用于制造塑料颗粒、挤出型材或成型件的设备及其熔体泵的制作方法

文档序号:4450240阅读:213来源:国知局
用于制造塑料颗粒、挤出型材或成型件的设备及其熔体泵的制作方法
【专利摘要】本发明涉及一种用于制造塑料颗粒、挤出型材或成型件的设备,所述设备包括:用于产生塑料熔体的螺旋式机器、为将塑料熔体挤压通过模具而建立压力的熔体泵(2)、以及用于形成颗粒、挤出型材或成型件的模具,其中熔体泵(2)构造成与螺旋式机器分离且具有自己的驱动装置(5)。用于制造塑料颗粒、挤出型材或成型件的这种设备中,螺旋式机器在没有增压单元的情况下也够用,且这种设备由此实现了,塑料熔体被以无压或近似无压的方式从螺旋式机器传递至熔体泵(2)。
【专利说明】用于制造塑料颗粒、挤出型材或成型件的设备及其熔体泵

【技术领域】
[0001]本发明涉及一种用于制造塑料颗粒、挤出型材或成型件的设备以及用于该设备的熔体泵,该熔体泵用于在能流动的介质——尤其是塑料熔体——中建立压力以使所述介质被挤压通过模具。

【背景技术】
[0002]为了制造塑料微粒,首先在聚合过程中由不同的原料在螺旋式机器产生塑料熔体。当然,塑料微粒也可理解为一种由可再生的原料、例如蛋白质制成的微粒。这种螺旋式机器可以是混料机、挤出机或螺旋混合器或类似的用于制造塑料熔体的设备。
[0003]例如,由EP O 564 884 Al已知一种螺旋式机器,其中不同原料借助于同步运转的螺旋轴彼此混合并揉搓,直至存在能流动的塑料熔体。
[0004]为了制造例如随后在注塑机中继续加工的塑料颗粒,塑料熔体在直至30bar的压力下被挤压通过模具,此处是孔板。为了制造塑料型材或塑料成型件,必须把塑料熔体以挤压法借助于直至300bar的压力挤压通过相应的挤压模具或成型模具。
[0005]像从EP O 564 884A1已知的,塑料熔体可以从螺旋式机器传输至齿轮泵,该齿轮泵例如像由DE-OS 38 42 988已知的,并从该齿轮泵被压过或挤压通过模具,以便得到期望的颗粒、型材或成型件。
[0006]然而,独立的齿轮泵具有如下缺点:齿轮泵由于自身的驱动装置和必要的自身的控制设备而制造昂贵。具有自身驱动装置的齿轮泵的另一个问题在于,尤其在直至50转/分的低转速下由于结构类型而产生脉动,并进而在泵入口处存在微小的预压力。尽管齿轮泵在相邻齿轮的齿彼此接触时是密实的,然而当塑料熔体被传输至模具时,不是所有的塑料熔体都被挤压通过模具。这些留下的塑料熔体随后被齿轮带回泵入口,在那里形成了相应的预压力。然而因为该预压力不稳定,而是仅以一定的脉冲类型的间距出现,所以存在脉动。为了克服该脉冲类型的预压力,熔体必须借助于相应的压力传输,这使得在螺旋式机器末端需要建立足够的压力。
[0007]另外,也经常使用具有自身的驱动装置的单螺杆泵取代齿轮泵。然而对单螺杆泵来说,基于结构类型在泵入口处存在明显的预压力,该预压力必须由螺旋式机器克服。
[0008]因此,使用齿轮泵或单螺杆泵仅具有缩小螺旋式机器的增压单元的优点,而不能完全放弃增压可能性,因为仍须克服所存在的预压力。
[0009]齿轮泵和单螺杆泵的另一个缺点在于,在结束使用之后,在齿轮之间或在螺纹中残留有塑料熔体且必须费力地清洁齿轮泵或单螺杆泵。
[0010]EP O 564 884 Al公开了,齿轮泵被集成在螺旋式机器中,从而由唯一的驱动装置来驱动螺旋轴和安置在其上的齿轮泵。这样做的优点是:借助于与螺旋轴同样大的转速来运行齿轮泵并进而使脉动降至最低。
