专利名称:气球轨道控制装置的制作方法
技术领域:
本发明总地涉及气球的轨道控制,更具体地说,涉及一种远离气球的用于提供控制轨道所需的力的控制气球的装置。
迄今,用于控制自由气球(例如携带探测大气的科学仪器的气球)的轨道的装置还很少。由推进器驱动的飞艇可以例如通过调节推进器的速度和俯仰角来控制其轨道。但是,上述飞艇与自由气球相比,其可达到的高度和净装载量都是十分有限的。携带科学仪器的自由气球一般可在所需高度上于盛行风中自由地漂移,在许多情况下,必须预测到风会按计划将气球装置带入所需的区域或可避开某个禁区时,才可让上述这种气球升空。这种气球的飞行常常必须提早结束,以避免它飞出特定的地区,保证所载物品降落到合适的着陆点,或者避免对居民稠密区造成危害。即使具有少量的轨道控制能力,也可消除上述的必须提早结束飞行的原因。
以前考虑用来控制自由气球的轨道的方法有推进器、选择不同风向的高度控制、和在长的系绳上装阻力伞。
推进器需要很大的动力来拖动气球通过大气。在科学气球通常要求的高海拔高度上空气十分稀薄,对于这样高的海拔高度,推进器必须十分庞大才能产生大的升力。而且,由于气球本质上需要使重量保持最小,所以,上述的强大动力的要求对于气球来说通常是不可行的。如果用太阳能电池来产生动力的话,那么在没有笨重的电池的情况下也不能进行夜间操作。如果通过燃烧燃油来产生推动力。那么由于携带的燃油重量有限,飞行时间也不能长。对推进动力的上述要求与需要保持气球系统重量轻的要求是相矛盾的。
已经进行过关于对比空气轻(LTA)的飞行器的推动原理的若干研究。J.J.Vorachek在第6届AFCKL(空军坎布里奇研究实验室)会议(1970年)上发表的“A Comparison of Several Very High Altitude Station KeepingBallon Concepts(几种使气球保持超高空飞行的原理的比较)”和R.R.Ross在Earth Observations From Balloons(从气球上看地球)会议上发表的“Advanced Balloon System as Photographic Platform(作为照相平台的先进气球系统)”中都讨论了由悬挂在较短系绳上的推进器推动的自然成形气球。这两篇文献都谈到带有悬挂在系绳上的推进器和发电机的自然成形气球的飞行试验。按照这两篇文献所述,上述气球装置由于需要大的推进能量,其飞行作业只限于两三天的时间。上述文献还谈到有关发动机在高的海拔高度上工作的困难。吸入空气的发动机需要几级增压,使空气密度增大到可有效地燃烧燃料的密度值。另外,无论是燃气发动机还是电动发动机都遇到排出大量废热以防止在稀薄空气中过热的问题。
还设计过其他的推进器推进的LTA飞行器,如Raven Industries公司Jack Beemer等于1975年在“POBAL-S,The Analysis and Design ofa High Altitude Airship(POBAL-S,高空气艇的分析与设计)”中所述的并为空军坎布里奇研究试验室制造的那种。该文献介绍了一种设计在21000米高空大约工作一星期的推进器驱动的飞艇。
上述的推进器驱动的气球和推进器驱动的飞艇都设计成可使LTA飞行器保持在地面特定装置的上空中。这种作业要求LTA飞行器在作业高度上按照等于风速的相对速度飞行。由于风速可达15~50m/s(50~150ft/s),所以需要很大的动力。
