成形模的设计方法、成形模及成形品的制作方法

文档序号:4447507阅读:589来源:国知局
专利名称:成形模的设计方法、成形模及成形品的制作方法
技术领域
本发明涉及成形模的设计方法、成形模及成形品,其中,成形模的设计方法是设计对由成形模成形成形品(例如光学透镜)时的该成形品的形状变化进行修正而成形所要求的形状的成形品的成形模;成形模利用该成形模的设计方法设计;成形品通过该成形模而成形。
背景技术
在成形光学透镜时,如果将光学透镜的设计值原封不动的用于成形模而进行成形模的设计、制造,则由该成形模制造的光学透镜往往不能以与该设计值相同的形状制造。其原因是由于依赖于原材料的成形收缩或光学透镜的形状引起的应力等使成形模的成形面不能高精度的转印在透镜面上。
例如,为了成形球面透镜而利用具有球面成形面的成形模进行成形时,成形的光学透镜往往构成包含非球面状的球面以外的表面形状。因此,当设计成形模时,考虑这些主要因素,需要增加适合于成形模的形状修正。
由于光学透镜的光焦度、透镜材料、设计曲面的形状各不相同,因而,这些成形模的成形面修正量随着其组合的不同而具有复杂化的倾向。为了确定适当的修正量,需要在各成形模中实验验证实际的变形。
另外,修正量的预测或定量化是很困难的,适当的修正量的确定需要熟练。
具体操作步骤是(a)通过相应的成形模试验成形各种光学透镜,(b)测定光学透镜相对于设计值的误差;然后,(c)将测定的误差乘以各种系数算出计算假定的修正量(经验值)并修改成形模;(d)利用修改后的成形模再次试验成形光学透镜,(e)测定光学透镜的形状误差。通常的方法是,反复进行上述(c)~(e),使修正量最优化。
但是,为了进行这种成形模的形状修正的最优化操作,需要进行多次成形试验。特别是例如在作眼镜透镜的情况下,需要多种成形模。即,眼镜透镜必须准备与各个眼镜戴用者的处方相对应的透镜。例如,在对应处方的眼镜透镜的度数范围内,将球面度数的顶点光焦度的范围设定为-8.00屈光度(D)~+6.00屈光度(D)、将光焦度的分割单位设定为0.25D间隔时,球面度数的种类有56种。
还有,在将与散光处方相对应的散光光焦度设定为0.25屈光度(D)~+2.00屈光度(D)的范围内、将光焦度的分割单位设定为0.25D间隔时,散光的种类就需要8种。因此,将球面处方及散光处方组合时,在一个制品中,需要对应448种透镜度数,进而,由于成形模由上下两个成形模构成,故共有896种。
因此,在成形模的制作中,由于伴随着如上述的每个模的形状修正的作业,从而需要多个制作期间。
另一方面,就施加于成形模的成形面的修正方法而言,众所周知的方法是,利用最小二乘法使成形的光学透镜与该光学透镜的设计值之误差为最小,求出具有单一曲率的球面形状,将该球面形状的曲率作为平均曲率使用,对成形模进行修正(第一现有技术)。
另外,作为第二现有技术,在简单形状的情况下,还有一种方法是,可预测考虑了收缩的变形,并将该预测值作为修正量应用(专利文献1)。
另外,作为第三现有技术,还有一种方法是,利用非球面测定机测定立体形状,求出与设计值的形状误差,进而根据消除了相对于测定器的调整误差的形状误差测定值进行修正(专利文献2)。
专利文献1特开平2003-117925号公报专利文献2特开平8-216272号公报但是,根据第一现有技术中的平均曲率进行的误差的评价中,不能对球面形状以外的形状误差进行评价,因此,不能对该球面形状以外的形状误差进行修正。
另外,在利用第二现有技术设计光学透镜的成形模时,例如眼镜透镜的情形,具有由凸面及凹面构成的弯月透镜形状,且其形状复杂,由此,对考虑了收缩的变形量进行预测来设计成形模是很困难的。
并且,在第三现有技术中,虽然消除了测量误差,但是,形状误差测定值作为干扰因素还含有透镜表面粗糙度及附着于透镜表面的异物等的影响。因此,存在着除形状误差以外的干扰因素反映到修正量上,降低修正精度,从而不能由成形模高精度地成形光学透镜的危险。

发明内容
本发明是考虑上述情况而构成的,其目的在于,提供一种成形模及该成形模的设计方法,该成形模将从成形模成形成形品时的该成形模的形状变化进行修正而使所要求形状的成形品成形。
本发明的其他目的在于,提供利用所述成形模成形的成形品。
第一方面提供一种成形模的设计方法,其特征在于,预备成形面形成于成形品的设计曲面上的成形模,对由该成形模成形的成形品的曲面形状进行测定,使该测定值近似于非球面式,将所述成形品的曲面作为非球面特定下来,将由非球面式特定的所述成形品的曲面与所述成形品的设计曲面进行比较,求出两曲面的误差,将该误差对应的信息用作修正信息,对所述成形模的所述成形面进行修正设计。
第二方面在第一方面的基础上,提供成形模的设计方法,其特征在于,所述修正信息包含有整体形状修正信息和局部形状修正信息,其中,整体形状修正信息为了与成形品曲面中的球面形状成分的误差相对应,而对成形模的成形面的整体形状进行修正;局部形状修正信息为了与成形品曲面中的球面形状以外的成分的误差相对应,而对所述成形模的所述成形面的局部形状进行修正。
第三方面在第一或第二方面的基础上,提供成形模的设计方法,其特征在于,所述非球面式是包含有成形品的曲面中的球面形状成分和成形品中的曲面中的球面形状以外的成分的多项式。
第四方面在第一至第三方面中任一方面的基础上,提供成形模的设计方法,其特征在于,所述非球面式是对成形品的曲面中的球面形状成分和成形品的曲面中的球面形状以外的成分进行加法运算。
第五方面在第一至第四方面中任一方面的基础上,提供成形模的设计方法,其特征在于,设Z为从成形品的顶点沿该成形品的轴向测定的距离、X、Y为从所述顶点沿与所述轴线垂直的方向测定的距离时,ρ为ρ2=X2+Y2,设R为顶点曲率半径时,顶点曲率C为C=1/R,设K为圆锥常数,A2i为非球面系数(i为整数)时,所述非球面式为下式(1)Z=Cp21+1-(1+K)C2p2+Σi=2nA2ip2i---(1)]]>
第六方面在第五方面的基础上,提供成形模的设计方法,其特征在于,所述非球面系数A2i中的i为2~5。
第七方面在第五方面的基础上,提供成形模的设计方法,其特征在于,根据所述式(1)第一项(K=0)的标准球面成分求出对成形模的成形面的整体形状进行修正的整体形状修正信息,以使其与成形品的曲面中的球面形状成分的误差相对应,另外,根据所述式(1)的第二项的多项式成分,求出对所述成形模的所述成形面的局部形状进行修正的局部形状修正信息,以使其与成形品的曲面中的球面形状以外的成分的误差相对应。
第八方面在第七方面的基础上,提供成形模的设计方法,其特征在于,所述成形模的成形面中的整体形状修正信息,根据式(1)的第一项(K=0)的标准球面成分所表示的标准球面曲率半径与成形品的设计曲面中的曲率半径之差确定。
第九方面在第七或第八方面的基础上,提供成形模的设计方法,其特征在于,所述成形模的成形面中的局部形状修正信息,根据式(1)第二项的多项式成分所表示的,利用成形品的曲面中的球面形状以外的成分的高度(Z值)和所述成形品的设计曲面的高度(Z值)算出的形状变化率来确定。
第十方面在第七~第九方面中任一方面的基础上,提供成形模的设计方法,其特征在于,所述成形模的成形面的设计,通过在成形品的设计曲面上对整体形状修正信息和局部形状修正信息进行加法运算而实施。
第十一方面在第一~第十方面中任一方面的基础上,提供成形模的设计方法,其特征在于,所述非球面式为将下式(1)变形后的下式(2)。
Z=Cp21+1-(1+K)C2p2+Σi=2nA2ip2i---(1)]]>Z=Σi=1nB2ip2i---(2)]]>第十二方面在第十一方面的基础上,提供成形模的设计方法,其特征在于,从所述式(2)的系数B2n求出式(1)的顶点曲率C及非球面系数A2n,通过式(1)规定成形品的曲面,根据该式(1)第一项(K=0)的标准球面成分求出对成形模的成形面的整体形状进行修正的整体形状修正信息,以使其与成形品的曲面中的球面形状成分的误差相对应;另外,根据所述式(1)第二项的多项式成分,求出对所述成形模的所述成形面的局部形状进行修正的局部形状修正信息,以使其与成形品的曲面中的球面形状以外的成分的误差相对应。