[0011]由EP I 365 906 BI公开了一种具有集成的螺杆泵的双螺杆挤出机,其中在同步运转的螺旋轴上安置有两个产生增压的螺杆元件。由于确定的螺杆几何形状,在螺杆元件之间形成腔室,腔室实现了塑料熔体的容积强制输送,从而实现了建立压力。然而无论在根据EP O 564 884 Al的螺旋式机器中,还是在根据EP I 365 906 BI的双螺杆挤出机中都需要,增强整个设备的驱动装置,因为在此必须由驱动装置同时为增压和混合揉搓过程提供力和能量。因此,必须设置更强大的电机和相应增强的传动机构、轴、壳体等。
[0012]在根据EP O 564 884 Al的螺旋式机器和根据EP I 365 906 BI的双螺杆挤出机中,集成的齿轮泵和产生增压的螺杆元件具有与用于混合和揉搓的螺旋轴相同的转速。需要高转速来实现均匀的塑料熔体。然而在齿轮泵以及产生增压的螺杆元件中,该高转速引发高摩擦,该高摩擦又导致力和能量消耗提高以及发热增大。在此,热量被发射给塑料熔体,然而这会导致不利影响或者在极端情况下也会导致塑料熔体被破坏。由此使集成的齿轮泵和专门的螺杆元件的应用可能性受到限制。该问题以如下方式避免:根据所使用的塑料熔体来使用个体匹配的齿轮泵或专门设计的螺杆元件。该摩擦损失也作用于驱动装置和整个设备,该设备的尺寸必须相应较大。然而这导致高设备成本和装备成本。


【发明内容】

[0013]本发明基于如下认识:将增压单元设置到螺旋式机器中必然带来设备成本的提高,主要是在增压单元和在螺旋式机器方面必须都做出妥协,因而不能最佳地设置这些部件。
[0014]另一个认识在于,在具有增压单元的螺旋式机器的运行中产生了过多的不期望的摩擦热,该摩擦热必须被费力地克服。
[0015]由此出发,本发明的技术问题在于,提出一种用于制造塑料颗粒、挤出型材或成型件的设备,其中在没有增压单元的情况下螺旋式机器仍提供足够的功能性。
[0016]然而这同时要求提供一种增压单元,在此是熔体泵,该熔体泵避免了齿轮泵或单螺杆泵的上述缺点,且尤其使脉动和预压力降至最低。
[0017]在该技术问题的解决方案的框架内认识到是:产生能流动的介质的强制输送;该介质持续地被从熔体泵的入口传输,因此在入口处不存在预压力。
[0018]为解决该技术问题,根据本发明提出具有权利要求1所述特征的、用于制造塑料颗粒、挤出型材或成型件的设备和具有权利要求3所述特征的熔体泵。该设备和熔体泵的有利改进方案可从相应的从属权利要求得到。
[0019]按照该技术思想设计的设备和按照该技术思想设计的熔体泵的优点是:由于在熔体泵中熔体的强制输送,使熔体泵的入口处不存在明显的预压力,因此熔体可以在无压的情况下被从螺旋式机器输送至熔体泵。螺旋式机器施加仅需施加用于输送塑料熔体所需的力、例如用于克服熔体惯性、摩擦等而必需的力,这根据熔体的特性仅引起很小的压力升高。然而这种力可以由螺旋式机器本身的螺杆施加,由此可以放弃在螺旋式机器中的增压装置。这样做的优点又在于:可以借助较小的驱动装置(此处是较小的电机)、必要时还有较小的传动机构、较小的螺杆、较小的壳体和其它较小的构件运行不具有增压装置的螺旋式机器,因为在此情况下待传递的力小得多。由此便使螺旋式机器的制造成本明显降低。因此,也带来了能量成本的降低。
