专利名称:复合物的制作方法
技术领域:
本发明涉及一种复合物及其制造方法。
背景技术:
复合材料通常在树脂基质内包含一阵列增强纤维。目前,全球使用复合结构体的工业例如航天工业主要使用常规的单向织物基的预浸渍品。这种预浸渍制品一般是先制造增强纤维的单向粗面网,将此纤维拉伸经过熔融树脂材料浴,然后干燥此树脂而形成。接着将此预浸渍品形成所要求的形状,装入模具,闭合之,加热使树脂固化。
在过去的5-7年间,出现了另一种制造复合物部件的技术,通常称为复合材料液态模制。在复合材料液态模制中,将干增强纤维材料装入模具中,再将树脂浸渍或浸渍进入纤维中,固化之。
增强材料被称为复合物行业内普通技术人员所熟知的“预制品”,指以适用于复合材料液态成型工艺的形式构成的复合物的增强成分的干纤维组件。预制品一般是各种纺织料形式,例如织物、编织物或毡片的组件,根据需要缝制或成形,在放入或放到模具上之前以特定操作组合起来。
许多人认为复合材料液态成型技术例如RTM(树脂转模成形)、SCRIMP(复合物树脂注模成形或真空浸渍)方法是解决在许多难控制的情形下制造复合物部件例如大的航天器主要结构件和汽车大体积结构部件的问题的方法。与常规预浸渍品相比,人们认为复合材料液态成型技术的优点是减少边角料和铺叠时间,不依赖于悬垂并能提高存放寿命。
但是,尤其当最终的用途需要高的韧性和控制固化时间很关键时,复合材料液态成型也有其自身的问题。
多数用途都需要结构部件具有高的韧性,对于航天工业的基本构件尤其是这样。使航天用复合物具有高韧性的传统方法是增韧基质-通常引入第二相的添加剂,例如向环氧树脂基质中加入热塑性聚合物。
已经采用了各种方法将热塑性材料加入树脂中。热塑性材料可以与未反应的热固性树脂在高温下共混形成单相未反应的熔体。该方法的局限性是能够加入以提高韧性的热塑性材料的加入量。当使用的高分子量的热塑性材料溶解于树脂中时,共混物的粘度会急剧增高。但是,向增强纤维中注加树脂的工艺本性要求树脂的流变性能、粘度和弹性可使树脂渗透整个织物预制品。如果形成的复合物结构需要没有孔隙,而且不使用长注射时间和高注射温度时,那么上述这一点就是必需的。常规的增韧环氧是极其粘的体系,这意味着伴随着必需的树脂加热和匹配固化时间和注射填充周期的困难,需要高的压力和大的模具。
热塑性材料也可以以放在两层纤维之间的连续固态膜的形式加入。在此工艺中,热塑性材料层通常称为夹层。该类方法在欧洲专利申请№0327142中有描述,它描述了包括置于用热固性树脂浸渍的两纤维层之间的固态连续热塑性材料层的复合物。加热时,热固层和夹层仍保持为区分清楚层。
用夹层的方法的一个问题,是在热加工阶段,固态的热塑性膜不溶解于树脂中。结果,虽然最终的复合物可以表现出所要求的韧性增高,但是树脂-热塑性材料的界面很弱。尤其置于潮湿环境中时,该夹层与基质之间的弱界面会使叠层间的耐开裂性差。
热塑性材料也可以以粉末形式加入。此技术的一个例子在欧洲专利申请№0274899中有描述,其中热塑性材料或在制备预浸渍品之前加入树脂中,或喷撒到预浸渍品表面上。
使用粉状物料存在一个问题,难以保证向树脂供应均匀分布的粉状物料。因此,就有热塑性材料加料不均匀的问题,结果,复合物就具有不同韧性的区域。此外,树脂中加入粉状热塑性材料也不适于复合材料液态成型技术,因为根据标准的牛顿理论,树脂中加入微粒时,树脂的粘度会增高,必然会出现上述的所有缺点。
如果粉状颗粒的尺寸与纤维之间的间距相似,那么树脂渗入纤维的过程也会使热塑性粉被滤出,当树脂进入模具时粉状物料会聚集,在最终复合物本体中形成无粉树脂。