第十三方面在第一及第十二方面中任一方面的基础上,提供成形模的设计方法,其特征在于,所述成形品的曲面形状的测定如下预备将曲面测定用的标记设置于成形面上的成形模,测定由该成形模成形的成形品的曲面形状,此时,以将所述标记转印于该成形品的曲面上而形成的,位于要测定的部位的转印标记为基准来测定所述曲面形状。
第十四方面在第十三方面的基础上,提供成形模的设计方法,其特征在于,所述转印标记具有顶点转印标记部和边缘转印标记部,其中,顶点转印标记部形成于成形品的曲面顶点;边缘转印标记部在所述曲面的边缘部相对于所述顶点形成于中心对称位置,通过这些顶点转印标记部及边缘转印标记部对所述成形品的所述曲面进行测定。
第十五方面在第十四方面的基础上,提供成形模的设计方法,其特征在于,所述边缘转印标记部相对于成形品的曲面顶点在中心对称位置转印一对或多对而形成。
第十六方面在第一~第十五方面中任一方面的基础上,成形模的设计方法,其特征在于,所述成形品是曲面呈球面形状或非球面形状的光学透镜。
第十七提供一种成形模,其特征在于,通过实施第一~第十六方面中任一方面所述的成形模的设计方法而形成。
第十八方面提供一种成形品,其特征在于,利用第十七方面所述的成形模而成形。
第十九方面提供一种成形品,其特征在于,第十八方面所述的成形品为弯月形状的眼镜透镜。
第二十方面提供一种成形品,其特征在于,第十九方面所述的成形品为中心对称的眼镜透镜。
根据第一~第六、第十六方面中任一方面的发明,测定由成形模成形的成形品的曲面形状,使该测定值近似于非球面式,将成形品的曲面特定为非球面。因此,在成形品的曲面形状中,不仅球面成分定量化,而且球面以外的成分也可使其近似于非球面的形式而进行定量化规定。因此,特定为非球面的成形品的曲面与该成形品的设计曲面之误差,将球面形状成分与球面形状以外的成分正确地计入,与该误差相对应的修正信息也成为正确的,从而,可对成形模的成形面进行高精度地修正,设计出该成形模。
另外,由于使成形品的曲面形状的测定值近似于非球面式,将所述成形品的曲面形状作为非球面进行定量化规定,因而,可排除测定值所包含的测量误差或成形品的曲面的表面粗糙度等干扰因素,而仅提取成形品的曲面的表面形状。从而,可使成形品的成形面的修正很容易的进行,设计出该成形模。
根据第七~第十方面中任一方面所述的发明,依据式(1)第一项(K=0)的标准球面成分,求出对成形模的成形面的整体形状进行修正的整体形状修正信息,以使其与成形品的曲面中的球面形状成分的误差(平均表面光焦度的误差)相对应。另外,依据所述式(1)第二项的多项式成分,求出对所述成形模的所述成形面的局部形状进行修正的局部形状修正信息,以使其与成形品的曲面中的球面形状以外的成分的误差相对应。这样一来,通过使整体形状修正信息和局部形状修正信息分离而独立求出,将成形品的误差(球面形状成分的误差和球面形状以外的成分的误差)高精度地反映给修正信息,从而可进行适当的修正,设计出所述成形模。
根据第十一或第十二方面所述的发明,使测定成形品的曲面形状的测定值近似于非球面式的式(2),将所述成形品的曲面特定。因此,与利用计算机难以处理的式(1)特定成形品的曲面的情况相比,可使其特定很容易地进行,并可迅速算出式(2)的系数B2n。因此,与成形品的变形(误差)相对应的修正信息很容易地算出,可对成形所要求形状的成形品的成形模很容易地进行设计。
根据第十三或第十四方面所述的发明,成形模的成形面上的标记转印于成形品的曲面上而形成的转印标记在成形品的曲面上位于应该测定的部位。因此,测定由成形模成形的成形品的曲面形状时,如果以所述转印标记为标准对所述成形品的曲面形状进行测定,则能够使成形品的曲面形状的测定正确地进行。其结果是,使该测定值近似于非球面式,将成形品的曲面作为非球面特定,算出修正信息,由此,可对成形模的成形面进行高精度的设计而设计成形模。
根据第十五方面所述的发明,边缘转印标记相对于成形品的曲面顶点,在中心对称的位置转印一对或多对而形成。因此,例如可使分别连接两对边缘转印标记的直线相互正交而形成。在该情况下,作为成形品测定复曲面透镜那样的光学透镜的曲面形状时,可以这些边缘转印标记为标准,在所要求的正交方向对该光学透镜的曲面形状进行正确的测定。其结果是,可根据测定值对使所要求形状的成形品成形的成形模进行设计。
根据第十七~第二十方面中任一方面所述的发明,当由成形模将成形品成形时,即使在该成形品变形的情况下,也能够对成形所要求形状的成形品的成形模进行高精度的设计,因此,可通过该成形模使所要求形状的成形品成形而得到。


图1是表示实施本发明的成形模的设计方法中的第一实施例而制作的具有上模和下模的成形模的侧剖面图;图2是表示图1的下模的侧剖面图;图3是表示采用了图1的成形模的光学透镜的(塑料透镜)的制造步骤的流程图;图4是表示图1的上模及下模的制造步骤的流程图;图5是表示由图1的成形模试验成形的成形品即光学透镜的成形曲面21及设计曲面20等的曲线图;图6是在该光学透镜的各位置表示由式(1)特定的光学透镜的成形曲面21中的多项式成分偏离图5的标准球面成分(曲面形状22)的偏差量的曲线图;图7是表示在图1的上模及下模的设计步骤中算出整体形状修正信息及局部形状修正信息等的概略图;图8是具体地表示图1的上模及下模的设计步骤的流程图;图9(A)是表示由图1的成形模转印而形成于光学透镜的曲面上的转印标记的正面图,(B)是表示图9(A)的顶点转印标记的部分放大图,(C)是表示图9(A)的周边部转印标记的部分放大图;图10是在该光学透镜的各位置表示作为成形品的光学透镜的成形曲面相对于设计曲面所具有的形状误差,其中(A)是采用通过第一实施例中的成形模的设计方法而设计的成形模成形的光学透镜的曲线图,(B)是在第一现有技术中通过利用平均曲率进行修正而设计的成形模成形的光学透镜的曲线图;图11是表示在本发明的成形模的设计方法中的第二实施例中采用的数据库化的局部形状修正信息的一部分的形状变化率的曲线图;图12(a)(b)是表示在本发明的成形模的设计方法中的第二实施例中采用的数据库化的整体形状修正信息的曲线图;图13是根据本发明的成形模的设计方法的第四实施例而设计的成形模的装配状态的剖面图;图14是第四实施例中的成形模的设计方法的说明图,是表示下模尺寸和坯料的关系的图。
符号说明10成形模11上模12下模16使用面(成形面)20设计曲面21成形曲面22、23曲面形状30光学透镜31曲面32转印标记33顶点转印标记34A、34B周边部转印标记A2i非球面系数B2i系数C顶点曲率R0设计顶点曲率半径R顶点曲率半径O顶点P光轴具体实施方式
下面,基于附图对本发明的优选实施例进行说明。
第一实施例(图1~图10)
图1是表示实施本发明的成形模的设计方法中的第一实施例而制作的,具有上模和下模的成形模的侧剖面图。图5是表示由图1的成形模试验成形的成形品的光学透镜的成形曲面及设计曲面等的曲线图。图7是表示在图1的上模及下模的设计步骤中,算出整体形状修正信息及局部形状修正信息等的概略图。
(透镜制作用成形铸模的结构说明)图1表示的成形模10是利用被称为铸造法的制造方法成形塑料制的球面透镜的模,其具有上模11、下模12及密封圈13而构成。上述上模11及下模12总称为透镜母模。
密封圈13由具有弹性的树脂形成圆筒形状,在内表面使上模11和下模12离开规定距离而保持液体密封。这些上模11、下模12及密封圈13围成空腔14。在密封圈13上一体设置有注入部15,该注入部15用于向该空腔14内注入作为光学透镜原料的单体。另外,密封圈13的高度设定为能确保作为成形品的光学透镜的周边部厚度的尺寸。
上模11及下模12由玻璃等构成。上模11形成为形成光学透镜的曲面(凸面)的凹面模。另外,下模12形成为形成光学透镜的曲面(凹面)的凸面模。在这些上模11及下模12中,也如图2所示,将形成光学透镜的透镜曲面的面称为使用面16,将不形成上述透镜曲面的面称为非使用面17。
(光学透镜的制造方法的说明)参照图3对利用上述成形模10的光学透镜的制造步骤进行说明。
首先,准备作为光学透镜原料的单体(S1)。该单体是热硬性树脂,在该树脂中添加催化剂和紫外线吸收剂等进行混合,用过滤器过滤(S2)。