[0020]此外,取消增压装置还带来了如下优点:能够一致地针对混合原料和产生塑料熔体的功能来设计螺旋式机器,这改进了螺旋式机器的效率并进而改善了其经济性。
[0021]另一个优点在于,由于使熔体泵与螺旋式机器分离,可以仅针对实现有效的增压的功能来构造和设计恪体泵。
[0022]在根据本发明的设备的样机的构造和运行中令人惊异地发现,螺旋式机器和熔体泵的驱动装置的电功率的总和小于根据现有技术的相应设备的电功率。因此,通过使螺旋式机器与熔体泵分离,不仅降低了设备的制造成本(由于构件较小)、而且降低了用于制造塑料颗粒、挤出型材和成型件的能量成本。
[0023]在一种有利的实施方案中,如此构造输送螺杆:外直径与芯直径的比例是2。根据塑料熔体的类型,也可以将D i的比例选择为1.6到2.4。由此,以相对较薄、进而成本低廉的螺杆实现了较大的输送量。
[0024]在另一个有利的实施方案中,螺棱具有矩形或梯形的螺纹牙型。由此尤其当选择0°到20°的螺纹啮合角(也称为螺纹牙型角)时,实现了熔体的良好的强制输送。螺棱的形状应该与所用的熔体匹配,因此,例如在加工聚乙烯(PE)时0°的螺纹牙型角被证明合适,而PVC则会更适合在13°的螺纹牙型角下加工。
[0025]在另一个优选的实施方案中,螺棱具有平坦的表面,这同样有助于成本低廉的制造。
[0026]由于设计了具有平坦的螺纹面、0°的螺纹啮合角和平坦的表面的螺棱,所述螺棱具有矩形的截面。尤其当螺棱的间距根据每个导程近似地对应于螺棱的宽度时,则得到均匀的、减小至最小值的螺杆间隙,借助于该螺杆间隙密封了相应的螺杆腔室。该密封使得在模具处、尤其是在孔板处实现了高压力。
[0027]在另一个有利的实施方案中,两个输送螺杆上下叠置,即相对彼此沿竖直方向布置。这样做的优点是:入口可以相对于输送螺杆布置在中央,从而由两个输送螺杆很好地获取所进入的熔体、进而实现高填充度。此外,这样做的优点是:入口可以布置在熔体泵侧部,从而进行介质的径向进入和径向排出。这样也实现了熔体泵相对于螺旋式机器成角度的布置,这样做的优点是,减小了设备的总长度。例如,熔体泵可以设置为相对于螺旋式机器成45°角,这大大节省了空间。
[0028]在另一个有利的实施方案中,如此设计熔体泵,即根据塑料熔体的类型使输送螺杆以30转/分到300转/分的转速——优选50转/分到150转/分的转速——旋转。这样做的优点是:所选择的转速至少在多数情况下高于齿轮泵或单螺杆泵的转速,从而与由几何形状引起的熔体强制输送相结合地、以无脉冲的方式输送所述熔体。
[0029]转速限制到最高300转/分的优点在于:避免了在高转速下出现的聚合体链的有害破坏。
[0030]在另一个实施方案中,在压缩机和有利的电驱动装置之间设置了传动机构,通过该传动机构能同步地驱动输送螺杆。由于该同步实现了螺棱的相互的、几何形状精确的彼此啮合。有利地,第二螺杆在此不像由现有技术已知的齿轮泵那样由于机械的强制耦合而被拖动,而是相反直接被驱动,从而避免了已知的缺点,即引起高能量消耗的高摩擦以及与之联系的强制的熔体温升。这样也实现了,使螺杆方向相反地运行。通过传动机构的同步还有利地能直接把驱动力导入两个输送螺杆中,以便实现更好的力分布。
[0031]在另一个优选的实施方案中,两个输送螺杆的螺棱如此接合,即在最狭窄处留下的螺杆间隙形成间隙密封结构。该间隙密封结构一方面阻止了介质的回流并增强了强制输送,另一方面间隙密封结构起到了过压平衡的作用。尤其当间隙密封结构与待加工的介质匹配时,通过强制输送实现了高的压力建立并同时通过压力平衡阻止了介质的破坏。相同的优点同样适用于壳体间隙。