不论热塑性粉状物料是加入树脂还是加入预浸渍品,其加入量都受到限制。因此,增韧效果也同样会受到限制,通常,为了获得合理的增韧,必须采用昂贵的结构热塑性物料。
日本专利申请6-33329提出,加入纤维形式的热塑性物料。该专利申请揭示了含有99-80%(重量)碳纤维或石墨纤维和1-20%(重量)热塑性树脂的增强纤维混合物。该方法揭示为仅在传统的预浸渍品技术中有用。
良好的复合物应具有尤其适于具体用途的综合物理性能。决定复合物制品这些物理性能的因素中,有固化的树脂基质材料和结构材料的物理性能、基质材料和结构材料在复合物中分布的均匀性。当基质材料与所有结构材料紧密接触时可获得最佳结果。
因此,要求树脂基质材料具有这样的稠度(粘度),可以覆盖(湿润)所有结构材料,而且如果需要,可填充结构材料内形成的间隙。当结构材料是复杂的结构,例如它是预制品时,或当基质材料与支撑物的比例特别低时,尤其难以达到均匀的湿润。
基质材料的粘度受添加剂的数量和类型影响。因此,就出现了这样的问题,虽然含有一种或多种添加剂的液态或凝胶基质材料固化时可具有合适的物理性能,但是尤其当支撑物复杂时,液态或凝胶基质材料的粘度会过高,不利于其均匀地分布在支撑物材料周围。这会形成缺乏预期物理性能的复合物制品。
为了获得良好的综合性能,复合物材料一般由许多成分组成。一般,对于航天用途预浸渍制品,要有高性能增强纤维与复杂的聚合物树脂基质材料混合料混合。该基质材料混合料通常由热固性环氧树脂共混以各种添加剂组成。这些添加剂能提高基本树脂的韧性。这些体系具有复杂的流动性能,虽然它们能够容易地与预浸渍品形式的纤维结合,但它们在其他制造技术中的应用受到限制。因为例如设法将这样的复杂树脂用于复杂纤维预制品的注模成形或树脂转模成形过程,添加剂会渗滤出去,形成不均匀制品。
发明的内容因此,就需要一种制造复合物的方法,它可克服上述的尤其大复杂结构体的问题。
根据本发明的第一方面,提供一种复合物,它包括一个结构部分和基质部分,结构部分含有结构纤维和含有第一热塑性材料的非结构纤维的增韧添加剂,基质部分含有第二热塑性材料,其中所述的结构部分是由结构纤维和非结构热塑性纤维形成的织物,该织物包含在最终复合物内呈纤维形式的非结构热塑性纤维,第一和第二热塑性材料是不同的。
本文中使用的“结构纤维”一词指提高最终复合物的强度的纤维,例如玻璃纤维或碳纤维,由此其弹性模量大于50GPa。
本文中使用的“非结构纤维”一词指因为其弹性模量低于40GPa,所以不是为提高最终复合物强度而加入的纤维。因此,已知的由材料例如Kevlar形成的增强纤维不是本文中的非结构纤维。
复合物使用热塑性树脂作为基质。预计此热塑性材料可以在最终部件内提供良好的耐化学性能和韧性。但是,为了获得低粘度,如果热塑性树脂是要注射的,就需要低粘度,就必需降低树脂的分子量。热塑性树脂的韧度与分子量密切相关,因此,分子量降低会导致韧度下降。因此,有人建议除了使用热塑性基质,还要通过向纤维预制品内加入热塑性纤维来进一步增韧复合物。
另外,也考虑到,增强部分的形式能够降低树脂基质提供的韧度,因此就能够使用低粘度体系。也就是说,通过用纤维为复合物提供韧度,就能够降低热塑性树脂的分子量,这样就会有更低的粘度。这样就可以用合理压力、轻重量低成本的加工设备和可控制的周期时间,来浸渍大部件。此外,在不影响液态复合物模制技术的可加工性的情形下,就能够加入更多量的增韧添加剂。
热塑性纤维可以由与基质相似分子量更高的热塑性材料制成来提供韧度。另外,纤维也可以由不同的热塑性材料形成。