其次,在密封圈13上组装上模11及下模12,完成成形模10(S3)。然后,在该成形模10的空腔14内,注入如上述的混合后的单体,在电炉内加热,使其聚合硬化(S4)。在成形模10内单体聚合结束,由此,塑料制光学透镜成形,并使该光学透镜从成形模10中脱模(S5)。
光学透镜脱模后,为了消除由聚合产生的透镜内部的变形,实施被称为退火的热处理(S6)。然后,对光学透镜实施作为中间检查的外观检查及投影检查。
光学透镜在此阶段分为完成品和半成品(未完成品),对半成品根据处方研磨第二面。对完成品来说,接着实施用于得到彩色制品的染色工艺、对损伤进行强化的强化涂层工艺、防止反射用的防止反射涂层工艺(S7)、最终检查(S8)。完成品在该最终检查后成为产品(S9)。
下面,参照图4对在上述光学透镜的制造工艺中使用的成形模10的上模11及下模12的制造工序进行说明。
上模11及下模12通过对进行了压力加工的厚的玻璃坯料的两面进行加工而得到,因此,首先准备该玻璃坯料(S11)。
通过对该玻璃坯料进行加工,除去玻璃坯料的压力面的表面缺陷层,将使用面16及非使用面17制成规定精度的曲率半径,同时,得到细微且粗糙度均匀的高精度的使用面16及非使用面17。玻璃坯料的上述加工通过磨削及研磨进行。
就磨削工艺而言,具体地说,是在进行NC控制的自由曲面磨削装置上使用金刚石轮,将玻璃坯料的两面(使用面16及非使用面17)磨成规定的曲率半径(S12)。通过该磨削由玻璃坯料形成上模11及下模12。
研磨工艺是使用在橡胶制的中空碟上粘贴聚氨脂或毛毡的研磨皿,以氧化铈、氧化锆等细微粒子为研磨剂,对通过磨削形成的上模11及下模12的两面进行研磨(S13)。通过该研磨工艺,将磨削工艺中产生的上模11及下模12各自的使用面16及非使用面17的表面凸凹除去而使之透明(除去划伤)。然后,再使该使用面16及非使用面17有效的加工到足够的表面精度。
在该研磨工艺后,检查上模11及下模12(S14),在使用面16上给成为设计模型的基准位置的暗标记划线(S15)。设计模型是表示光学透镜的光学方面设计的,是将圆形的光学透镜装入眼镜框时使用的。该设计模型在光学透镜的表面被做上可以擦掉的记号。
在暗标记划线后,对上模11及下模12进行科学的玻璃强化处理工艺(S16),完成上模11及下模12(S17)。该上模11及下模12由于是按照光学透镜的处方的光焦度制作的,所以,与密封圈13同时配套需要很多种类。
(模型设计方法的说明)下面,参照图5及图7,对如上述制造的成形模10中的上模11及下模12的设计步骤进行说明。
首先,准备使作为成形品的光学透镜试验成形的成形模10。应该成形的上述光学透镜,其曲面是球面形状的球面透镜。因此,成形模10的上模11及下模12中的成形面即使用面16也形成球面形状。在这种情况下,上模11及下模12的使用面16曲率半径与光学透镜的曲面的设定值(例如,透镜顶点光焦度的曲率半径即设计顶点曲率半径R0)相等而形成。另外,将具有设计顶点曲率半径R0的光学透镜曲面称为设计曲面20(图5)。
其次,利用具备上述的上模11及下模12的成形模10,进行成形试验,在成形模10内注入单体,进行加热聚合,使作为试验成形品的光学透镜成形。该试验成形的光学透镜的曲面形状,由于单体的热收缩等原因形不成球面形状。本发明者专心研究的结果发现,成形后的形状变化产生的误差量的主要成分不能以下述的式(1)表示的非球面式近似。即,试验成形的光学透镜的曲面形状成形为包含非球面形状的球面以外的形状。因此,以后述的转印标记32(图9)为基准,利用形状测定器,对该成形的光学透镜的表面曲面形状进行测定(图7的S21)。然后,利用最小二乘法使该测定值使其近似非球面式,将试验成形的光学透镜的曲面作为非球面进行定量化而特定下来。
设Z为从顶点O沿光轴P方向测定的距离,X、Y为由上述顶点O沿与上述光轴P垂直的方向测定的距离时,ρ为ρ2=X2+Y2;设R为顶点曲率半径时,顶点曲率C为C=1/R;设K为圆锥常数、A2i为非球面系数(i为整数)时,上述非球面式为表示旋转对称的非球面形状的下式(1)。该式(1)亦被称为斯潘塞(スペンサ一)式。
数4Z=Cp21+1-(1+K)C2p2+Σi=2nA2ip2i---(1)]]>但是,在实际中,为了使计算容易进行,利用将上述式(1)变形后的下式(2),利用最小二乘法使上述测定值近似于式(2),进行定量化设定,算出该式(2)的系数B2i(包含式(1)的顶点曲率C及非球面系数A2i的系数)。在此,系数B2i中的i为整数。
数5Z=Σi=1nB2ip2i---(2)]]>由该式(1)向式(2)的变形如下进行。即,设Q=1+K(K为常数),对式(1)的第一项进行有理化,则有数6
将平方根部分进行级数展开,则有数71-QC2p2=1-QC2p22-Q2C4p48-Q3C6p616-5Q4C8p8128-7Q5C10P10256-•••]]>将其代入式(a),则有数8 将其代入式(1)作为ρ的多项式进行汇总整理,则上述式(1)可由以下的式(2)表示数9Z=(C2)p2+(QC38+A4)p4+(Q2C316+A6)p6+(5Q3C7128+A8)p8+•••---(2)]]>=Σi=1nB2ip2i]]>其中,数10B2=(C2),]]>B4=(QC38+A4),]]>B6=(Q5C516+A6),]]>B8=(5Q3C7128+A8)(b)]]>如上所述,利用上述式(b),通过使试验成形的光学透镜的曲面形状的测定值逼近式(2)算出系数B2i,再由上述式(b)计算式(1)的顶点曲率C及非球面系数A2i。由此,通过式(1)对试验成形的光学透镜的曲面形状进行定量化设定。但是,也可以使试验成形的光学透镜的曲面形状的测定值直接逼近式(1)而进行定量化设定,来求出该式(1)的顶点曲率C及非球面系数A2i。在任何情况下,当根据式(1)进行定量化时,都可以设圆锥常数K为K=0(即Q=1),将式(1)的第一项作为表示球面式而求出顶点曲率C,设i=2、3、4、5,算出非球面系数A4、A6、A8、A10。
将根据该式(1)设定的试验成形的光学透镜的曲面形状在图5中表示为成形曲面21。该成形曲面21为非球面形状。另外,在该图5中,符号22表示由式(1)定量化设定的光学透镜的成形曲面21中的,式(1)的第一项(K=0)的标准球面成分的曲面形状。该曲面形状22表示以式(1)的顶点曲率C的倒数即顶点曲率半径R(R=1/C)为曲率半径的球面(标准球面)。
另外,图5中的ZN表示由式(1)定量化设定的光学透镜的成形曲面21中的球面形状以外的成分,表示式(1)的第二项的多项式成分。该ZN表示的上述多项式成分如图6中的符号23所示,相对于式(1)第一项的标准球面成分成为误差成分。
其次,对试验成形并由式(1)定量化设定的光学透镜的数据进行解析(图7中的S22)。在该数据解析中,使用式(1)的顶点曲率C(顶点曲率半径R)及非球面系数A4、A6、A8、A10。例如,将光学透镜的设计曲面20的设计顶点曲率半径R0设为R0=532.680mm时,使用面16由形成于上述设计曲面20上的具有上模11及下模12的成形模10成形,由式(1)进行定量化设定的光学透镜的成形曲面21的顶点曲率半径R(=1/C)设定为R=489.001mm,另外,非球面系数A4、A6、A8、A10如表1所示而设定。这些顶点曲率半径R及非球面系数A4、A6、A8、A10在数据解析中使用。
表1

(模型设计方法误差在球面及非球面成分中的分离)在该数据解析中,使将试验成形的光学透镜定量化设定的式(1)的第一项的标准球面成分和式(1)的第二项的多项式成分分离,进行独立处理。
但是,现有技术是将形状误差的球面成分及非球面成分作为一体进行修正的。因此,形状误差的修正系数在球面成分和非球面成分中都适用同一系数。不过,后述的各透镜形状的修正数值在形状误差的球面成分和非球面成分中,每个形状是全然不同的。例如,图12(b)是形状误差的球面成分的凹面侧的修正数值。该图12(b)表示的情况是除一部分形状外,即使透镜的表面形状发生变化,凹面侧的球面成分修正值也是一定的。另外,图12(a)是形状误差的球面成分在凸面侧的修正数值。该图12(a)所示的修正数值表示凸面侧形状在光焦度4D以上时是一定的。即,整体形状修正值表示在光焦度4D以上时,在凹凸两面形状误差的修正数值是一定的。另外,形状误差的非球面成分表示所有的光焦度不同的值,在形状误差及其修正值和成形品的形状上都是一样的。