另一种方法是控制LTA飞行器的高度,以选择一个风按照合适的方向(或者至少是接近于所需方向)移动的高度。这就是体育运动气球驾驶员使用热空气气球或氦气球时所用的主轨道控制技术。通过选择气球漂移高度而选择不同的漂移方向的方法也有许多缺点。第一,必须设置控制高度的装置。热空气运动气球的驾驶者可升高或降低提升气体的温度来调节高度,而氦气球的驾驶者则倾向于空投镇重物或者排出提升气体来调节高度。这种使用消耗品的方法大大地限制了飞行的持续时间。而且,携带镇重物也减少了飞行器可装载的重量。另一个缺点是,许多气球携带的科学仪器特别是用于天文学和天文地理学实验的仪器需要在高于大气层(99%)很远的高度下工作,在较低高度上不能得到优质的数据。而且,需要对不同高度的风有充分认识才能选择合适的高度。通常,在飞行过程中是不可能了解这样详细的。因此,体育运动的气球的飞行在寻找合适高度时常常要进行明显的试错。
一种不用镇重物的控制高度的方法是设置一个充有氦气的气球和一个充有很稠密的致冷剂的第二袋。在低的高度上,上述致冷剂是气体。在高的高度上,上述致冷剂冷凝成液体。因此,在某个高度上,由于冷凝的气体的体积减小而使排开的空气量减少,故系统的总浮力减小。当系统下落到较低高度上的较温暖的空气中时,上述液体再次蒸发,因此,由于膨胀而排开较大的空气量。此时,浮力超过系统的重量,系统再次上升。故气球系统自然地在一个高度范围内循环,而不必排出氦气或去除镇重物。这种方法在K.T.Nock,K.M.Aaron等人于11届AIAA(美国航空和航天学会)轻于空气的系统的工艺会议(1995年)上发表的“BalloonAltitude Control Experiment(ALICE)(气球高度控制试验)”中谈过。通过将液态致冷剂收集到一个压力容器中而后再将它排回到密封袋内,就可以进行某些高度控制。每个高度循环所需时间为几个小时。这种高度控制程序不能在同温层工作,它需要在对流层中温度和压力有特殊改变的地方工作。
可以在比气球低很远的高度上(此处常常是风向不定)设置一种阻力装置例如阻力伞。这种方法在E.R.Bourke II于1969年的Raytheon报告R69-4041A“Unique Approach to Balloon Station Keeping(保持气球状态的独特方法)”中说明过。这种方法可用于产生一个可使气球相对于周围空气移动的力。但是,该力的方向实质上是受阻力伞所处高度上的风向所限制。可以用一个绞盘使阻力伞上升或下降到具有不同风向的高度,但是,这要花大量的时间来改变力的方向。而且,在既有重力又有气动阻力的情况下要使装置升高需要很大的动力。另外,还需要对该高度上风的分布有充分的了解。
因此,本发明的目的是提供一种控制气球轨道的有效地产生力的装置。这种升力产生机构的取向最好应使升力主要是水平的并且垂直于气球的运动方向。
本发明的另一个目的是提供这样一种气球控制装置;它可被动地利用自然风的条件使气球保持在一个固定的高度上,并使通过气球的空气流扫除掉污染物。
本发明的又一个目的是提供一种只需要很小动力并能在夜间工作的装置。
本发明的上述的和有关的目的通过一种装置来实现,该装置具有一个用来产生很大的沿水平方向的升力并固定在从气球或其他轻于空气的系统悬挂下来的系绳上的升力产生机构。该装置还具有一种用于改变上述的升力产生机构产生的外力的折翼或方向舵,上述的升力产生机构和折翼(或方向舵)可安装在一个框架(例如桁梁)上或连结成一个整体。
按照本发明的一个方面,上述的升力产生机构是一个帆。在另一个方面,上述的升力产生机构是一个翼板。在第三方面,上述的升力产生机构是陀螺构件的一部分。
上述的折翼的工作可以通过改变升力产生机构的方向或者说运动来改变升力产生机构所产生的升力。系绳最好具有足够的长度以利用不同高度上自然风不同的有利条件。
本发明的装置只用很少的动力即可工作,它可在夜间作业,可用十分轻的材料制成,不需要关于风场的详细资料,可使气球停留在一个固定的高度上,可以产生幅度和方向变化范围都大于尺寸相当的拖动装置的控制力,可以十分快速地改变控制力的方向,并可在低于气球的高度上(此处空气密度较大)工作,所以本发明的装置比气球小很多。