[0032]另一个优点在于,两个输送螺杆能以相对较小的功率驱动,这使得驱动马达较小并且能量消耗较低。
[0033]在另一个优选的实施方案中,在壳体和输送螺杆或其螺棱之间形成了多个螺杆腔室,介质被保持在螺杆腔室中。在此,螺杆腔室与螺杆间隙和/或壳体间隙相对应地构造为近似封闭的,从而尽管能建立期望的压力,然而在(局部)过高的压力下也出现一定的压力平衡。
[0034]在一优选的实施方案中,螺杆腔室沿着螺棱的导程延伸。螺杆腔室的开端和结束位于两个输送螺杆的接口中,即在通过两个输送螺杆的轴限定的平面中。这样做的优点是,由此介质占据了限定的位置且不与其它介质混合。这样同时实现了在孔板处高效的压力建立。
[0035]在另一个优选的实施方案中,既在螺棱和壳体之间形成了壳体间隙,也在螺棱和其相邻的输送螺杆之间形成了螺杆间隙,这两个间隙构造为间隙密封结构,从而介质基本上保持在相关的螺杆腔室中,不出现介质经间隙(间隙密封结构)至相邻的后面的螺杆腔室中的明显回流。这样的优点在于,由此实现了螺杆腔室之间的密封,该密封允许了在单个螺杆腔室中的高压力和在孔板处超过400bar,直至600bar的压力。
[0036]在另一个优选的实施方案中,壳体间隙和/或螺杆间隙宽度为0.05mm到2mm。最终,间隙宽度和进而间隙密封结构的大小取决于待加工的介质和其添加剂。对具有80%的碳酸钙份额的高填充的塑料和孔板处压力为500bar的情况来说,0.5mm的间隙宽度被证明是有利的。
[0037]在一优选的实施方案中,在输送螺杆的长度/直径比为2至5、优选3.5的情况下,熔体泵在孔板处达到了多于250bar,直至600bar的压力。这样做的优点是:熔体泵能成本低廉地制造且能以节省空间的方式使用。
[0038]另一个优点还在于,一方面通过两个彼此精确啮合的输送螺杆和对应构造的螺棱的共同作用、另一方面通过强制输送实现了迅速的压力建立,从而在相对较短构造的熔体泵中实现高压,在熔体泵中停留的时间短、因此对熔体的热损害和机械损害小。

【专利附图】

【附图说明】
[0039]根据本发明的设备和根据本发明的熔体泵的其它优点由附图和随后描述的实施方案得到。根据本发明,前述和仍将具体描述的特征分别能单个地或以任意的组合使用。所述实施方案不应理解为穷举的列举,而相反仅是示例性的。附图示出:
[0040]图1示意性示出根据本发明的设备的俯视图,连同根据本发明的熔体泵的第一实施方案;
[0041]图2是根据图1的熔体泵的剖视侧视图;
[0042]图3是沿着图5a中线II1-1II的根据本发明的熔体泵的第二实施方案的剖视侧视图;
[0043]图4是沿着图5b中线IV-1V的根据图3的熔体泵的剖视侧视图;
[0044]图5a/b是沿着图3中线V-V的根据图3的熔体泵的剖视图;
[0045]图6是根据本发明的熔体泵的第三实施方案的输送螺杆的侧视图;
[0046]图7是根据图6的输送螺杆的正视图;
[0047]图8是沿着图6中线VII1-VIII的根据图6的输送螺杆的剖视侧视图;
[0048]图8a是根据图8的圈VIIIa的局部放大图;
[0049]图9是根据本发明的熔体泵的第四实施方案的输送螺杆的透视图;
[0050]图10是根据图9的输送螺杆的侧视图;
