专利名称:电熔化连接装置的制作方法
技术领域:
本发明涉及电熔化连接装置,该装置通过向紧贴热塑性树脂作的接头的插头或插口表面配置的发热体输送电流可以熔化插头和插口并将插头连接在插口内。本发明还涉及熔化控制方法。
本说明书中提出的方法特别适合于用在EP0467309中说明的管接头部件上,该部件可避免其线性加热件的短路。
通常,即使管插头没有正确地插入接头的插口中,只要接通起动按钮便可以进行熔化和焊接操作直至结束。
问题是,在管插头没有正确地插入接头插口的条件下进行熔化,在熔化之后这种连接也容易分开。
按照本发明的第一方面,提供了一种电熔化装置,在该装置中,通过向紧贴热塑性树脂接头插口内周面内配置的发热体输送电流,便可熔化热塑性管的插头并将其连接在上述插口中;其特征在于,当发热体的电流值上升到固定电流值所需的时间超过固定时间时,便使用检测机构检测管的不良插入,判断出管插头未正确地插入接头插口中,并且在根据检测机构检查管子的不良插入的同时,中断发热体的电流输送。
因此在本发明的这一方面中,因为可以正确检测不能目视判断的管的不良插入,而且在完成检测的同时中断熔化和连接操作,所以不存在由于管的不良插入引起的常规的熔化和连接缺陷,通常可以进行正确的熔化和连接。
通常,在管插头插入并定位在接头插口中之后,一当热塑性树脂由发热体加热到超过其熔化温度时便熔化。接通起动按钮便开始加热。
问题是如果在进行熔化的同时有水附着在管子插头或接头插口上,则有发生短路的危险,这会损坏电熔化连接装置和发热体。另外,在熔化的树脂中存在空气泡和“小孔”,使接合强度变低。
按照本发明的第二方面,提供一种电熔化连接装置,在这种装置中,通过向紧贴热塑性树脂接头插口内周面内配置的发热体输送电流,可熔化热塑性管的插头并将其连接在上述插口中;其特征在于,该装置在熔化过程之前执行干燥过程,在干燥过程中,热塑性树脂由上述发热体加热到低于其熔化温度,在熔化过程中,热塑性树脂由上述发热体加热到高于其熔化温度。
因此在本发明的这一方面中,即使有水附着到管插头或接头插口上,因为熔化过程是在水蒸发和熔化部分完全被干燥之后进行的,所以可以避免以前的由于水引起的损坏电熔化连接装置和发热体和不良接合强度的问题。结果一般可以进行正确的熔化操作。
已经有常规的电熔化装置,利用该装置可向电阻丝输送电流而使管和接头同时熔化,该电阻丝预先在要插入树脂管端部的树脂接头插口的内周面上绕成螺旋形。
采用这种常规的电熔化装置所产生的问题是很难正确地熔化树脂。这是因为加热件受加热方式的控制,该加热方式在开始熔化过程之后使上升的电流升到设定的电流值时保持设定的时间,在经过设定的时间后过程便结束。除此之外,由于管子和接头之间间隙不同和由于工作地点外界空气温度引起的热导率的变化,意味着仅用初始设定的加热方式进行操作很难正确地熔化树脂。
按照本发明的第三方面,提供一种用于树脂制品的电熔化装置,其中,通过向装在待熔化树脂制品上的加热件供电可熔化接头部件的树脂;其特征在于,该装置具有控制器,该控制器按照加热方式控制上述加热件施加的热量,根据该加热方式,在熔化过程开始时,功率水平上升,一直达到第一设定的功率水平,在该功率水平保持第一时间,然后在第二时间内降低规定的量,在第二时间之后达到第二设定的功率水平,并在该水平保持第三时间,然后熔化过程结束。
该装置最好可以利用从熔化过程开始到第一设定功率水平所需的时间来检测待熔化树脂制品之间的间隙。在一个优选实施例中,连接于待熔化树脂制品的控制器连接器具有检测外界空间温度的温度传感器。该装置可以根据待熔化树脂制品之间的间隙和外界空气温度修改加热方式。该装置最好利用第一设定功率水平使待熔化树脂制品的温度升到一个高于树脂熔点但低于使树脂变质或受损的温度。
因为该电熔化装置具有控制器,可以根据所述的加热方式控制上述加热件的发热量,所以可以正确地熔化树脂制品的树脂。
因为该装置可以根据从熔化过程开始到达到第一设定功率水平所需的时间来检测待熔化树脂制品之间的间隙,所以可以正确地检测待熔化树脂制品之间的间隙,不需要任何特殊装置。
因为连接于待熔化树脂制品的控制器的连接器具有检测外界空气温度的温度传感器,所以它可以正确地检测紧靠待熔化树脂制品的外界温度。
因为该装置可以根据待熔化树脂制品之间的间隙和外界空气温度修改加热方式,所以可以获得相应于待熔化树脂制品不同测量值和相应于熔化过程所在环境的正确热量值。
因为利用第一设定功率水平,该装置可使待熔化树脂制品的温度升到一个高于熔点但低于使树脂变质和受损的温度,所以可以防止由待熔化树脂制品的过份加热而引起的树脂变质或损坏。