另一个好处与携带科学仪器有关。某些很灵敏的科学仪器用于检测大气中的十亿分之几的很低浓度的微量气体。来自气球本身的污染物例如氦提升气体,或来自蒙皮材料的挥发物可干扰上述的高灵敏度检测。普通的气球与当地的空气群一起漂移,上述污染物积集在气球和吊舱附近。即使是小的相对气流(例如轨道控制装置工作所造成的相对气流)都可扫除上述的污染物,并给科学仪器提供新鲜的气流样品。
风速和风向随着高度变化有很大的变化。由于升力产生机构在比气球低得多(可能比气球低几千米)处工作,就可基本上保证气球与升力产生机构之间有很大的风的差别。风的方向不是十分重要的,因为可通过控制翼板的迎角使升力的大小和方向在很大的范围内改变,这很像帆船能在同样的风中沿许多不同方向航行的情况。
从下面参看附图及详细说明可更了解本发明的其他的目的和优点。
从下面结合附图对本发明的现有最佳示范性实施例的详细说明中可以更加明白并且更容易理解本发明的上述的和其他的目的和优点,附图中
图1示出轨道控制装置的第一实施例;图2示出采用换向帆的轨道控制装置的第二实施例;图3示出具有鸭式构型的轨道控制装置的第三实施例;图4示出具有双面翼板结构的轨道控制装置的第四实施例;图5示出采用陀螺构件的轨道控制装置的第五实施例;图6示出陀螺构件在风中的转动方向;图7示出具有对称的控制折翼结构的非转动陀螺构件;图8示出采用3个平面的陀螺构件的实施例;图9示出采用4个平面的陀螺构件的实施例;图10示出采用圆筒形本体的陀螺构件的实施例;图11示出从轻于空气的飞行器例如气球上悬挂下来的轨道控制装置的第一实施例;和图12示出现有技术的类似于陀螺构件的装置。
图1示出本发明最佳实施例的气球轨道控制装置的透视图。主要的产生升力的部件是翼板1,该翼板1具有一个前缘翼梁3、一个尾缘翼梁5和多个肋条7,上述的前缘梁3、尾缘翼梁5和肋条7支撑蒙皮9。翼板1与具有前端和后端的桁架11相连接。配重13固定在桁架11的前端,方向舵15和舵作动器17固定在桁架11的后端。控制组件19安装在装置的合适位置上,该组件19具有一个动力源(未示出),必要时,可装入电池或太阳电池板。轭架21将桁架11与系绳23连接起来。系绳23的上端固定在安装到LTA(比空气轻的)系统(例如气球的吊舱)内的绞盘25(未示出)上。
图1所示的气球轨道控制装置位于LTA飞行器例如浮动气球的吊舱之下方与其相距上述的相当长的系绳23的距离。系绳的长度可以是几公里长。采用长的系绳23的原因是要将轨道控制装置置入风速或风向明显不同于气球所处高度的风速或风向的大气中。本文上面引用的由J.J.Vorachek所写的论文“A Comparison of Several Very High AltitudeStat ion Keeping Balloon Concepts(几种使气球保持超高空飞行的原理的比较)”中图30.1示出了典型的翼板形状。
系绳23由安装在LTA飞行器上的绞盘25从卷筒上松开,上述绞盘25可以是电动的,或者它也可简单地设置一个以轨道控制装置的重量作为拉出系绳23的动力而按合适的速度使轨道控制装置下降的被动机构。在后一种情况下,当飞行结束时,要将轨道控制器抛弃,其方法是割断系绳23并提供一种供轨道控制装置用的降落伞以控制其下降速度。如果绞盘25是电动的,则可根据需要升高或降低轨道控制装置至一个满意的高度,或对装置重新装载。如果用于户外运动气球,绞盘25可用人工操纵,或者甚至不设绞盘25。在某些情况下,可用双手交替地将轨道控制装置拉高。
系绳23可以是绳索或缆索例如编织的克芙拉(Kevlar)线索,更广义地说,系绳23可以是一种非刚性的机械连接件,例如,由刚性链环组成的链条。完全刚性的系绳可能由于零件的重量问题而对系绳长度有严格的结构限制。桁架11可以是一种简单的用于安装系统的零部件的刚性件。更广义地说,用一种适合于上述目的的框架(不一定是刚性的)就可完成上述的功能。方向舵15可以是用于改变系统的方向的简单的刚性件,更广义地说,用一种适合于上述目的的襟翼就可完成上述的功能。
