者能够改变其位置的锁定中心的机构(图中未表示)。因此,如果泵20在图中所示的结构下运转,而操作者希望增大排量时,就可以移动带槽臂锁定机构的位置。当弧形板40到达其行程底部时,带槽臂49将使连杆43和爪6移动到新的位置。爪46锁定在中心将保证爪46和表面42上的啮合齿互相配合,来完成上述功能。虽然图中只表示了一块踏板40,但也可以做成两个缸的泵,它具有两对带槽臂49,每个缸一对。在两个缸的泵中,每一块踏板连接并驱动一个活塞,并且还可以设置一个连接机构(图中未表示),以保证踏板的运动相等并反向。
活塞复位弹簧51和两个锁定中心的机构在活塞运动时对踏板产生阻力。这些弹簧都是钢制的,因此能在以后的行程中能有效地返回这些能量。
应该指出,为了有效地实施排量的改变,操作者必须充分利用整个行程。当只使用部分行程时,虽然踏板机构的设计可以容许,但爪46不再离开表面42,于是带槽臂49就不能运动。
油通过单向阀流入并流出缸44,单向阀是自动起作用的,不需要阀的控制机构。这种单向阀不贵,能防止系统下游其余部分的油倒流,影响泵的运转。
图7是轮子马达30的轴向断面图。这种马达有一根轴60,在轴的远端61处有固定轮子用的螺孔。轴60安装在轴承67、62上,轴承67是滚针轴承,而轴承62是滚珠轴承。离合器部件63固定在轴端61处,并把扭力管64连接在轴61上。轮子马达的转子68固定在扭力管64上,和它一起转动。按照正常的马达设计规范,在轴60装轮子的端部设有油密封件65。轮子马达的转子68与扭力管64一起旋转,它与定子66交界的详细情形如图10所示。
为简化起见,图中未表示马达上的液压连接件,但本技术领域的技术人员从以下的描述中能很清楚地了解这一点。
马达的两端有端板69和70,钢制的定子66固定在这两块端板之间。
应该指出,通常轴60是用低碳不锈钢制成的,端板69和70是用铝制成的,而定子66和转子68是用钢制成的。螺钉、伞齿轮、花键,或者其他类型的紧固件都可以用来固定轮子,不过只用螺钉时换轮子比较快。
应该指出,转子68并不装在轴60上,而是装在扭力管64上,而扭力管则在车辆运转时用离合器63连接,这将在下文中详细描述。这种结构完全把转子68与轴60在转弯时因受到载荷而变形所产生的力切断了,而且因为是悬臂结构,能够挠曲。滚珠轴承62可用于对轮轴60施加反作用推力。
图10是沿图7中的8-8线的横断面图。图中的转子68在钢制定子66内。转子68与扭力管64连接,例如,用转子的30%宽度花键。如图所示,转子68上有许多窄缝71,许多对成双的压力平衡叶片插入其中,并且在定子66上有半径恒定的区段72和73。因此,在叶片两侧有压力差的区段上因摩擦而产生的叶片窄缝的损失,由于这些半径恒定的区段而消除了。有赖于这种较低的压力结构,转子端部小的间隙和较宽的面积就不需要压力平衡的端板了。还应该指出,这种结构由于它速度比较低,所以能采用半径恒定的区段。为了提高转速,普通的泵和转子结构常常采用恒定的叶片加速外形。单人车辆的轮子马达的典型特征是在压力为68.05大气压,237.27牛顿-米/每转时,排量为34.41毫升/每转,或者37.76牛顿一米的扭矩,转子宽度为7.62cm,转子的叶片行程为1.91×0.366cm。
下面,参照图8和9说明图7中的双向离合器63的工作过程。为了简化双向离合器的工作过程的说明,图中将其展开成线性的结构,而不用圆形的结构来说明。但工作的原理相同。请参阅图8和9,一个带槽的辊子80占据了座圈82中凹坑81的大部分。窄缝84中的弹簧83将辊子80推向凹坑81的中央底部。这个动作使得保持器85移动到图9所示的位置。棘爪86通过一条窄缝87安装在保持器85上,并由弹簧(图中未表示)将其在该窄缝中向图8所示的右面推动。在“负”方向上,当座圈89沿着箭头89A的方向行进时,棘爪86被弹簧推动,进入座圈89的凹坑88内。在再生制动的过程中,在另一个凹坑81中还有另一个棘爪(图中未表示),这个棘爪朝向相反的方向。还设置了用人工抬高棘爪的装置,所以,如果不需要再生制动的功能,就可以取消它。在有负载时不可抬高再生制动棘爪,但短时间向着马达方向的脉冲能使它松开。如果座圈89向箭头89A的方向运动,棘爪86将啮合在凹坑88中,使保持器85也向左运动。棘爪86的窄缝弹簧有足够的力量一下就能克服所有的辊子弹簧83。这个动作还使辊子80向左运动,并将其推入凹坑88和81。保持器85中的辊子销窄缝能让辊子作这样的运动。辊子在与凹坑88和81啮合的同时传递载荷。棘爪窄缝87和弹簧(图中未表示)能防止棘爪86传递很大的载荷。同样,当反向棘爪下降时,离合器将向相反的方向啮合。在这种类型的离合器中还可以装两个正向的棘爪或两个负向的棘爪。但是,装两个负向棘爪的离合器没有什么用处,因为它只能起一个刚性的连接件的作用。如在座圈89中设置第二弹簧窄缝,就可以取消辊子80中的凹槽。