但是,在现有技术中,形状误差的球面成分和非球面成分是一体修正的。因此,在所有的形状中要变更修正值。但是,即使对本来可以不变更的光焦度4D以上的透镜形状的形状误差球面成分而言,为了按规定变更而进行修正,也使修正值的确定更复杂化。结果是,所有的每个成形模都进行足够的反复试验,来确定适当的修正值。本实施例使形状误差的球面成分和非球面成分分离,独立的求出修正信息,由此进行适当的修正而可以很容易的设计成形模。
即,利用式(1)第一项(K=0)即标准球面成分(图5的曲面形状22所表示的形状),将试验成形,通过式(1)定量化设定的光学透镜的成形曲面21(图5)和该光学透镜的设计曲面20之误差中的球面形状成分的误差所对应的信息算出。将该信息作为整体形状修正信息(图7中的S23)。该整体形状修正信息对成形模10的上模11及下模12中的使用面16的整体形状进行修正,消除上述球面形状成分的误差。
具体地说,将使成形的光学透镜定量化而设定的式(1)的第一项(K=0)即标准球面成分所表示的曲面形状22(标准球面)的顶点曲率半径R和光学透镜的设计曲面20中的设计顶点曲率半径R0在Z方向上的差H算出,作为成形的光学透镜的成形曲面21上的球面形状成分的误差。将该差H确定为整体形状修正信息。该整体形状修正信息就是成形的光学透镜为了得到所要求的光焦度而需要的修正信息。
将成形的光学透镜定量化而设定的式(1)的第一项(K=0)的标准球面成分所表示的曲面形状22(标准球面)的顶点曲率半径R和光学透镜的设计曲面20中的设计顶点曲率半径R0,由于原料的收缩率不同而不同。而且,其收缩率在每种原料都不同。这些顶点曲率半径R与设计顶点曲率半径R0之差如果是通过后述的式(3)的面光焦度换算为2D以下,优选为1D以下的话,则通过利用上述的整体形状修正信息和后述的局部形状修正信息,可将成形品(光学透镜)的成形曲面做成所要求的形状。
另外,利用式(1)第二项的多项式成分(图5的ZN表示),将试验成形,通过式(1)定量化设定的光学透镜的成形曲面21和该光学透镜的设计曲面20之误差中的球面形状以外的成分的误差所对应的信息算出。将该信息作为局部形状修正信息(图7中的S24)。该局部形状修正信息对成形模10的上模11及下模12中的使用面16的局部形状进行修正,即,对使用面16进行局部修正,消除上述球面形状以外的成分的误差。
具体地说,利用将成形的光学透镜定量化而设定的式(1)的第二项的多项式成分表示的该光学透镜的成形曲面21(图5)中的球面形状以外的成分的高度(Z值)ZN,和光学透镜的设计曲面20中的高度(Z值)ZM,算出形状变化率。该形状变化率在离开试验成形的光学透镜的顶点的各位置通过设定形状变化率=ZN/ZM而算出。局部形状修正信息在离开光学透镜顶点的各位置,根据该位置的形状变化率乘以该位置的光学透镜的设计曲面20的高度ZM所得之值而算出确定。
在此,上述高度ZN在式(1)第一项(K=0)的标准球面成分所表示的曲面形状22(标准球面)和成形后由式(1)设定的光学透镜的成形曲面21上,以距光学透镜的顶点为同一位置的各自的高度(Z值)之差来表示。
最后,利用如上述那样算出的局部形状修正信息和整体形状修正信息,对成形模10中的上模11及下模12的使用面16进行修正设计(图7中的S25)。
即,首先,在Z方向上对形成于光学透镜的设计曲面20上的上模11及下模12的使用面16上的离开透镜顶点各位置的设计值,与该各位置相对应的局部形状修正信息进行加法运算。由此,消除成形的光学透镜的成形曲面21中的球面形状以外的成分的误差。其次,在Z方向上对加上局部形状修正信息后的上模11及下模12的使用面16的整个面的设计值与整体形状修正信息(差H)进行加法运算。由此,消除成形的光学透镜的成形曲面21的球面形状成分的误差。这样,对上模11及下模12的使用面16的设计值进行修正来设计该使用面16。
另外,上述整体形状修正信息的加法运算也可以只对下模12的使用面16的设计值进行。其理由是,因为下模12在各种光学透镜中是通用的,应该修正的使用面16的数量比上模11少的缘故。另外,其理由还在于,改变由下模12的使用面16成形的光学透镜的曲面(凹面)的曲率半径,对该光学透镜的曲面(凸面)的影响一般认为是均匀作用的。
参照图8,对如上述修正上模11及下模12的使用面16而进行设计的设计步骤进一步说明。
上模11及下模12的使用面16由于必须大于成形的光学透镜的尺寸,所以,使光学透镜的曲面的设计值增大而算出使用面16的设计值(S31)。根据算出的该设计值来制作上模11及下模12,以使使用面16与光学透镜的设计曲面(设计顶点曲率半径R0)相等,并组装成形模10(S32)。
其次,在组装后的成形模10内注入单体,试验成形光学透镜,以后述的转印标记32(图9)为基准,利用形状测定器对作为成形品的光学透镜的曲面形状进行测定(S33)。在本实施例中,该形状测定器例如主要是使用テ一ラ一ホブソン公司制造的外形粗糙度检查仪,也可使用非接触式的三维测定器(例如松下电器公司制造的UA3P等)等,并不特别限定测定装置。外形粗糙度检查仪在测定元件的前端配置红宝石或金刚石,使测定元件的前端在透镜表面上接触式移动,对透镜表面进行扫描来测定表面形状,其测定轨迹通常只有直线。另一方面,三维测定器是通过分子间作用力,距测定面微量上浮一定距离,以扫描表面的方式进行的。
其次,利用最小二乘法使试验成形的光学透镜的上述测定值近似于式(2),对成形的光学透镜的曲面形状进行定量化设定,算出系数B2i。进而,利用式(b)由该系数B2i算出式(1)(K=0)的顶点曲率C及非球面系数A4、A6、A8、A10,通过式(1)(K=0)对成形的光学透镜的曲面形状进行定量化设定。
然后,利用上述顶点曲率C及非球面系数A4、A6、A8、A10,对成形而由式(1)定量化的光学透镜的数据进行解析(S34)。此时,将式(1)的第一项(K=0)和第二项分离独立进行处理,由第一项(K=0)算出整体形状修正信息(S35),由第二项算出局部形状修正信息(S36)。
其次,将算出的局部形状修正信息和整体形状修正信息加到形成于光学透镜的设计曲面(设计顶点曲率半径R0)上的上模11及下模12的各自的使用面16的设计值上,对该使用面16进行修正设计(S37)。
再次,进行上模11及下模12的非使用面17的设计(S38)。然后,根据上模11及下模12的使用面16及非使用面17的设计值作成加工机械用的数据(S39)。接着,选择玻璃坯料,通过磨削加工机及研磨加工机来制作成形模10的上模11及下模12(S40)。
(本实施例与现有技术的成形品精度的比较)
对由本实施例形成的成形品的形状精度进行说明。
由如上述那样制作的具有上模11及下模12的成形模10成形的光学透镜,其曲面形成所要求的球面形状。例如,图10(A)是在不同的直径方向(在图中为正交的两个方向)上对本实施例形成的成形品的曲面进行测定时的形状误差测定结果。另外,图10(B)是在不同的直径方向(在图中为正交的两个方向)上对由上述第一现有技术形成的成形品的曲面进行测定时的形状误差测定结果。图10(A)及图10(B)都是通过成形模10使面光焦度为5.00D(屈光度)的光学透镜成形的成形品的测定结果。图10中,其横轴为距透镜中心(顶点)的距离(mm),曲线图中央部的0表示光学透镜中心。另外,纵轴表示光焦度误差量,0.00D表示没有误差。根据图10,对利用本实施例和第一现有技术而成形的成形品的形状误差进行详细说明。
首先,对透镜中央部进行说明。透镜中央部作为光学中心使用频率高,是特别重要的。光学中心部的误差量显著不同,在本实施例(图10(A))中误差量为0.06D,与此相对,在第一现有技术(图10(B))中,误差量为0.18D。由此可知,本实施例与上述现有技术相比,精度提高3倍。
然后,对透镜中央部以外的周边部进行说明。在该周边部,在不同的直径方向(在图中为正交的两个方向)上测定成形的光学透镜的曲面时的相对于光学透镜的设计曲面的形状误差,由本实施例形成的成形品在透镜各部的任何位置都小。对一般的眼镜框使用的眼镜透镜的外径50mm附近的形状误差进行比较,在本实施例中误差量为0.02D,而在第一现有技术中为0.04D。由此可知,本实施例与上述现有技术相比精度提高2倍。