将相对风与基准弦线(即从机翼的前缘至后缘的线)之间的角度定义为升力面(即翼板)的迎角。许多空气动力学的文章都谈过迎角的定义。例如,在Bernard Etkin,Wiley和Sons所著的“Dynamics of Flight-Stability and Control(飞行动力学-稳定性和控制)”第二版(1982年出版)第10页给出了较为精确的定义,已纳入本文作为参考。翼板1的迎角可通过由控制组件19控制的舵作动器17调节方向舵15的角度而进行调节。这种位于大升力面后面的小控制面的结构与飞机的机翼和稳定器/升降舵的结构十分相似。它与帆船的龙骨和方向舵的结构也很相似。
为了使翼板1保持在稳定高度上工作,被悬挂的装置的质量中心必须稍微超前于气动力学的中性点(该中性点的定义与飞机的中性点相似)。如果悬挂点(该点实际上直接在质量中心的上方)太靠近的话,则组件将会旋转,或许还会使尾部朝前,或因翼板在气动力学上失速而沿侧向飞行。虽然这不是所需的主要工作模式,但是,对于某些风力条件,即沿所需方向风的阻力大时,实际上又可能是一种有利的状态。在装置的设计中要考虑移动中的质量,以调节质量中心而诱导这类特性。为了使翼板1正常地飞行(也就是不失速),质量中心必须足够地超前,因此需要配重41。由于LTA飞行器通常都有严格的重量限制,所以不希望增加“死”重量。为此,可将占总量的百分数大的控制组件19设置在稍稍超前于升力产生机构处并附带作为配重。但是,如同一架飞机那样,太超前的质量中心会降低方向舵控制主翼板1的迎角的稳定性,因此,最好将质量中心置于如同亚音速飞机那样的位置范围内。这种飞机的质量中心一般置于中性点之前平均机翼弦长的约5%~15%的范围内。本文只略谈了一下中性点位置的预测问题,对于普通熟悉本技术的人们通常都知道其程序,而且可从许多参考文献上获得。在B.W.McCormick和Wiley所著(1979年出版)的“Aerodynamics,Aeronautics and FlightMechanics(空气动力学、航空学和飞行力学)”P479~483中已有关于飞机纵向稳定性的论述,已纳入本文作为参考。飞机的机翼和水平稳定器类似于轨道控制装置的翼板1和方向舵15。当建立俯仰力矩方程时,来自系绳23的力的倾向分力类似于飞机的重量。
而且,与飞机相似,在轨道控制装置中可以采用“鸭”式飞机构型。在“鸭”式飞机构型中,较小的稳定面位于主升力面之前,这点将在下面作更充分的讨论。
根据特定的气球飞行器的需要,控制组件19可接收从气球的吊舱通过无线电或其它通讯装置发来的指令。或者,控制组件19也可在气球系统升空前预先编好程序。
轨道控制装置的优点之一是,它可以根据所需的轨道控制范围按不同复杂性的不同模式进行工作,例如,如果飞行目的是简单地形成流过承载气球的偏压气流来扫除污染物以改善敏感仪器的性能,那么,可在飞行前将方向舵15调到一个固定的角度,该固定角度可根据所需的相对速度并结合现有的预测气球和翼板1高度上的气流的知识来选定。
盛行风一般大致为东风或西风,这与季节有关。一个很耐用的气球可绕地球飞行几圈。若要强制气球向着地球的地极(或许离开地球的地极而向着赤道)进行一般的漂移,那么上述的角度就应在升空前根据已知的盛行风和所需的偏航方向预先设定。
如果本发明的装置用来帮助一个长距离的体育运动气球驾驶者,采用左-零-右控制程序就足够了。驾驶者可以对装置发出相应于向左最大升力、向右最大升力、或零升力的指令,这就可使气球驾驶员避免飞越居民区或帮助他到达预定的着陆点。在零升力(零迎角)状态下,阻力只有大的气动力,这对于气球的漂移速度影响较小。