这种离合器有几个优点。首先,辊子80有很大的承载能力。这一点与轻型的啮合棘爪86相结合,意味着离合器可以很小,而且摩擦损耗也很小。这种离合器的零件简单,很容易制造或得到。此外,由于三轮车轮子的转速较慢,这种尺寸小的离合器在用作再生制动的啮合时不会损坏。
图11是通过图2中的控制阀26的断面图。这种控制阀是先导操作阀,它有三个目的,首先是防止蓄能器泄漏。没有阀26,蓄能器可能在不到10分钟就泄漏光,但在系统内有了这种阀,蓄能器内储存的能量能保存一个月。这种阀还能防止车辆意外的反向运转,并能防止当车轮处于自由状态时轮子马达偶然的超速,或者在有操作者时防止运行中轮子超速。
上述阀26有一个与蓄能器连通的出入口A,一个与马达连通的出入口B,以及一个与储油罐连通的出入口R。这种阀的特有的特点都在图中表示了。这种阀在工作时可能有下列四种情况1.车辆停止,蓄能器充油,制动信号起作用。
2.车辆停止或运动,蓄能器充油。
一组伺服阀利用蓄能器比出入口B处高的高压使控制阀快速打开。该出入口95%的通量被关闭,以缓冲阀的动作。剩余的油从小的出入口或凹槽通过。这个动作一直与操作者的向前加速信号同时发生。
3.车辆滑行,蓄能器少量充油,操作者发出再生制动信号。
没有伺服阀的信号,但在出入口B处的压力升高,迫使阀打开,油通过通道1流过阀,流向出入口A。阀一旦打开,将一直保持打开状态,直到有信号让储油罐关闭,并且只有在A、B处的压力超过R处至少600 psi才会关闭。
4.液压系统排油。
弹簧把阀打开,让车辆准备好通过出入口A泵油,或者通过出入口B进行再生制动。
图12说明图2中的阀23的工作过程。图13是图2中的阀24的示意图。请参阅图2,图中表示,轮子马达30上有出入口X和Y,分别与阀23的出入口X和Y连通。如图所示,这个阀还有出入口1、2、3和4,以及通向储油罐21的连接件。图中的阀处于静止或与马达连接的位置。当阀从静止位置移动到非静止位置时,马达的出入口X便从与出入口2连通改为与出入口1连通,并切断马达出入口Y与出入口3的连通。马达出入口Y仍能通过一个单向阀与出入口4相通。与图13中的阀24一样,图中所示的阀处于打开位置,而不是静止位置,使滑阀移动到静止位置便将踏板泵P与蓄能器的管路隔断。
图14是图2中的可变压力比液压变换器25结构的示意图。如图所示,该变换器由下列各零件组成一个椭圆形定子90,一个能自由旋转的转子91,一个有出入口的环92,以及一块控制叶片93。如图21所示,变换器的端板是连接在一起的,所以一个外部的出入口94与轮子马达连通。出入口95和96与蓄能器和控制叶片93的中央开口连通,出入口97通向储油罐。
如图19和20详细表示的,上述绕着有出入口的环92自由转动的转子91上有许多径向叶片,还有许多位置在这些叶片之间,用以与有出入口的环92的内部沟通的径向孔。
图15是有出入口的有出入口的环92的轴向视图,表示它与蓄能器和图中的开口99和100连接的出入口95和96。
图16是与图15成直角的有出入口的环92的视图,表示虚线的出入口99,出入口100,以及用虚线表示的从出入口95和96到开口99和100的连接情形。
图17表示控制叶片93,它具有通向储油罐的控制叶片的油进口和出口97。此外,图中还表示了油的出入口101和102,这两个油出入口的位置设在有出入口的环92的开口99和100中,并从转子91的径向孔接受油,这将在图19和20中详细描述。
图18表示与图17中的控制阀93成直角的视图,表示通过某种装置与一个控制机构连接的控制轴103,用以改变上述叶片的位置,从而改变该可变压力比液压变换器25的压力比。
图19是转子91的轴向视图,它有许多窄缝110,里面装有成对的加压叶片111。根据高压叶片技术标,叶片111可在各窄缝110内端的球形部分加压,以使叶片伸出,顶在定子90上,如图14所示。转子在相邻的一对叶片之间还有沿径向钻出来的许多孔112。