[0051 ]图11是根据图9的输送螺杆的俯视图;
[0052]图12是根据图9的输送螺杆的正视图。

【具体实施方式】
[0053]图1中示意性示出用于制造塑料颗粒、挤出型材或成型件的设备,该设备具有用于把原料混合和揉搓为塑料熔体的螺旋式机器1、用于压缩塑料熔体的根据本发明第一实施方案的熔体泵2和模具3,模具在此是孔板,被压缩到超过50bar的塑料熔体被挤压通过该孔板以制造出期望的塑料颗粒。在此处未示出的实施方案中,使用用于制造期望的塑料型材或期望的塑料成型件的挤压模具替代孔板,其中在模具处可存在高于250bar的压力。
[0054]在此处示出的实施方案中,熔体泵布置为相对于螺旋式机器倾斜45°,以减小在制造地点处的空间消耗。
[0055]尤其如图2所示,恪体泵2包括驱动装置,在此是电机4、传动机构5和压缩机6。在压缩机6的壳体7中,两个输送螺杆8彼此平行地布置并反向旋转。输送螺杆8与传动机构5连接,该传动机构连接在电机4上。这两个输送螺杆8的每一个都具有基本上径向伸出的、螺旋状环绕的螺棱9,其中一个输送螺杆8的螺棱9以如下方式接合在另一个输送螺杆8的螺棱9中:使塑料熔体被强制输送。
[0056]在图2中示出的根据本发明的熔体泵2的第一实施方案中,两个输送螺杆8反向地旋转。为了保证正确的、相互精确的啮合,输送螺杆8通过传动机构5强制耦合,从而保证了输送螺杆8的同步。在此同步地驱动两个输送螺杆8。
[0057]壳体7与输送螺杆8相对应地形成为:使得在螺棱9的外边缘和壳体7之间留下很窄的壳体间隙10,该壳体间隙可以为0.05mm到2_,在此处示出的实施方案中为0.5_。
[0058]借助于径向伸出的螺棱9以及在平坦牙面的情况下、尤其在平坦的棱表面的情况下在螺棱9的每一侧上O度的螺纹啮合角,得到了在截面中矩形的螺棱9。同时,相邻螺棱9的距离对应于螺棱9的宽度。由此得到了,一个输送螺杆8的螺棱9精确匹配地接合在另一个输送螺杆8的螺棱9的间隙中。在此,在螺棱9和输送螺杆8之间留下的螺杆间隙11减小至最小值且在0.05mm和2mm之间,优选为0.5mm。实际上选择的螺杆间隙11取决于所用的介质,其中在介质的粘性增大时相应地选择较大的螺杆间隙11。
[0059]通过减小至最小值的螺杆间隙11使相邻的输送螺杆8之间形成密封结构,从而在壳体4、螺棱9和输送螺杆8之间形成了多个螺杆腔室12,其中由于该密封结构,每个螺杆腔室12被封闭且位于其中的塑料熔体被连续输送。通过输送螺杆8的彼此紧密啮合把塑料熔体的部分的回流减小至最小值,从而压力损失也减小至最小值。这也称为轴向密封。
[0060]为了实现高的输送能力,螺杆腔室12相对较大。这通过高的螺棱9实现,其中外直径(Da)与芯直径(Di)的比例为2。
[0061 ] 为了实现熔体泵2的小的结构尺寸,在此处示出的实施方案中,输送螺杆8的长度/外直径比例为3.5。
[0062]形成在壳体7中的螺杆腔室12在外部由壳体7限定、相对于侧面由螺棱9限定。在相邻的输送螺杆8的螺棱9彼此接合的区域中,螺杆腔室12通过密封作用而彼此分开。因此,螺杆腔室12在螺杆导程上延伸。
[0063]壳体间隙10和/或螺杆间隙11的宽度的设计与所用的材料相关。因此,例如在加工高填充度的具有80%的碳酸钙份额的塑料时、在所需压力为250bar的情况下,已证明0.5mm的宽度是合适的。对于具有较高流动性的介质应当保持较小的间隙,对于具有较低流动性的介质应当使间隙较大。对介质中混合了硬的颗粒、纤维或颜料的情况,同样可以使间隙较大。