更复杂的控制程序(或许是在自主的控制下)可控制翼板1顺风改变航向而穿过气流。此时翼板将按长锯齿状模式沿平均飞行轨道来回摆动。这就提高了翼板的相对风速,因此也提高了最大的气动力,这种方法可提供比轨道方向有意义得多的控制,因而需要更多地涉及控制规则系统的设定。
如果在飞行前充分了解轨道的需求,那么就可以对控制器编程,从而不需用指令通讯。在此情况下,可加设导航系统(例如全球定位系统装置)。
由于在飞行器的仪表舱(设置在吊舱内)中可能设有与遥远的操纵者的指令通讯(例如无线电),所以在吊舱与轨道控制装置之间可以采用另一种指令通讯(或许是系绳中的一根导线),以便重新调节轨道控制装置的方向。或者也可以通过独立的直接指令通讯从地面对轨道控制装置实行控制。
对于上面所述的被动控制法,不需要电源,因为方向舵可预先设定好方向。对于受控的方案来说,就需要电源来驱动方向舵15,或许还要与LTA系统联络。各种电源都可以用。执行短期的任务。使用原电池(非充电电池)就够了。对于较长途的飞行,最好选用太阳能电池板,并与充电电池相连接,以便在夜间继续工作。
如果与有动力装置的比空气轻的飞行器(例如软式飞船或飞船)相连接,那么,轨道控制装置可产生一个顶风的升力分力,这有点像帆船抢风改变航向。用翼板增大飞艇推动力的一个可能的优点是,它在稠密得多的空气中工作,因此能产生很大的气动力,这就可减少飞艇所需的能量。
对于上述的许多控制程序,可设置一组传感器,以检测有助于控制操作的有用的气动力学数据。典型的一组传感器可测量迎角、风速、温度、压力、湿度等。对于可改变工作高度以提高性能的控制程序,最好沿系绳分散设置几个仪器组,直接测量不同高度的工作条件。
图2示出气球轨道控制装置的第二实施例。图中示出的产生主升力的构件31具有一个逆风帆33、一根桅杆35和多个夹板37,风帆33和桅杆35固定在具有前端和后端的桁梁39上。在桁梁39的前端固定一个配重41,在桁梁39的后端固定一个方向舵43和一个舵作动器45。在桁梁39的合适位置上安装控制组件41,该控制组件41具有电源(未示出)。如有必要,该电源可含电池和太阳电池板。轭架49将桁梁39与系绳51连接起来。系绳51的上端固定在安装到LTA系统(例如气球的吊舱)内的绞盘53(未示出)上。
上述的轨道控制装置的帆状件的工作与翼状件(图1)的工作很相似。采用帆而不采用双面的翼型件预料其有效的气动力学性能稍低些,但是,这样做可降低成本和减重。因此,可采用现有帆船的帆而不用进行常规的设计。
上述的夹板37是一种插入缝在风帆上的水平袋内的薄肋条,用来提高帆料的刚性,以改善气动力学形状和减少上下摆动(即在风中的摇摆运动)。它们常用于速度比普通帆船高的长筏帆船上。虽然对轨道控制装置的基本操作没有要求,但是,可预料,上述的夹板37将可改善性能,理由与他们用于帆船上的帆相同。
图中示出的方向舵43像一个“飞行”控制面,这表示整个气动力学平面在转动。从结构上考虑,最好采用更普通的固定的尾翼和可移动的方向舵。这二者将起到稳定主升力面的风标运动并调节主升力面的迎角的作用。
图2示出的控制组件47处于更靠前的位置,这表明它具有可部分地起到配重作用的稳定性。
图3示出轨道控制装置的第三实施例,在该实施例中,稳定面位于主升力面的前面。对于飞机上的应用,稍许向前的稳定器被称为“鸭”式,并且,这种结构被称为“鸭”式构型。
上述的鸭式构型的工作与具有普通结构(稳定器置于主翼板后面)的最佳实施例的工作十分相似。虽然鸭式构型看起来不稳定,但是要求将重心放在中性点之前这一点与普通结构是一样的。
图4示出轨道控制装置的第四实施例。在该实施例中,产生主升力的构件使用一种双翼式结构。该实施例也具有普通的结构,即稳定器置于主翼板的后面。
上述的具有双翼式(或三翼式,或更多翼式)结构的轨道控制装置的工作与具有单一翼板的装置是一样的,这种结构的优点基于盒状结构比单翼结构固有地具有较大的刚性。同理,其方向舵也可具有多个面。