本技术领域的技术人员应该理解,上述控制叶片是安装在有出入口的环的内部的,这个环又安装在自由旋转的转子内部,而安装在定子内部的转子全部都处于两块端板之间,轴103从其中的一块端板伸出去,伸到变换器,另一块端板则如图21所示。有出入口的环92固定在上述端板之间,不能活动,并且出入口95和96对准端板连接孔105和106。当然,出入口94与端板115上的孔104对准,而孔107则与控制叶片93上的孔97对准。出入口104A也设置在端板115上,并与出入口104连通,因此,变换器成了有两个腔室的机构。这种变换器的特点在于,它是一种可变流量的压力比恒定的装置,该比值由操作者所控制的控制叶片93的位置来确定。
这一点与流量控制阀相反,流量控制阀是一种节流用的流量恒定的装置,所有节省下来的能量都被浪费了。上述变换器比较简单,在图19的实施例中,它有一个转子,一根控制阀的轴,两个腔室,三个出入口和十二块叶片。由于它不节制流量,所以这种装置的能效极高,实际上在变换器中是没有损失的。
图22表示四腔室的变换器,为清楚起见,把转子拿掉了。与以上的例子一样,转子上有许多带窄缝的叶片,与图19和20中的转子相同,在每一对叶片之间钻有沿径向孔。
图23表示有出入口的中央控制环以及用以控制蓄能器区段的压力区域的旋转控制部分。
图14~21中所示的变换器是一种液压可变交换器,它能像一个自由旋转的转子那样完成这个功能,但没有驱动轴。上述转子是标准叶片式的,除了在每一对叶片之间钻有沿径向向着中心的孔之外,其余和普通市售的叶片泵和马达中的一样。
如图14所示,变换器通常都是在A区开口,这个区只与轮子马达和踏板泵的流道连接,并能让油流入和流出A区。转子套在有出入口的环上,而这个环始终是固定不动的,并且在它的静止的叶片上有一个油的进出口。上述控制叶片大约能转动90度,它的位置决定了A区和B区的压力比。上述控制叶片的位置是通过图18中所示的轴103来控制的。
转子91能按照要求的速度转动,以使压力平衡能重新建立起来,并且还能反向旋转。操作者是看不见方向逆转的。当转子转动时,A区的油不能通过径向孔流出,因为径向孔都被静止的有出入口的环的各部分所堵塞了。一当油进入B区或C区,油就只能通过转子上的径向孔流入或流出,因为在这两各区域中端面上没有开孔。在控制叶片上有一个反作用扭矩,这个扭矩可用于控制给操作者的反馈信号。
图22和23表示一种变型的四腔室变换器,它能完成与图14~21中的两腔室变换器一样的任务。图23中的旋转控制区段E通过转子的径向孔输出油,以实现定子中的压力分配。当转子向反时针方向旋转时,通过径向孔流出A区的油将通过径向孔从F区回到B区。如果转子向顺时针方向旋转,A区的油便进入X区,然后通过端板中的出入口C流出。有出入口的环的静止扇形区D防止油通过X区和Y区中的径向孔流回去。
如果旋转区段E从图中所示的位置向反时针方向旋转,则A区也将在定子中向反时针方向旋转。B区从A区向反时针方向旋转时将收缩,而新的B区从A区向顺时针方向旋转时将扩展。其结果是减小了A区的排量。当A区集中在图22的P线上时,其排量为零。继续使A区向反时针方向转动,将再次增加排量,但,是向相反的方向。最后,A区与B区交换位置。如果变换器处于如图所示的位置,蓄能器中的油就能流入A区,使转子向顺时针方向旋转,,并对X区加压,通过出入口C把动力输送出去。马达的回流油进入Y区的出入口C,然后通过径向孔流出B区,流入F区(图23)。也可以通过泵把油输送到X区,使转子向反时针方向转动,通过A区把油输送到蓄能器。油从储油罐进入B区,并通过Y区回到储油罐,同时,如果马达中有油,便流出马达。变换器将按照需要变换其旋转方向,但这对于操作者来说是看不见的。
使控制区段E向反时针方向转到图中B区的范围,将会让Y区的油向顺时针方向转动,对蓄能器充油。
当采用图14~21中的机构时,叶片的数量是有限的,在某些情况下可能导致异常动作,特别是在低速运转时。当然,如果旋转速度稍微快一点,就可以减少这种情况的发生。
如果在车辆的液压系统中要采用图22和23中的变换器,需要为这种变换器改造该液压系统。主要的差别是上述旋转控制区段中压力的方向可以反向,所以就不需要一般液压驱动车辆中的马达反向阀了。