另外,本实施例的误差量与第一现有技术相比,从透镜中心部到周边部其误差的变化量小而且平缓。因此,还有即使通过眼球回旋使视线位置由中心部向周边部移动也很少有不舒适感之效果。
由这些结果可知,由根据本实施例的设计方法而设计的成形模10成形的光学透镜,形成与设计曲面大致相同的形状。另外还知道,由第一现有技术的成形模成形的光学透镜,形成与设计曲面偏离很多的形状。
在此,图10(A)及图10(B)中的纵轴表示光焦度误差(单位D(屈光度))。该光焦度误差通过下式(3)将表示光学透镜的曲面形状的曲率半径r(单位m)的误差换算为该光学透镜的上述曲面的面光焦度P(单位D(屈光度))的误差。
P=(n-1)/r (3)在该式(3)中,n为光学透镜的折射率。另外,在具有凸面和凹面的弯月形状的光学透镜中,凸面和凹面的各自面光焦度之和表示该光学透镜的光焦度。
(表面形状测定的说明)下面,在图7的步骤21及图8的步骤33中,对测定试验成形的光学透镜的曲面形状时作为基准的转印标记32(图9(A))进行说明。该转印标记32是将形成于成形模的上模11及下模12中的使用面16上的标记(不图示)转印于试验成形的光学透镜30的曲面31上而形成的。
进而,从图9(B)、图9(C)可知,该转印标记32具有顶点转印标记部33、周边转印标记部34A及34B,其中,顶点转印标记部33形成于光学透镜30的曲面31上的顶点O部分,周边转印标记部34A及34B在上述曲面31的周边部相对于上述顶点O中心对称的位置形成一对。另外,上述顶点转印标记部33具有形成于曲面31的顶点O处的主顶点转印标记部35和距该主顶点转印标记部35相隔规定距离而放射,相互正交形成的副顶点转印标记部36。
例如,主顶点转印标记部35为直径约0.5mm的圆形凸部。另外,周边转印标记部34A及34B是直径约1mm的圆形凸部。另外,副顶点转印标记部36是长度约2mm,位于同一直线上的副顶点转印标记部36彼此的间隔距离T约为1mm,这些副顶点转印标记部36的宽度尺寸为数10μm的长方形的凸部。
在上模11及下模12的使用面16上,在与上述主顶点转印标记部35、副顶点转印标记部36、周边转印标记部34A及34B相对应的位置,形成相对应尺寸的凹部形状的标记(不图示)。由此,上述顶点转印标记部33(主顶点转印标记部35、副顶点转印标记部36)、周边转印标记部34A及34B转印于光学透镜30的曲面31上而形成。对周边转印标记部34A及34B进行转印的标记,直径约1mm,切削加工至数μm的深度。另外,对主顶点转印标记部35进行转印的标记,直径约0.5mm,切削加工至约0.5μm以下的深度。另外,对副顶点转印标记部36进行转印的标记,宽度为数10μm,划线加工至数μm以下的深度而形成。
在光学透镜30的曲面31上转印形成的顶点转印标记部33(特别是主顶点转印标记部35)、周边转印标记部34A及34B,位于通过曲面31的顶点O的同一直线L1上。对光学透镜30的曲面31的形状进行测定的形状测定器,沿着上述直线L1,顺次通过周边转印标记部34A、顶点转印标记部33、周边转印标记部34B,对上述曲面31的形状进行测定,由此,可对该曲面31的形状进行正确的测定。因此,顶点转印标记部33(特别是主顶点转印标记部35)、周边转印标记部34A及34B就位于对光学透镜30的曲面31应该测定的部位。
形状测定器沿着直线L1,依次通过周边转印标记部34A、顶点转印标记部33、周边转印标记部34B,对光学透镜30的曲面31进行测定,此时,由于顶点转印标记部33、周边转印标记部34A及34B具有极端的形状变化,所以,作为很大的干扰因素来测定。由此明确,在对这些顶点转印标记部33、周边转印标记部34A及34B的干扰因素不进行测定的情况下,就不能使由形状测定器进行的光学透镜30的曲面31上的形状测定正确地实施。在这种情况下可做如下处理对光学透镜30相对于形状测定器的位置进行调整,使形状测定器依次通过周边转印标记部34A、顶点转印标记部33及周边转印标记部34B进行测定。
另外,顶点转印标记部33、周边转印标记部34A及34B引起的上述测定值中的大的干扰因素,对附近的测定值不产生影响而被除掉是很容易做到的。然后,如上述那样,利用最小二乘法使上述测定值近似于非球面的式(1)或者式(2),因此,测定值的干扰影响全无。另外,顶点转印标记部33、周边转印标记部34A及34B的测量误差,由于周边转印标记部34A及34B为直径约1mm的圆形,所以,相对于该周边转印标记部34A及34B而言,约为0.5mm以内。另外,由于顶点转印标记部33的主顶点转印标记部35为直径约0.5mm的圆形,所以,相对于该主顶点转印标记部35而言,为约0.25mm以内。
另外,周边转印标记部34A及34B不限于相对光学透镜30的曲面31的顶点O中心对称设计一对的情况,也可设置多对。例如,相对于包含周边转印标记部34A及34B的直线L1,也可在旋转规定角度(例如90度)的直线L2上,使其他的周边转印标记部34A及34B与直线L1上的周边转印标记部34A及34B一起转印一对而形成。形状测定器沿着上述直线L1及L2,在不同的直径方向上对光学透镜30的曲面31进行测定,因此,可在正交的两轴向上对例如复曲面透镜等光学透镜30的曲面31进行测定。
进而,也可在光学透镜30的曲面31上,沿任意方向设置转印标记32,在该方向上,通过形状测定器对曲面31的曲面形状进行测定。
(第一实施例的效果)根据上述实施例,通过以上构成实现如下效果(1)~(5)。
(1)对由具备上模11及下模12的成形模10成形的光学透镜的曲面形状进行测定,使该测定值近似于非球面式的式(1),将光学透镜的曲面特定为非球面。因此,在成形的光学透镜的曲面形状中,不仅球面成分而且球面以外的成分也可逼近非球面式的式(1)而进行定量化设定。因此,由非球面特定的光学透镜的曲面与该光学透镜的设计曲面之误差,将球面形状成分和球面成分以外的成分正确的计入。其结果,与上述误差相对应的修正信息也正确形成,对成形模10的上模11及下模12的使用面16进行高精度的修正,从而,可对上模11及下模12进行设计。
(2)使成形的光学透镜的曲面形状的测定值近似于非球面式的式(1),将上述光学透镜的曲面形状作为非球面进行定量化设定。因此,可将测定值所包含的测量误差或光学透镜的曲面的表面粗糙度等干扰因素排除掉,而只提取光学透镜的曲面的测定值。因此,可使成形模10的上模11及下模12的使用面16的修正高精度地进行,对上模11及下模12进行设计。
(3)为了与成形的光学透镜的曲面的球面形状成分的误差(平均表面光焦度的误差)相对应,根据式(1)的第一项(K=0)的标准球面成分,求出对成形模10的上模11及下模12的使用面16的整体形状进行修正的整体形状修正信息。另外,为了与成形的光学透镜的曲面的球面形状以外的成分的误差相对应,根据式(1)的第二项的多项式成分,求出对上述上模11及下模12的使用面16的局部形状进行修正的局部形状修正信息。这样一来,使整体形状修正信息和局部形状修正信息分离而独立求出,由此,可将光学透镜的误差(球面形状成分的误差和球面形状以外的成分的误差)高精度地反映给修正信息而进行适当的修正,从而可对上模11及下模12进行设计。
(4)使对成形的光学透镜的曲面形状进行测定的测定值近似于非球面式的式(2),特定上述光学透镜的曲面。因此,与利用计算机不易处理的式(1)将光学透镜的曲面特定的情况相比,可容易地计算而将其特定实施,可迅速地算出式(2)的系数B2i。因此,可很容易地算出光学透镜的变形(误差)所对应的修正信息,且可很容易地设计使所要求形状的光学透镜成形的成形模10的上模11及下模12。