图5示出轨道控制装置的第五实施例。该控制装置具有一个陀螺构件61,因此,装置在产生升力的同时进入气流中。
上述陀螺构件61具有一个面板63、至少一个控制折翼65和至少一个控制折翼作动器67。本实施例具有两个折翼。折翼65是铰接的而使它与面板63之间的角度可以调节。控制组件69安装在合适的位置上,该控制组件69具有电源(未示出),如有必要,可带有电池和太阳电池板。旋转接头71使陀螺构件61与连接到固定在LTA飞行器中的绞盘75(未示出)上的系绳73相连接。
正如熟悉轻型气动力学面板制造工艺的人们所知的那样,陀螺构件的结构可按几种方法来实现。例如,可用轻质管件制成肋条,并包上薄的织物或聚合物膜。对于某种飞行,上述面板63可用低密度的但实际上很坚固的材料例如泡沫聚苯乙烯制成。这些主张同样很适用于所有的实施例。
上述的陀螺构件61由于其结构特点在产生升力的同时进入气流内,这与各种玩具或风筝的结构相类似。图12示出现有技术的陀螺结构,图中示出风向和升力的方向。这种形成垂直于相对气流的力的效应称之为Magnus效应,这种效应可用来解释体育运动中的曲线球。由B.S.Massey和Van Nostrand所著于1976年出版的“Mechanics of Fluids(流体力学)”第三版P265中对上述效应有进一步的论述,已纳入本文作为参考。现有技术的陀螺结构具有一个横截面为S形的椭圆泡沫聚苯乙烯叶板和一个穿过椭圆长轴的加强杆。该加强杆的两端通过旋转接头与固定到风筝细绳上的系绳轭架相连接。这种玩具用棍棒水平地操纵,并由于在气流中旋转而产生一个垂直的力。这种向上的力足以克服玩具的重量,而玩具是由其中央盘构件使之稳定的。
虽然图5的陀螺构件61的轴线是垂直的而不是水平的,故其升力向侧面而不是向上,但是其工作原理是相同的。该陀螺构件61悬挂在来自LTA飞行器的长系绳上,因此,相对地说,存在着主要是水平的气流。当按图5所示不对称地设置控制折翼65时,陀螺61实际上是绕基本上是垂直的轴线旋转的。图6示出了旋转方向并且示出了风向W和升力L的方向。不管风的方向W如何,陀螺都会沿这个方向转动。通过颠倒两个折翼65的角度可以使陀螺的转动方向倒过来。因此,可获得所需要的改变升力L的方向的效果。这样,若使图6的折翼65的取向颠倒,那么陀螺的转动方向以及所得到的升力L的方向都会颠倒过来。
通过对称地设置折翼65,转动就会受到抑制,而面板63将通过两个呈向后的角度的折翼65舷侧地稳定在风中。其效果将是产生一个优先取决于风向和所需轨道的纯拖力。图7示出具有两个对称设置的控制折翼的结构,并示出由于风W造成的拖力D的方向。
应用图6和图7所示的性能,人们可通过调节每个折翼而得出有效力的范围。可以在“上”、“下”极值之间改变折翼的相对角度。另外,使折翼位置依序循环也可产生有效的或者说平均的力。
图8示出具有3个面板63和3个控制折翼65的陀螺构件的替换实施例。图9示出具有4个面板63和4个折翼65的陀螺构件的替换实施例。这两个图表明面板63的数目是可以显著改变的,而且,不一定每个面板63都带有控制折翼65,单一个控制折翼也足以保持转动。
图10示出陀螺构件的又一个实施例。其中采用一个转筒作为升力产生机构,并且,也采用控制折翼65使转筒转动。
因此,陀螺构件是可以改变的,而且即使没有控制机构也可以产生升力。陀螺构件本体一般指的是一种适合于在陀螺构件中安装控制折翼、控制折翼作动器和控制组件的结构(例如图5的面板63和图10的转筒)。
图11是在本文示出的由气球和吊舱悬挂的轨道控制装置的最佳实施例,图中所示的相对比例有点任意。该装置可以在很大尺寸范围内工作。而且,系绳的长度可能比图中示出的更长,但是从图中可以看出,其长度是不受限制的。
任何产生气动力的方法都可用来对LTA飞行器提供动力。上面示出的发生升力的装置的具体实例意在示范说明,并不是唯一的。