为了获得综合的最佳性能,也可以使用不同热塑性纤维的组合。复合物的性能依赖于基质的力学性能、其他的热塑性纤维和所有部分之间的界面粘合。
韧度是指吸收断裂能量的能力,该能力表示这在冲击过程中吸收能量的能力。这种能力可以由普通技术人员已知的合适的冲击测试方法测量。已知热塑性聚合物可提高吸收结构复合物内的冲击能量的能力。通过形成合适的织物,热塑性聚合物可以分散于整个最终复合物中,给出均匀的耐冲击性。
根据本发明的另一方面,提供一种制造复合物的方法,该方法包括由结构纤维和第一热塑性材料的非结构纤维制成织物,提供一个结构部分,将包含第二热塑性材料的液态树脂注射入结构部分内,提供一个基质部分,并将基质部分固化,其中所述的第一和第二热塑性材料是不同的,液态树脂在一个温度下注射,使得最终的复合物包含纤维形式的非结构热塑性纤维。
制备液态复合物模塑用的预制品的混合方法包括结合这样的机理,它向新织物预制品提供韧性,而不是在热固性树脂内的添加剂。结果,在不损害体系的可加工性情形下,就可获得改善的性能。这在加工方面也有好处,除了提供更韧的部件,它也简化了制造工艺,并能够加快制造,留出间隔时间,由此可以采用更大的设备。这还有一个优点,即,可以减少新复合物程序的最贵部件最前端的投资需要满足等级制造的要求,由此就有可能降低进入新成品程序的成本。
增韧添加剂优选是这样的热塑性材料,它的熔化潜热可以吸收树脂的一部分热量,但是,当固化结束时回复成固态,其增韧能力不会损失。另外,可以选择热塑性树脂和热塑性添加剂,以便能够在添加剂熔化或相变过程中一部分固化能量。
注射低粘度树脂能够缩短加工周期的注射-填充部分时间。但是,也必需缩短周期时间的其余部分。通过使用很热的低粘度热塑性树脂,就能够加快注射-填充部分,但是危险是导致冷却周期长-尤其在厚部件的情况,尤其在厚部件内也会有过热,这会导致最终部件的降解、变形或损害。
如果半结晶热塑性纤维用作增韧添加剂,就可以实现很快的周期,而不会有冷却时间过长的危险。热塑性树脂冷却产生的热量,能够用来使纤维内的晶体熔化。那么,晶体熔化的潜热会吸收过多能量,由此加快冷却周期,并保证它以均匀的速率发生在制品本体内,由此就避免了在部件内产生可能的变形。选择晶体熔化温度合适的增韧纤维,可使周期时间最短,而不会损害复合物。半结晶纤维自身在冷却时会回复到其起始态,而过程不会影响部件最终的韧性。
优选的增韧添加添加剂包括聚丙烯、尼龙6,6、苯乙烯-丁二烯、丁二烯、聚醚酰亚胺、聚乙基酮、PET、聚醚砜。
增韧添加剂在最终复合物中的体积百分率优选高于2%,更优选高于5%,最优选高于10%。
增韧添加剂在最终复合物中的体积百分率优选不高于50%,更优选不高于40%,最优选不高于30%。尤其优选的是增韧添加剂在最终复合物中的体积百分率不高于25%。
结构纤维在织物中的体积百分率优选至少65%。此最少值65%保证了有足够多的结构纤维,形成所要求的强度。但是,增韧纤维即热塑性纤维的比例,比其中加入热塑性颗粒物料的已知方法高,因此,增韧效果比用已知方法获得的高很多。
增韧添加剂的熔化温度优选与树脂部分的熔化温度不同。它能够在80-350℃之间,更优选在100-250℃之间,但是它的最终选择决定于基质材料的参数。
能够采用低粘度树脂制成复合物的能力能够明显提高填充模具的速率。但是,控制树脂的周期时间的问题仍然存在。注射树脂中总存在的关键因素是确保树脂充满模具,并在树脂固化前完全湿润增强材料。但是,充模时间和固化时间是相关的,树脂在离开注射孔时就开始固化,该过程贯穿在整个注射时间中。