(5)在图9所示的光学透镜30的曲面31上,转印设置于成形模10的上模11及下模12的使用面16上的标记(不图示),形成转印标记32(顶点转印标记部33、周边转印标记部34A及34B)。该转印标记32在光学透镜30的曲面31上位于应该测定的部位。当对由成形模10成形的光学透镜的曲面形状进行测定时,以位于应该测定的部位的上述转印标记32为基准,对上述光学透镜30的曲面31的形状进行测定。由此,可使光学透镜30的曲面形状的测定正确地进行。其结果是,可使测定值近似于非球面式的式(1)或式(2),将光学透镜的曲面特定为非球面,算出修正信息,可对成形模10的上模11及下模12的使用面16进行高精度的设计。
第二实施例(图11、图12)(修正信息的数据库化的说明)图11是表示在本发明所涉及的成形模的设计方法中的第二实施例中采用的数据库化的局部形状修正信息的一部分即形状变化率的曲线图。图12是表示在本发明所涉及的成形模的设计方法中的第二实施例中采用的数据库化的整体形状修正信息的曲线图。在第二实施例中,与上述第一实施例相同的部分使用同一符号及名称,因此省略其说明。
该第二实施例相对于上述第一实施例在如下方面不同。在图8中,对所有种类的成形模预先实施步骤S31~S40。此时,将各修正信息作成数据库。数据库作成后不进行步骤S31~S34,而进行步骤S35~S40。
即,第一实施例就光学透镜的透镜原料及设计曲面形状,试验成形一种光学透镜,求出修正信息(整体形状修正信息、局部形状修正信息)。直接利用该修正信息,对成形模10的上模11及下模12进行修正设计。
与此相对,第二实施例是,使作为光学透镜特性的光学透镜的透镜原料及设计曲面形状不同的多种光学透镜分别预先试验成形,使此时得到的修正信息在每个光学透镜的特性中都进行数据库化。数据库作成后,无需再次试验成形或只通过简易的试验成形,利用该数据库化的修正信息,对用于大量生产各种光学透镜的成形模10的上模11及下模12的使用面16的设计值进行修正设计。
即,在该第二实施例中,就折射率不同的多种透镜原料中的每一种,对使设计曲面的形状不同的多种光学透镜各自成形的多个成形模10的上模11及下模12的使用面16进行设计。利用该设计的多个成形模10,试验成形光学透镜,对成形的每个光学透镜测定其曲面形状。然后,与上述实施例同样,使上述测定值逼近式(2),将各光学透镜的曲面形状定量化。此时,由算出的系数B2i求出顶点曲率C及非球面系数A2i(非球面系数A4、A6、A8、A10),使成形的光学透镜的每个曲面形状定量化特定为式(1)。
然后,与上述实施例同样,对成形并由式(1)特定的光学透镜的各个曲面形状进行数据解析。而后,由各自的式(1)第一项(K=0)求出整体形状修正信息,由各自的式(1)第二项求出局部形状修正信息的一部分的形状变化率曲线。
在图11中,在离开光学透镜的透镜顶点的各位置,表示使设计曲面的形状不同的多个光学透镜成形时该成形的各光学透镜的形状变化率曲线。在这种情况下,光学透镜的透镜原料其折射率为1.699。在图11中,其横轴表示距透镜中心的距离(mm),曲线图中央部的0表示光学透镜中心。另外,图11的纵轴表示形状变化率,0%表示无形状变化、不需要修正。
在该图11中,如作为一例所示,对折射率不同的每种透镜原料及每个光学透镜的设计曲面形状都算出成形的光学透镜的形状变化率曲线,进行数据库化处理。图11的符号a、b、c、d、e表示光学透镜的设计曲面形状(曲率半径)分别为相当于+2.00D的形状、相当于0.00D的形状、相当于-2.00D的形状、相当于-6.00的形状、相当于-10.00D的形状时的形状变化率曲线。
图12的横轴为表示透镜形状的面光焦度(D),横轴上的数值1表示曲率半径大、弯曲值小的透镜形状,横轴上的数值6表示曲率半径小、弯曲值大的透镜形状。另外,纵轴为整体形状修正值,0D表示无形状变化、不需要修正。
图12表示使光学透镜的设计曲面的形状不同的多个光学透镜成形时、该成形的光学透镜的整体形状修正信息和光学透镜的设计曲面的形状之间的关系,在凸面侧用曲线α表示、在凹面侧用曲线β表示。这时,光学透镜其透镜原料为折射率1.699,是具有凸面及凹面的弯月形状的眼镜用透镜。如在该图12中作为一例所示那样,对折射率不同的每种透镜原料及光学透镜的每个设计曲面形状都算出成形的光学透镜的整体形状修正信息,进行数据库化处理。
另外,在图11及图12中,光学透镜的设计曲面的形状(曲率半径),利用上述的式(3)换算为面光焦度(单位D(屈光度))来表示。
对透镜原料及设计曲面的形状不同的光学透镜进行大量生产的情况进行说明。首先,从如上述的数据库化的光学透镜的形状变化率曲线中,将与要大量生产的光学透镜相同的透镜原料(折射率相同)及相同的设计曲面形状的光学透镜所相关的形状变化率曲线取出。然后,将距该形状变化率曲线的透镜顶点为任意位置的值乘以相符合位置的光学透镜的设计曲面的高度(Z值),算出该位置的局部形状修正信息。在光学透镜的所有位置算出该局部形状修正信息。具体的说就是,在折射率为1.669、曲面形状为相当-6.00D的情况下,选择图11的形状变化率曲线d。然后,乘以对应的透镜设计曲面高度(Z值),在光学透镜的所有位置确定局部修正信息。同样地,如果曲面形状为-10.00D相当,则选择图11的形状变化率曲线e。
可是,图11表示即使透镜原料相同曲面形状也会发生变化时、形状变化率曲线也动态地变化。而且,曲面形状值-2.00D(图11的曲线c)与曲面形状值-6.00D(图11的曲线d)相比形状变化率小,形状变化率与曲率形状的弯曲值成正比例。但是,曲面形状值-1.00D(图11的曲线e)与曲面形状值-2.00D(图11的曲线c)相比,形状变化率小且成反比例。由此可知,透镜的复杂的形状变化表示复杂的形式,在现有技术中难以进行适当的修正。
其次,从数据库化的光学透镜的整体形状修正信息中,将与要大量生产的光学透镜相同的透镜原料(折射率相同)及相同的设计曲面形状的光学透镜所相关的整体形状修正信息取出。
可是,图12显示,即使透镜原料相同曲面形状也会变化时,整体形状修正值也发生不合常规的变化。例如,在凸面中,面光焦度从0变化到3D,整体形状修正值与面光焦度成正比例。另一方面,面屈光度大于4D后,整体形状修正值为-0.05D并保持不变。另外,在凹面侧,除一部分光焦度外,整体形状修正值保持一定。由此可知,透镜那样的复杂形状的形状变化在目前现状下是不可预测的,在现有技术中难以进行适当的修正。
成形模10的上模11及下模12中的使用面16设计为要大量生产的光学透镜的设计曲面。在大量生产光学透镜的情况下,在上述使用面16的设计值上,分别在Z方向上相加如上述根据从数据库中取出的形状变化率曲线而算出的局部形状修正信息和从数据库中取出的整体形状修正信息进行运算。由此,对用于使该要大量生产的光学透镜成形的成型模10的上模11及下模12中的使用面16的设计值进行修正而算出,对该成形模10的上模11及下模12进行设计。
(第二实施例的效果)通过如上述那样构成,在上述第二实施例中,除实现与上述第一实施例中的效果(1)~(5)相同的效果外,还实现以下效果(6)。
(6)使整体形状修正信息和局部形状修正信息的一部分的形状变化率曲线分离而进行独立,对光学透镜的透镜原料及设计曲面的每一种形状进行数据库化处理,利用该数据库化的各修正信息等,对成形模10的上模11及下模12中的使用面16的设计值进行修正设计。因此,通过将光学透镜的透镜原料及与设计曲面的形状相符合的整体形状修正信息和局部形状修正信息(正确地说,是作为局部形状修正信息的一部分的形状变化率曲线)从数据库中取出来,无需进行试验成形,即可在短时间内确定成形模10的上模11及下模12中的使用面16的设计值的修正信息等。其结果是,可对成形模10的上模11及下模12的使用面16进行高效的设计。
第三实施例(基于球面修正值的非球面形状修正方法的说明)该第三实施例是利用在上述第二实施例中数据库化的用于使曲面呈球面形状的成形品(光学透镜)成形的修正信息(整体形状修正信息、作为局部形状修正信息一部分的形状变化率),对使曲面呈非球面形状的成形品(光学透镜)成形的成形模的上模及下模中的成形面即使用面的设计值进行修正设计。
关于对使曲面呈球面形状的光学透镜成形的整体形状修正信息及作为局部形状修正信息一部分的形状变化率,在设计曲面具有球面形状的每个光学透镜的特性中都进行数据库化处理的方法,与上述第二实施例是相同的,故省略说明。在此,上述光学透镜的特性是曲面呈球面形状的该光学透镜的透镜原料及具有球面形状的设计曲面的形状。