由于旋转控制E在径向和圆周方向都处于液压平衡状态,因此就不要控制力。于是操作者得不到反馈,但可以加入弹簧或其他类似的装置。
图23中的F区与储油罐连通,需要时可以改变其大小。如果旋转控制区段不在行程的终点,将会有四个F区。F区总是在定子中有一个相应的B区。如果压力界面比图14~21中的装置更高或更低,就会有比图14~21中的装置更多的液压泄漏损失。
从这两个实施例的说明可知,这两种变换器是这种设计的两种基本手段,而且,重要的是应该理解,这两种设计中的每一种都可以有其他数量的腔室。实际上,这两种手段的区别就在于三个出入口的装置和四个出入口的装置。
权利要求
1.一种用于人力驱动车辆的液压推进系统,其特征在于,它包括一个储油罐;一台脚踏泵;一个蓄能器;一个可变压力比的液压变换器;以及至少一台液压马达;连接上述储油罐与上述泵的装置;连接上述泵与上述蓄能器的装置;连接上述蓄能器与上述马达的装置;以及连接上述马达与上述储油罐的装置;其中,上述可变压力比的液压变换器处于上述蓄能器与上述马达之间的回路中,加压的液压油从上述泵供入上述蓄能器,液压油从上述马达回到上述储油罐,而且,加压的液压油可从下列三种液压油源中提供给上述马达蓄能器、踏板泵、或者这两者的组合。
2.如权利要求1所述的系统,其特征在于,上述踏板泵有两个踏板。
3.如权利要求1所述的系统,其特征在于,该系统包括位于上述泵中的单向阀,以防止通过它的液压油反向流动。
4.如权利要求1所述的系统,其特征在于,上述泵是可变行程的活塞泵。
5.如权利要求1所述的系统,其特征在于,上述阀装置包括使上述马达与上述蓄能器脱开连接的装置,从而上述泵能为上述蓄能器充入压力油;使液压油在操作者的控制下驱动上述马达的装置;以及在再生制动过程中使马达向蓄能器供油的装置。
6.如权利要求1所述的系统,其特征在于,所述泄压阀用于将上述蓄能器中的压力限制在预置的最高压力范围内。
7.如权利要求5所述的系统,其特征在于,上述马达能让轮子自由转动。
8.如权利要求1所述的系统,其特征在于,上述马达是在压力腔室内具有恒定半径区段和双径向叶片的固定排量的叶片马达。
9.如权利要求8所述的系统,其特征在于,上述马达具有一连接在扭力管上的旋转电枢,该扭力管安装在一根轴上并能自由转动,上述轴的远端上有装着扭力传送装置的轮子,而其近端有离合器装置,离合器装置用于将上述扭力管连接在上述轴上,以便能让马达驱动轮子,或者在再生制动时,驱动作为一台泵的上述马达,上述离合器能自动啮合以驱动上述轮子,并且可用人力啮合以便进行再生制动。
10.如权利要求1所述的系统,其特征在于,当驱动马达时,上述变换器在手动控制下,可以控制向轮子马达输出的液体压力,而当再生制动时,可以控制液压油回到蓄能器内。
11.如权利要求1所述的系统,其特征在于,上述可变压力比液压变换器包括一个能在一个定子内自由转动的叶片式电枢,上述电枢在每一对叶片之间有一条径向延伸的通道,上述电枢能绕着一个具有与上述电枢通道连通的出入口的环旋转,上述电枢还包括一个安装在中央的有通道的控制叶片,还有把上述变换器连接在一个压力源上并连接在与上述压力源的压力成比例的出口上的出入口,以及用于手动控制上述控制叶片的位置以改变上述变换器的压力比的装置。
12.如权利要求11所述的变换器,其特征在于,上述变换器有在低压下排油的口装置。
13.如权利要求11所述的变换器,其特征在于,上述定子是椭圆形的。
14.如权利要求11所述的变换器,其特征在于,上述出入口位于包围上述定子的端板上。
15.如权利要求11所述的变换器,其特征在于,在定子内有四个用于压力变换的区域。
全文摘要
一种人力驱动的装有轮子的车辆液压驱动系统,它包括一台踏板泵,蓄能器,液压马达,储油罐,以及连接在液压系统中的阀。上述马达用于驱动一个轮子,并且连接在一个手动控制的双向离合器上,以便进行再生制动。这种装置节约了能量,提高了加速性能。在上述液压系统中可有一个手动控制的压力比可变的液压变换器,用以控制加速和制动。
文档编号B62M19/00GK1305420SQ99807298
公开日2001年7月25日 申请日期1999年5月27日 优先权日1998年5月27日
发明者埃里克·杰克逊 申请人:阿帕克斯车辆发展公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1