在另一种方法中,方法的注射和固化步骤被向预制品内加入固态热塑性树脂基质隔开。所述树脂可以是纤维状或颗粒状。这就有这样的优点,能够使基质树脂流动并湿润整个部件所需要的仅是加热,这在制造过程中能够提供更大的便利。
另一个优选的特征是,使用面网作为层叠物的一部分,将其夹在结构部分层之间。所述面网由于其很薄或内在的吸收性或面网材料的结构或这些特性的组合,优选有较大的吸收速率和结构部分层(一层或多层)。因此,在一些实施方式中,优选的是提供夹在结构层之间的面网层,并提供提高树脂渗入结构体中的速率的装置。与迄今已知的方法相比,有利的是采用此方法,树脂就可优选进入较厚结构体的中央。
通过使用纤维面网,就可以有利地利用纤维桥接作用获得韧性,并能抑制分层。但是,面网优选内含增韧添加剂,来进一步提高复合物的韧度。可以看到,面网中也可以有热塑性纤维作为增韧添加剂。但是,尤其优选的是当面网由造纸途径制成时,增韧添加剂就以颗形式加入,因为这尤其适用于造纸过程。
树脂基质优选是低粘度的热塑性材料,例如EMS Chemie GrilamidPo1yamide 12纤维可以是连续的或不连续的。如果是不连续的,例如通过拉伸切断制成,它们就以由该非连续纤维制成的连续纱线的形式使用。
结构部分织物可以是织造织物或非织造织物,可以包含混杂纱,即结构纤维和增韧纤维捻合在混杂纱内,或织物可以包含结构纱和增韧纱混在一个织物内。
使用混合纱这个基本概念的具体实施可以变化很大。即可以在预制品中用混合纱代替全部纱,或仅代替一部分。此外,根据部件需要,大预制品可以由常规或增韧织物区域组成。这就提供了这样的加工优点,即一个单树脂体系能够用于大部件,但是复合物的性能即各部位的韧性和温度能力能够不同-由此使复杂结构体的一步成形更加可行。
制成不同形式的预制品,复合物的性能能够差异很大。例如,在织造物的情形下,提供结构纤维和热塑性纤维的图案会对复合物的整个性能都有影响。因此,以织物形式使用结构增强料能够提供很大的多样性。
下面参照附图和一些实施例详细说明本发明的实施方式,在附图中
图1a是本发明层状复合物的示意图;图1b是带有示意冲击区域的图la层状复合物的上层的示意图;图1c是图1a层状复合物的上层的结构示意图;图1d是图1b所示的屈服区2的分解示意图;图2a是夹在层叠物中两个结构层之间混合面网的说明图;图2b是图2a混合面网可能结构的说明图;图2c是图2a混合面网的另一种结构的说明图;图3显示了各种实施例的吸收能量与体积分数x厚度的关系;图4-6显示了由下列纤维形成的复合物的冲击强度随厚度×纤维体积分数而变化的关系;图4单独的玻璃纤维;图5玻璃纤维和聚丙烯纤维;图6玻璃纤维和聚酰胺纤维。
图1a揭示了叠置三层同样的长方形平面层的层状结构的复合物上层3a;中层b和下层c。其内部结构由图1c显示得更清楚,它是插入物4的分解图。该分解图显示了每层都由混合织物形成,所述混合织物含有结构纤维的纱,例如与热固性树脂基质内固化的热塑性纤维的纱混杂的碳纤维。
图1b和图1d图示冲击对上层3a表面的影响。具体是图1b显示根据理论冲击的一系列斜线型屈服区,图1d是线型屈服区2的分解图,它表明屈服区对应于复合物层中延伸的热塑性纱。
试看图2,它显示了与图1相似的层状复合物结构,但是它具有夹在两层织物之间的混合面网。该夹层面网赋予织物复合物以韧性。两种另外的面网结构如图2b和2c所示。图2b显示了混合的结构纤维和非结构纤维和热塑性粉的结构,图2c显示了碳纤维与热塑性粉的单一结构。在这两种情形下,在织物层与纤维面网之间的纤维桥接提供了抗分层性和某种程度上提高了韧性。但是,这一点可由面网层内热塑性材料的存在而大大增强。