[0064]在此,壳体间隙10和螺杆间隙11实现了本身近似密封的螺杆腔室12的设计,由此实现了朝着孔板3的压力建立,此外因为由此阻止了介质的明显回流。
[0065]对压力在局部增大到超过期望程度的情况,该间隙便起到平衡的作用,这是因为例如塑料熔体在此情况下泄漏至相邻的螺杆腔室12中,这使得压力在局部降低并且避免堵塞和/或损坏。因此,间隙的大小也影响压力平衡。
[0066]如果期望模具3处存在较高压力,则必须使壳体间隙10和螺杆间隙11减小。对于加工高粘性的塑料熔体的情况也是如此。对低粘度的塑料熔体来说,也可以扩宽间隙。因此,根据此处所述的针对每种个别情况的标准来选择间隙。在此0.05mm到2mm的间隙被证明是合适的。所有此处所述的实施方案都是轴向密封的。
[0067]此处,所述的具有0.5mm的间隙宽度的熔体泵2的实施方案可以尤其有利地用于高填充度的塑料,也就是说,用于具有高固体份额(例如碳酸钙、木头或碳化物)的塑料。在此,高填充度的塑料具有至少80%的碳酸钙份额。
[0068]由于塑料熔体的多样性,可以匹配每种需要形式的螺纹啮合角(也称为螺纹牙型角)。在此证明有利的是,至少对反向的输送螺杆8来说,选择像图2中示出的矩形的螺纹牙型或者在图8中示出的梯形的螺纹牙型。
[0069]像图2中示出地,矩形的螺纹牙型也用于加工聚乙烯(PE)。
[0070]在图3至5中示出的根据本发明的熔体泵102的第二实施方案中,两个输送螺杆8同步旋转且被共同的驱动轴113驱动。此处输送螺杆108的螺棱如此彼此接合,即保留最小的螺杆间隙。
[0071]这种高填充度的塑料可以借助于熔体泵2、102以保护材料的方式输送并压缩,其中塑料在环境压力下进入恪体泵102中且以从50bar直至600bar,优选400bar的压力再次离开熔体泵102。在此,03与D i的比例等于2,以便实现高的输送能力。
[0072]在图6至8中示出了根据本发明的熔体泵的第三实施方案的输送螺杆208。该输送螺杆208构造为双线螺纹螺杆,且其螺棱209的截面构造为具有13°螺纹啮合角的梯形。该输送螺杆208反向旋转且优选用于加工PVC。在此,形成轴向密封的螺杆腔室212,该螺杆腔室实现了良好的压力建立和良好的强制输送。在此,1与D i的比例等于2。
[0073]在图9至12中示出根据本发明的熔体泵的第四实施方案的输送螺杆308。该输送螺杆308构造为四线螺纹(A、B、C、D)螺杆,且其螺棱309的截面构造为具有0°螺纹啮合角的矩形。该输送螺杆308反向旋转且优选用于加工包含蛋白质的介质。在此,形成轴向密封的螺杆腔室312,该螺杆腔室实现了良好的压力建立和良好的强制输送。在此,匕与D i的比例等于2。
【权利要求】
1.一种用于制造塑料颗粒、挤出型材或成型件的设备,所述设备包括:用于产生塑料熔体的螺旋式机器(I)、为将塑料熔体挤压通过模具(3)而建立压力的熔体泵(2)、以及用于形成颗粒、挤出型材或成型件的模具(3),其中熔体泵(2)构造成与螺旋式机器(I)分离且具有自己的驱动装置(5), 其特征在于,塑料熔体被以无压或近似无压的方式从螺旋式机器(I)传递至熔体泵⑵。
2.根据权利要求1所述的设备,其特征在于,熔体泵(2)布置为相对于螺旋式机器(I)成一 15°到75°的角度,尤其是30°到60°的角度,优选45°的角度。