虽然上面仅详细说明了本发明的几个示范性的实施例。但是,熟悉本技术的人们将会明白,按照上述的典型实施例就可在实质上不违背本发明的新原则和优点的情况下进行许多的改型,因此,所有这些改型都应包括在本发明的范围之内。
权利要求
1.一种在流体中使用的轨道控制装置,它具有一个框架;一个安装在上述框架上的升力产生机构;一个安装在上述框架上的折翼;和一根具有第一端和第二端的系绳,其特征在于,上述的第一端固定在上述框架上。
2.根据权利要求1的轨道控制装置,其特征在于,上述的升力产生机构是一种帆。
3.根据权利要求1的轨道控制装置,其特征在于,上述的升力产生机构是一种翼板。
4.根据权利要求1的轨道控制装置,其特征在于,上述的升力产生机构是一种陀螺构件的本体。
5.根据权利要求2~4中任一项的轨道控制装置,其特征在于,上述的系绳是一种缆索。
6.根据权利要求2~4中任一项的轨道控制装置,其特征在于,上述的框架是一种桁梁。
7.根据权利要求2~5中任一项的轨道控制装置,其特征在于,还具有一个安装在上述桁梁上的配重。
8.根据权利要求2~4中任一项的轨道控制装置,其特征在于还具有一个安装在框架上靠近折翼处的作动器;和一个可控制上述作动器以调节上述折翼的相对方向的控制系统。
9.一种在流体中使用的轨道控制装置,它具有一个升力产生机构;至少一个安装在上述升力产生机构上的折翼;和一根具有第一端和第二端的系绳,其特征在于,上述的第一端固定在上述的升力产生机构上。
10.根据权利要求9的轨道控制装置,其特征在于,上述的升力产生机构是一种陀螺构件的本体。
11.根据权利要求9的轨道控制装置,其特征在于,上述的系绳是一种缆索。
12.根据权利要求9~11中任一项的轨道控制装置,其特征在于,还具有至少一个作动器,其特征在于,每个作动器安装在上述升力产生机构上靠近折翼处;和至少一个用于控制上述作动器以调节上述折翼的相对方向的控制系统。
13.一种在流体中使用的轨道控制装置,它具有一个框架;一个安装在上述框架上的升力产生机构;一个安装在上述框架上的折翼;一个安装在上述框架上的配重;一个安装在上述框架上靠近折翼处的作动器;一个用于控制上述作动器以调节上述折翼的相对方向的控制系统;和一根具有第一端和第二端的系绳,其特征在于,上述的第一端固定在上述框架上。
14.一种对流体中的物体进行轨道控制的方法,包含下列步骤用系绳将上述升力产生机构连接到上述物体上;使折翼与升力产生机构相连接,其特征在于,折翼的相对方向控制着由上述升力产生机构产生的升力;调节上述折翼的相对方向。
15.一种在流体中使用的轨道控制装置,它具有一个升力产生机构;和一个将上述的升力产生机构连接到流体中的物体上的机构,其特征在于,上述的升力产生机构与上述物体间的连接是非刚性的。
16.根据权利要求15的轨道控制装置,其特征在于,上述的升力产生机构带有用于控制由上述的升力产生机构所产生的升力的机构。
全文摘要
一种用于控制比空气轻的飞行器例如气球的轨道的装置。一个升力产生机构(例如端部翼板)悬挂在远低于气球的系绳端部,有利于其在不同高度上随风的自然变化。上述的翼板可产生角度范围宽的水平升力,该升力通过系绳传递给气球。有了这个升力后,便可根据气球和翼板的相对尺寸改变气球的轨道。控制上述系统只需要较少量动力(可能用方向舵)。由于风的能量可产生很大的力,所以风的能量可做很多的功。气球可以避免事故、到达预定目标并选择方便的着陆区和带来其他的工作上的好处。因此极少有由于不能控制轨道而必须提早终止平行的,而且由于可在较宽的条件范围内达到沿平面的飞行路线,故可较容易地得到升空的许可。
文档编号B64B1/40GK1322176SQ99808128
公开日2001年11月14日 申请日期1999年6月25日 优先权日1998年6月29日
发明者基姆·M·阿伦 申请人:环球航空宇宙公司