通过合理地设计夹层面网,就可相对于流过上层和下面结构层的速率,提高树脂流过面网的速率,由此提高浸渍的树脂渗入复合物的速率。
下面描述了一些具有图1所示结构的复合物的例子,但是它们采用热固性树脂基质。这些实施例用来说明采用热塑性纤维作为增韧添加剂的效果,由此也用来即便是非全部地说明本发明。
热塑性纤维增韧添加剂最明显的优点可以从改进复合物的耐冲击性方面看出。这通常用全渗透冲击测试中得到的吸收能量与纤维的体积分数乘以厚度的关系来图示,它是一个组合参数,形成一个常规复合物体系的总曲线,与基质类型和纤维的具体取向无关(假设纤维以广泛地面内各向同性方式排列,或最差是0.90排列)。发现此总曲线对于具有不同基质的材料,包括脆性冷固化树脂和韧性热塑性基质例如聚丙烯,均适用。具有热塑性纤维增韧添加剂的复合物表现出韧性意外地增大,从与总曲线的很大偏离可以看出。这一点也可以由冲击样品上较大的损坏分配也得到证明。
实施例1用这样一种织物预制品制成一种复合物,该预制品是玻璃纤维与聚丙烯纤维混合而制成的四轴非绉纹织物。该织物用低粘度不饱和聚酯树脂浸渍,室温固化该层叠物,接着根据树脂供应商的说明书80℃后固化之。
板厚3mm,三种部分的体积分数如下所述玻璃纤维0.2v/v;聚丙烯纤维0.2v/v,聚酯树脂0.6v/v。
对层叠物进行落锤冲击测试,测得其吸收的能量。使用的具体测试结构产生的玻璃纤维复合物的能量吸收结果,落入由叠层物厚度和纤维体积分数决定的总曲线。由加入聚丙烯纤维作为增韧添加剂的预制品制成的层叠物所吸收的能量是100J。
与此不同,用同样聚酯树脂0.8v/v,但是完全由玻璃纤维作为增强纤维(体积分数0.2v/v)制成的和厚3mm的相似层叠物吸收的能量平均值约为40J。这说明预制品中加入热塑性纤维会提供韧性很大的优点。
实施例2用DGEBA环氧树脂(用胺硬化剂固化的双酚A的二缩水甘油醚,该胺硬化剂是用Ciba HY932芳胺固化的Shell Epikote 828)和E-玻璃纤维的平纹机织物,制成玻璃纤维环氧复合物。该织物约占复合物体积的50%。用同样含量的织物但是织物部分含有70%(体积)E-玻璃纤维和30%(体积)结晶熔点210℃的半结晶聚合物纤维,制成相似的复合物。
浸渍织物,并叠压至6cm厚,在设置为190℃的烘箱中固化,制成复合物。嵌入层叠物中央的一些热电偶,当其温度起始与烘箱温度相同,然后由于固化过程放热而温度进一步升高时测出材料内温度的升高。
仅有玻璃纤维的层叠物的温度会升高至远远超过190℃烘箱温度,它很快达到300℃峰值温度,在此温度,可观察到环氧显著降解。含有半结晶热塑性纤维的层叠物也会由于固化放热表现出温度升高,但是温度一旦达到热塑性纤维的晶体熔点温度,整个温度升高就停止,环氧树脂不显著降解。
实施例3用平纹机织物和环氧树脂(用胺硬化剂固化的双酚A的二缩水甘油醚,该胺硬化剂是用Ciba HY932芳胺固化的Shell Epikote 828)),制成3mm厚的碳纤维复合物。所述织物含有70%(体积)碳纤维(Torayca T300)和30%(体积)尼龙6.6纤维。该织物用液态环氧树脂浸渍,室温固化24小时,接着100℃后固化4小时。固化的层叠物含有约50%(体积)碳纤维和21%(体积)尼龙纤维。复合物的其余29%是固化的环氧树脂。再浸渍仅由碳纤维制成一种的织物,制成相似的复合物。在此情形下,平纹机织物的碳纤维占复合物体积的50%,环氧树脂基质占其余的50%。
两种层叠物都经受过量能量的落锤冲击测试。仅含有碳纤维和环氧基质的层叠物吸收50J能量。含有碳纤维、尼龙纤维和环氧基质的层叠物吸收85J。