使曲面呈非球面形状的光学透镜成形的成形模的上模及下模中的使用面的设计,首先从将适合于具有非球面形状的光学透镜的数据库化的整体形状修正信息和作为局部形状修正信息一部分的形状变化率取出开始。
即,要成形的曲面是与非球面形状的光学透镜相同的透镜原料,将关于具备球面形状的设计曲面的光学透镜的,数据库化的整体形状修正信息和作为局部形状修正信息一部分的形状变化率从该数据库中取出来,在此,上述球面形状的设计曲面具有该光学透镜的非球面形状的设计曲面的顶点曲率半径或与平均曲率半径一致的曲率半径。在此,上述顶点曲率半径例如是要成形的光学透镜的非球面形状的设计曲面上的顶点处的曲率半径。另外,上述平均曲率半径是指要成形的光学透镜的非球面形状的设计曲面上的整个透镜表面的平均曲率半径。
(基于球面修正值的非球面形状修正方法算出源于数据库的修正值)例如,对要成形的曲面是非球面形状的光学透镜的设计曲面的顶点处的曲率半径为+2.00D(屈光度)的情况进行考虑。首先,关于与要成形的光学透镜相同的透镜原料,具有与上述顶点曲率半径一致的曲率半径的,具备球面形状的设计曲面的光学透镜,参照相符合的数据库。例如,根据图12所示的整体形状修正信息,在凸面侧,在横轴的“表示凸面侧透镜形状的光焦度”的2D处,将曲线α上相符合的整体形状修正值-0.100D作为整体形状修正信息取出。另一方面,在凹面侧,在横轴的“表示凹面侧透镜形状的光焦度”的2D处,将曲线β上相符合的整体形状修正值-0.125D取出。同样地,从数据库化的,例如图11所示的作为局部形状修正信息一部分的形状变化率中,将曲线a作为形状变化率取出。
其次,在取出的形状变化率中的距透镜顶点的任意位置的值上,乘以相符合位置的光学透镜的非球面形状的设计曲面的高度(Z值),算出该位置的局部形状修正信息。然后,在曲面呈非球面形状的光学透镜的所有位置算出该局部形状修正信息。
(基于球面修正值的非球面形状修正方法修正值的加法运算方法)其次,在要成形的光学透镜的非球面形状的设计曲面上设计的成形模的上模及下模中的使用面的设计值上,在Z方向上相加根据如上述从数据库中取出的形状变化率而算出的局部形状修正信息和从数据库中取出的整体形状修正信息进行运算。
例如,就局部形状修正信息来说,将在曲面呈非球面形状的光学透镜的各位置算出的局部形状修正信息沿Z方向相加到设计于非球面形状的设计曲面上的上述上模及下模的使用面的各位置的设计值上进行运算。另外,就整体形状修正信息来说,将从数据库中取出的整体形状修正信息沿Z方向相加到设计于非球面形状的设计值上的上述上模及下模的使用面上的例如顶点的设计值上进行运算。
如上述那样,对使曲面呈非球面形状的光学透镜成形的成形模的上模及下模的使用面的设计值进行修正而算出,从而,对该成形模的上模及下模进行设计。
(第三实施例的效果)根据以上构成,在上述第三实施例中,除了实现上述第一实施例的效果(1)~(5)之外,还实现以下效果(7)。
(7)将由非球面式特定的上述光学透镜的曲面与该光学透镜的球面形状的设计曲面之间的误差相对应的信息,作为用于成形曲面呈球面形状的光学透镜的修正信息,对该光学透镜的每个特性进行数据库化处理。然后,使用该数据库化的修正信息,对使曲面呈非球面形状的光学透镜成形的成形模的上模及下模的使用面的设计值进行修正设计。因此,通过将适于具有非球面形状的曲面的光学透镜的修正信息从数据库中取出,由此不进行试验成形,即可在短时间内确定对使曲面呈非球面形状的光学透镜成形的成型模的上模及下模中的使用面的设计值进行修正的修正信息。其结果是,可对使曲面呈非球面的所要求形状的光学透镜成形的成形模的上模及下模的使用面进行高效的设计。
第四实施例(图13、图14)(非成形面的设计方法的说明)第四实施例涉及利用由玻璃和陶瓷制成的成形模、聚合成形塑料透镜时的成形模的设计方法。
目前,例如在眼镜用的塑料透镜的聚合成形时,利用通过环状的,密封圈使由玻璃或陶瓷制成的一对上模和下模(也分别称为上模型、下模型)保持所要求的间隔的模型(也称成形模)。在该模型内填充塑料单体使其加热聚合,由此得到所要求形状的塑料透镜。
此时的下模,其上面作为凸面状的透镜转印面,其下面作为凹面状的非转印面而形成,同时,外周部作为圆筒面而形成(例如,参照特开平4-232706号公报)透镜转印面由于是成形透镜后面(凹面)的面,因此,规定为满足透镜设计值的曲面。与此相对,非转印面由于是成形不使用的面,因此,一般地说,作为满足圆筒状的高度尺寸(周边厚度)等规定的适当曲率的凹球面而形成。
在制作这种成形模时,通常是通过对预先成形的规定尺寸的玻璃制的坯料进行磨削、研磨而制成的。特别是在对非转印面的凹球面进行研磨时,使用研磨工具(研磨皿)。可是,目前的现状是,由于对每个成形模都改变其非转印面的曲率,所以,对每个研磨的曲率使用不同的研磨工具。
如上述那样,目前是对每个成形模都改变其非转印面(凹球面)的曲率,这样一来,就需要对每个研磨的曲率使用不同的研磨工具。因此,存在研磨工具种类增加,成本提高这一问题。
第四实施例的其目的在于,提供一种考虑上述情况,使研磨非转印面的研磨工具种类减少,由此实现低成本的塑料透镜的成形模的设计方法。
该第四实施例中的第一构成中,在设计多种尺寸不同的成形模时,以透镜转印面、非转印面、外周圆筒面及平面规定成形模的外面形状。上述透镜转印面,是以成形模的光轴为中心、由俯视呈圆形的凸曲面所形成的成形模的一部分。上述非转印面在透镜转印面的内表面侧,同样是以上述光轴为中心、由俯视呈圆形的凹球面所形成的成形模的一部分。上述外周圆筒面,是以所述光轴为中心,从透镜转印面的外周边缘向里面侧形成的成形模的一部分。上述平面在非转印面的外周侧形成为环状,其内周边缘与非转印面的外周边缘相交,外周边缘是与外周圆筒面的端边相交的成形模的一部分。并且,根据设计数据,分别设定透镜转印面的曲线、透镜转印面与非转印面之间的上述光轴上的厚度、外周圆筒面的高度。然后,对环状的平面宽度与能加工取得的该成形模的最小程度的坯料形状一并进行调整。这样一来,使由各成形模间的凹球面构成的非转印面的曲率保持一定。
第四实施例中的第二构成在上述第一构成的基础上,其特征在于,环状的平面宽度在4mm~6mm之间进行调整。
根据该第四实施例,通过调节环状平面的宽度,使非转印面的凹球面的曲率保持一定,因此,可以实现研磨凹球面的研磨工具的种类减少,最终可实现成形模的加工成本的降低。
下面,参照附图对第四实施例进行进一步说明。
图13是塑料透镜成形用的模型的剖面图。该模型由下模1、上模2、筒状的密封圈3所构成,在下模1和上模2之间形成由密封圈3包围周围的空腔4。因此,通过将单体填充于该空腔4内使其聚合,即可成形塑料透镜。
该情况下的下模1的外面形状由透镜转印面1A、非转印面1B、外周圆筒面1C及平面1D所规定。透镜转印面1A是以光轴L(中心轴)为中心、由俯视呈圆形的凸曲面构成的下模1的一部分。另外,非转印面1B是在透镜转印面1A的内表面侧,同样以光轴L为中心,由俯视呈圆形的凹球面所构成的下模1的一部分。另外,外周圆筒面1C是以光轴L为中心,由转印面1A的外周边侧朝向内表面侧形成的下模1的一部分。另外,平面1D在非转印面1B的外周侧形成为环状,其本身的内周边与非转印面1B的外周边缘相交,其外周边缘是与外周圆筒面1C的端边相交的下模1的一部分。
此时,转印面1A的曲线、转印面1A与非转印面1B之间的光轴L上的厚度SS1、外周圆筒面1C的高度(周边厚度或边厚)SS2根据透镜的设计数据分别设定为固定值。另外,非转印面1B的曲率SS3、环状平面1D的宽度SS4在满足上述固定值的限度内,设定为可任意变更的值。
下面,对下模1的设计方法进行说明。
如图14所示,确定上述型式的下模1的形状的要素有以下五个。
(1)转印面1A的曲线(2)厚度SS1(3)外周圆筒面1C的高度SS2(4)非转印面1B的曲率SS3(5)环状平面1D的宽度SS4其中,(1)转印面1A的曲线、(2)厚度SS1、(3)外周圆筒面1C的高度SS2根据透镜设计数据规定为固定值,而(4)非转印面1B的曲率SS3、(5)环状平面1D的宽度SS4可任意变更。