3.—种熔体泵,所述熔体泵用于为了将介质挤压通过模具而在能流动的介质一一尤其是塑料熔体一一中建立压力,所述熔体泵尤其用于根据前述权利要求中任一项所述的设备,所述熔体泵具有压缩机¢),所述压缩机包括入口和出口以及至少两个布置在公共的壳体(7)中的输送螺杆(8、108、208、302),其中设置在输送螺杆(8,108,208,308)上的螺棱(9,209,309)构造为使介质被强制输送,其中输送螺杆(8、108、208、308)能由自己的驱动装置⑷驱动。
4.根据权利要求3所述的熔体泵,其特征在于,输送螺杆(8、108、208、308)构造为使外直径(Da)与芯直径(Di)的比例为1.6到2.4、优选为2.0o
5.根据权利要求3或4所述的熔体泵,其特征在于,螺棱(9、209、309)具有矩形牙型或梯形牙型。
6.根据权利要求5所述的熔体泵,其特征在于,螺棱(9、209、309)的牙型角为0°到20。。
7.根据权利要求3至6中任一项所述的熔体泵,其特征在于,两个输送螺杆(8)上下叠置地,即竖向地布置。
8.根据权利要求3至7中任一项所述的熔体泵,其特征在于,驱动装置(4)和传动机构(5)设计用于使输送螺杆(8、108、208、308)的转速为30转/分到300转/分、优选为50转/分到150转/分。
9.根据权利要求3至8中任一项所述的熔体泵,其特征在于,在驱动装置(4)与压缩机(6)之间设有传动机构(5),通过该传动机构能同步驱动输送螺杆(8、108)。
10.根据权利要求3至9中任一项所述的熔体泵,其特征在于,螺棱(9、209、309)和输送螺杆(8、108、208、302)彼此对应地构造并且彼此接合地布置为:使得在壳体(4)与包括螺棱(9,209,309)的输送螺杆(8、108、208、308)之间形成至少一个螺杆腔室(12、212、312),所述螺杆腔室除壳体间隙(10)和/或螺杆间隙(11)外是封闭的。
11.根据权利要求3至10中任一项所述的熔体泵,其特征在于,壳体(7)与输送螺杆(8、108、208、209)的外轮廓对应地构造为:使得输送螺杆(8、108、208、308)与壳体(7)之间保留的壳体间隙(10)小到使壳体间隙(10)形成间隙密封结构; 螺棱(9)和输送螺杆(8、108、208、308)彼此对应地构造且彼此接合地布置为:使得在螺棱(9,209,309)与输送螺杆(8、108、208、308)之间保留的螺杆间隙(11)小到使螺杆间隙(11)形成间隙密封结构。
12.根据权利要求11所述的熔体泵,其特征在于,根据介质对壳体间隙(10)和/或螺杆间隙(11)进行选择,以使压缩机(6)是轴向密封的。
13.根据权利要求3至12中任一项所述的熔体泵,其特征在于,输送螺杆(8、208、308)设计为反向旋转的。
14.根据权利要求3至13中任一项所述的熔体泵,其特征在于,输送螺杆(8、108、208、308)的长度/外直径比为2到5,优选3.5。
【文档编号】B29B7/48GK104470698SQ201380019926
【公开日】2015年3月25日 申请日期:2013年6月24日 优先权日:2012年6月25日
【发明者】M·亨克 申请人:亨克产权经营者公司(有限责任)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1