实施例4-7用一系列含中等体积分数玻璃纤维的复合物进行了测试,所述复合物的冲击韧性(在全穿透情况下落锤冲击过程中吸收的能量)与未改性类似物相比,由于含有热塑性纤维而提高至2-3倍。在开孔拉伸测试中,同样材料的测试结果也说明明显没有凹口敏感性。
相对于两种对照样品,两种材料的冲击测试结果如图3所示,而所测试材料的说明在表1中。
表1增韧和未增韧复合层叠物的对比
每种结构部分都含有约50∶50(体积)的玻璃与增韧添加剂。
图3显示了实施例4-7的冲击测试结果,吸收能量与厚度×纤维体积的关系图。为了对比,叠加了SMC(片料的模制复合物)、GMT’s(玻璃毡热塑性塑料)和预浸渍品等形成的冲击总曲线。含有聚丙烯和聚酯的复合物的吸收能量与不含增韧添加剂的类似复合物相比显著增高。
图4-6显示了耐冲击强度,即穿透冲击期间吸收的能量与厚度×纤维的体积分数之间的关系。每条曲线的数据都取自三种不同的热固性基质-两种环氧和一种聚酯。图4的第一条曲线显示了当单独使用玻璃纤维,玻璃纤维在复合物中的体积分数是30-50%时,所获得的结果。图5和6的第二和第三条曲线显示了玻璃纤维部分被图5的聚丙烯代替和图6的聚酰胺代替时的结果。这些曲线说明含有热塑性聚合物在提高冲击强度方面有显著的好处。此外,使用不同基质,该效果是一致的。
实验中使用的形成图4-6曲线的树脂包括不饱和间苯二甲酸的聚酯树脂(UP)、Crystic 272(Scott Bader plc产品)和两种环氧体系,EP1是冷固化的环氧树脂(用酰胺硬化剂固化的双酚A的二缩水甘油醚,该酰胺硬化剂是用Ciba HY932芳胺固化的Shell Epikote 828),EP2是Cytec-Fiberite提供的120℃固化的低单部分低粘度环氧树脂Cycom 823。
所有这些测试中的实验步骤都使用落锤冲击测试,测试中装有直径为20mm的半球形末端的冲锤落到测试复合物的样品板上。所述复合物样品是一般厚3mm、尺寸为60mm×60mm的薄板,它承载在内径为40mm的刚环上。冲锤从1m的高度落下,具有足够的重量,其动能足以使冲锤完全穿透样品。测试中记录冲击的力,吸收能量从记录的力时间和测得的冲锤冲击样品时的速度算出。
如上面实施例所述,在树脂基质内加入热塑性纤维能提供明显的增韧效果。热塑性纤维给出在未改性热固性树脂中不可能发生的塑性变形和屈服的机理。发现,在具有热塑性树脂基质的复合物内也产生同样的机理和这样的增韧效果,这意味着该效果主要是纤维支配的。这样就可以通过液体复合物模塑技术制成具有热塑性树脂基质的复合物,能够获得所要求的热塑性基质的效果,包括良好的耐化学性能和对最终部件韧性提高的作用,而没有湿润的问题发生。其原因是热塑性纤维形式的增韧添加剂存在于结构部分内,意味着与基质仅用来提供必需的韧性的情形相比,较低分子量的热塑性树脂可以用于基质。分子量的降低导致粘度下降,因此易于浸渍预制品。
热塑性纤维与热塑性基质的不同在于分子量,较高分子量的热塑性材料用于纤维,而较低分子量的热塑性材料用于基质。这可以通过使用两种不同的热塑性材料或同样的热塑性材料但是两种不同的分子量来实现。但是,应当明白,热塑性纤维虽然具有的分子比比热塑性树脂大,但其大的分子量足以形成能使得纤维是结构性的模量。没有必要使用材料例如Kevlar或其他结构热塑性材料。较低模量因此较低成本的热塑性材料可提供必需的增韧效果。