因此,在本实施例的设计方法中,虽然(4)非转印面1B的曲率SS3及(5)环状平面1D的宽度SS4任意调整,同时,首先选择能够实现(1)转印面1A的曲线、(2)厚度SS1、(3)外周圆筒面1C的高度SS2的最小尺寸的坯料5。然后,对照该坯料5的形状,调整环状平面1D的宽度SS4,由此,使由各成形模之间的凹球面构成的非转印面1B的曲率SS3保持一定。
这样,使非转印面1B的曲率SS3在多种成形模中保持一定,并且,规定为相同的球面形状,由此,可使在非转印面1B的研磨加工中使用的研磨工具通用化。从而,可控制成形模的制作成本。此时,环状平面部1D的宽度SS4设定为4mm~6mm的范围,可在坯料5的尺寸限定中加工。
因此,根据第四实施例实现如下效果(14)。(14)通过调节环状平面1D的宽度SS4,使非转印面1B的凹球面的曲率SS3保持一定,因此,可减少研磨凹球面的研磨工具的种类,最终可降低成形模10的加工成本。
以上,根据上述各实施例对本发明进行了说明,但本发明并不局限于此。
例如,在本实施例中,对利用烧铸法成形制造光学透镜进行了说明,但是,利用该烧铸法以外的制造方法来制造光学透镜时也可应用本发明。具体地说,在对塑料透镜直接切削加工及研磨加工时,可适用于磨削加工的切削面形状数据修正、研磨加工的研磨工具(研磨皿)的形状修正及光焦度修正。另外,本发明可适用于热软性成形模的修正等。
另外,在上述实施例中对成形模为玻璃的情况进行了说明,但是,在热收缩率高的其他成形模例如利用金属模成形的情况下也可适用本发明。
另外,在上述实施例中对表面呈球面形状的光学透镜作为试验成形品的情况进行了说明,但是,将表面呈非球面形状的光学透镜作为试验成形品也可适用。
另外,在上述实施例中对表面呈球面形状的旋转对称的光学透镜作为最终成形品、或表面呈非球面形状的光学透镜的情况进行了说明,但是,也可将具有复曲面、非复曲面等的光学透镜作为最终成形品。在此,所谓复曲面是指具有正交的两条主径线,其各主径线是由球面形状构成的。另外,所谓非复曲面是指其各主径线是由非球面形状构成的。
权利要求
1.一种成形模的设计方法,其特征在于准备成形面形成于成形品的设计曲面上的成形模,对由该成形模成形的成形品的曲面形状进行测定,使该测定值近似于非球面式,并对所述成形品的曲面进行特定,对特定的所述成形品的曲面和所述成形品的设计曲面进行比较,求出两曲面的误差,将该误差所对应的信息作为修正信息利用,对所述成形模的所述成形面进行修正设计。
2.如权利要求1所述的成形模的设计方法,其特征在于所述修正信息包含整体形状修正信息和局部形状修正信息,其中,整体形状修正信息为了与成形品的曲面上的球面形状成分的误差相对应,而对成形模的成形面的整体形状进行修正;局部形状修正信息为了与成形品的曲面上的球面形状以外的成分的误差相对应,而对所述成形模的所述成形面的局部形状进行修正。
3.如权利要求1或2所述的成形模的设计方法,其特征在于所述非球面式是包含成形品的曲面上的球面形状成分和成形品的曲面上的球面形状以外的成分的多项式。
4.如权利要求1~3中的任一项所述的成形模的设计方法,其特征在于所述非球面式将成形品的曲面上的球面形状成分和成形品的曲面上的球面形状以外的成分进行加法运算。
5.如权利要求1~4中的任一项所述的成形模的设计方法,其特征在于设Z为由成形品的顶点沿该成形品的轴向测定的距离,X、Y为由所述顶点沿与所述轴线垂直的方向测定的距离时,ρ设定为ρ2=X2+Y2,设R为顶点曲率半径时,顶点曲率C为C=1/R,设K为圆锥常数,A2i为非球面系数(i为整数)时,所述非球面的形式有下式(1)Z=Cp21+1-(1+K)C2p2+Σi=2nA2ip2i---(1)]]>
6.如权利要求5所述的成形模的设计方法,其特征在于所述非球面系数A2i中的i为2~5。
7.如权利要求5所述的成形模的设计方法,其特征在于根据所述式(1)第一项(K=0)的标准球面成分,求出对成形模的成形面的整体形状进行修正的整体形状修正信息,以使其与成形品的曲面中的球面形状成分的误差相对应,另外,根据所述式(1)第二项的多项式成分,求出对所述成形模的所述成形面的局部形状进行修正的局部形状修正信息,以使其与成形品的曲面中的球面形状以外的成分的误差相对应。
8.如权利要求7所述的成形模的设计方法,其特征在于所述成形模的成形面中的整体形状修正信息,根据式(1)第一项(K=0)的标准球面成分所表示的标准球面曲率半径与成形品的设计曲面整体中的平均曲率半径或顶点弯曲力中的曲率半径之差来确定。
9.如权利要求7或8所述的成形模的设计方法,其特征在于所述成形模的成形面中的局部形状修正信息,根据式(1)第二项的多项式成分所表示的,利用成形品的曲面中的球面形状以外的成分的高度(Z值)和所述成形品的设计曲面的高度(Z值)算出的形状变化率来确定。
10.如权利要求7~9中任一项所述的成形模的设计方法,其特征在于所述成形模的成形面的设计,通过在成形品的设计曲面上对整体形状修正信息和局部形状修正信息进行加法运算而进行。
11.如权利要求1~10中任一项所述的成形模的设计方法,其特征在于所述非球面式为将下式(1)变形后的下式(2)。Z=Cp21+1-(1+K)C2p2+Σi=2nA2ip2i---(1)]]>Z=Σi=1nB2ip2i---(2)]]>
12.如权利要求11所述的成形模的设计方法,其特征在于由所述式(2)的系数B2n求出式(1)的顶点曲率C及非球面系数A2n,由式(1)规定成形品的曲面,根据该式(1)第一项(K=0)的标准球面成分,求出对成形模的成形面的整体形状进行修正的整体形状修正信息,以使其与成形品的曲面中的球面形状成分的误差相对应,另外,根据上述式(1)第二项的多项式成分,求出对所述成形模的所述成形面的局部形状进行修正的局部形状修正信息,以使其与成形品的曲面中的球面形状以外的成分的误差相对应。
13.如权利要求1~12中任一项所述的成形模的设计方法,其特征在于所述成形品的曲面形状的测定如下首先预备将曲面测定用的标记设置于成形面上的成形模,测定由该成形模成形的成形品的曲面形状,此时,以将所述标记转印于该成形品的曲面上而形成的,位于应该测定的部位的转印标记为基准来测定所述曲面形状。
14.如权利要求13所述的成形模的设计方法,其特征在于所述转印标记具有顶点转印标记部和边缘转印标记部,其中,顶点转印标记部形成于成形品的曲面顶点,边缘转印标记部在所述曲面的边缘部相对于所述顶点形成于中心对称位置;通过这些顶点转印标记部及边缘转印标记部对所述成形品的所述曲面进行测定。
15.如权利要求14所述的成形模的设计方法,其特征在于所述边缘转印标记部通过在相对于成形品的曲面顶点点对称的位置转印一对或多对而形成。
16.如权利要求1~15中任一项所述的成形模的设计方法,其特征在于所述成形品是曲面呈球面形状或非球面形状的光学透镜。
17.一种成形模,其特征在于该成形模是实施权利要求1~16中任一项所述的成形模的设计方法而形成的。
18.一种成形品,其特征在于该成形品是利用权利要求17所述的成形模而成形的。
19.一种成形品,其特征在于权利要求18所述的成形品为弯月形状的眼镜透镜。
20.一种成形品,其特征在于权利要求19所述的成形品为中心对称的眼镜透镜。
全文摘要
一种成形模的设计方法、成形模及成形品,在由成形模成形成形品时,对该成形品的形状变化进行修正,从而可对成形所要求形状的成形品的成形模进行高精度地设计。准备上模(11)、下模(12)的使用面(16)在光学透镜的设计曲面形成的成形模(10)。对由该成形模成形的光学透镜的曲面形状进行测定,使该测定值近似于非球面式(1),将上述光学透镜的曲面作为非球面特定。将由该非球面式特定的上述光学透镜的曲面和上述光学透镜的设计曲面进行比较,求出两曲面的误差。利用与该误差相对应的信息作为修正信息(整体形状修正信息和局部形状修正信息),对上述成形模的上模和下模的使用面进行修正设计。
文档编号B29D11/00GK1980779SQ20058001761
公开日2007年6月13日 申请日期2005年5月31日 优先权日2004年5月31日
发明者上野保典, 佐藤良幸 申请人:Hoya株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1