现代制造中的时间是个关键。设备使用得越快,设备的利用率就越大,加工成本就越低,生产程序的前端投入就越少。虽然,具有热塑性基质和热塑性纤维增韧添加剂的复合物优选用液体复合物模塑技术制成。如果使用不涉及注射步骤的另一种技术,那么设备产量就可以提高。一种可能是组合由结构和非结构纤维组成的增强部分与另外的热塑性纤维,所述热塑性纤维的熔点低于它们的增强部分的热塑性纤维。含有三种纤维结构纤维、熔点较高和较低的热塑性纤维的混杂预制品可以在压力下加热,使低熔点纤维熔化,浸渍结构纤维与高熔点热塑性增韧纤维。为了产生最大效率,设备可以在安放混杂预制品之前加热至接近较低熔点的温度。
低熔点热塑性材料也可以是粉状,采用同样的加工方式。
权利要求
1.一种复合物,它含有结构部分和基质部分,所述结构部分包括结构纤维和含有第一热塑性材料非结构纤维的增韧添加剂,基质部分包括第二热塑性材料,所述的结构部分是由所述结构纤维和所述热塑性非结构纤维形成的织物,该织物包含在最终复合物内呈纤维形式的热塑性非结构纤维,所述第一和第二热塑性材料是不同的。
2.如权利要求1所述的复合物,其特征在于所述第一和第二热塑性材料的分子量不同。
3.如权利要求1或2所述的复合物,其特征在于所述第一和第二热塑性材料不同。
4.如上述权利要求中任一项所述的复合物,其特征在于所述基质部分是低粘度热塑性材料。
5.如上述权利要求中任一项所述的复合物,其特征在于至少一部分所述热塑性纤维是半结晶的。
6.如上述权利要求中任一项所述的复合物,其特征在于所述增韧添加剂的体积百分率高于2%,但是低于50%。
7.如上述权利要求中任一项所述的复合物,其特征在于所述增韧添加剂的体积百分率高于5%,但是低于40%。
8.如上述权利要求中任一项所述的复合物,其特征在于所述增韧添加剂的体积百分率高于10%,但是低于30%。
9.如上述权利要求中任一项所述的复合物,其特征在于所述结构部分以多层织物的形式提供,至少一个面网位于一对相邻层之间,所述面网包括织造织物或非织造织物材料的薄层。
10.如上述权利要求中任一项所述的复合物,其特征在于所述织物中结构纤维的体积百分率至少为65%。
11.如上述权利要求中任一项所述的复合物,其特征在于所述结构纤维和/或非结构纤维是连续的或非连续的。
12.如上述权利要求中任一项所述的复合物,其特征在于所述织物包含捻合的结构纤维和热塑性纤维的混杂纱或结构纤维的纱和热塑性纤维的纱。
13.一种制造复合物的方法,该方法包括由结构纤维和第一热塑性材料的非结构纤维制成织物,提供结构部分;将包括第二热塑性材料的液态树脂作为基质组分注射到结构部分内;然后令基质部分固化,所述的第一和第二热塑性材料是不同的,液态树脂的注射温度是使最终复合物内包括纤维形式的非结构热塑性纤维。
14.如权利要求13所述的方法,其特征在于所述织物以多个层提供,在加入第二热塑性材料之前,在至少一对相邻的层之间放置一层面网,所述面网包括织造织物或非织造织物材料的薄层。
15.如权利要求14所述的方法,其特征在于它包括在面网上或面网内分布粘合材料。
16.如权利要求13-15中任一项所述的方法,其特征在于所述树脂注射方法是树脂压铸或复合物树脂注塑。
全文摘要
一种复合物,它包括结构部分和基质部分,结构部分包括结构纤维和含有第一热塑性材料的非结构纤维的增韧添加剂,基质部分含有第二热塑性材料。结构部分是由结构纤维和非结构热塑性纤维形成的织物,该织物包含在最终复合物内呈纤维形式的非结构热塑性纤维。第一和第二热塑性纤维的分子量不同。
文档编号B29C70/04GK1466515SQ0181658
公开日2004年1月7日 申请日期2001年9月27日 优先权日2000年10月2日
发明者D·H·伍尔斯滕克罗特, D H 伍尔斯滕克罗特 申请人:Cytec技术有限公司, 型片材料体系有限公司