已经有常规的电熔化装置,利用该装置向电阻丝输送电流可使管子和接头同时熔化,该电阻丝预先在要插入树脂管端部的树脂接头插口的内周面上绕成螺旋形。
用常规电熔化装置存在的问题是,操作这种装置需要训练和经验。因为开始熔化过程之前,操作者必需自己确定对于待熔化树脂和制品的型号(接头的材料、形状和尺寸)所需的热量(功),将加热方式输入到控制器并按照该加热方式执行熔化过程。
按照本发明的第四方面,提供一种树脂制品用的电熔化装置,在该装置中,通过向装在待熔化树脂制品上的加热件供电可熔化接头部件的树脂;其特征在于,该装置具有控制器,该控制器按照待熔化树脂制品的型号预先读出机械的和电的变化,以便识别待熔化树脂的型号,然后该控制器选择和设定对应于待熔化树脂制品型号的加热方式并自动执行熔化过程。
控制器的连接器最好具有连接到露出于待熔化树脂制品表面或端部上的电阻丝两端部上端子的端子和连接到部件上的端子,该部件构成机械的和电的变化,以便识别待熔化制品的型号。
因此利用本发明的这方面,可以根据待熔化树脂制品的型号自动地和适当地设定(初始)加热方式,任何人都可以正确地操纵和执行树脂制品的熔化过程。
另外,因为控制器的连接器具有连接到电阻丝两端部的露出于待熔化树脂制品表面或端部上的端子的端子和连接于部件的端子,该部件构成机械的或电的改变以便识别待熔化树脂制品的型号,所以将控制器的连接器连接在待熔化树脂制品上后便可以进行初始设定而不需进行任何特殊的操作。
用于向EF接头输送电力的常规电熔化控制装置(以下称作EF控制器)可自动进行熔化,方法是对每种型号的EF接头贮存加热控制方式(以下称作“加热方式”),并根据对应于该型号的EF接头的加热方式自动控制输送到加热丝上的电力大小。
因为不同厂家的加热丝具有不同的物理特性,所以EF控制器只能用于特定厂家的EF接头,因此铺管人员必须准备用于不同厂家EF接头的EF控制器,这是很不经济的。
本发明第五方面的目的是提供一种可以处理任何厂家EF接头的EF接头自动熔化控制方法。
按照本发明的第五方面,提供一种电熔化接头的自动熔化控制方法,在该方法中(1)响应熔化操作起动信号,检测环境温度和测量该环境温度下的电熔化接头电热丝的电阻值,并使设定的功率输送到上述电热丝;(2)当功率达到设定值时计算电阻变化程度,在设定的恒定时间间隔内进行开关控制,用PID算法计算树脂的比热;(3)根据在(2)中计算的电阻变化程度和比热,逐步增加功率,在每步中计算电阻变化的程度,在设定的恒定时间间隔内进行开关控制和计算比热改变的程度;(4)当在(3)中计算的比热变化程度低于某个常数时,停止增加功率并进行恒定时间间隔的开关控制,当比热低于某个常数时,切断电源;按照本发明的第五方面,提供一种电熔化接头的自动熔化控制方法,在该方法中(1)响应熔化操作起动信号,检测环境温度和测量该环境温度下的电熔化接头电热丝的电阻值,并使设定的功率输送到电热丝;(2)当功率达到预定值时计算电阻变化程度,在设定的恒定时间间隔内进行开关控制,用PID算法计算树脂的比热;(3)根据在(2)式中计算的电阻变化程度和比热,逐步增加功率,在每步中计算电阻变化的程度,在设定的恒定时间间隔内进行开关控制和计算比热的改变程度;(4)当在(3)中计算的比热改变程度低于某个常数时,停止增加功率并进行恒定时间间隔的开关控制,在经过根据步骤(3)中计算的比热计算的时间后,停止供电。
因为按照本发明第五方面的EF接头自动熔化控制方法,在控制期间,可判断EF接头的型号和加热丝的物理特性,并且在进行判断的同时,寻求和证实加热和熔化树脂的最佳功率量(温度场),所以本发明可使所有EF接头实现正确的熔化,而不管接头的型号和制造厂家。
在先有技术中,即使管的端部没有完全嵌入插口,也可以进行电熔化,因此在进行粘合后有可能发生分开的危险。
按照本发明的第六方面,提供了一种熔化树脂制品的方法,其特征在于,将第一树脂制品和第二树脂制品配置在接合位置,将控制器的连接器连接到一对在第一树脂制品表面上露出的端销上,供到电阻丝的电流由控制器控制,该电阻丝嵌入第一树脂制品和第二树脂制品的接合表面中并且其端部连接到端销上;开关电流的开关部分形成在电阻丝的中间部分,仅当第一树脂制品和第二树脂制品被定位在规定的接合位置时开关才由第二树脂制品保持闭合状态,从而可进行电熔化操作。
除非第一树脂制品和第二树脂制品位于规定的接合位置,否则不能进行电熔化操作,这使得消除接合缺陷是可能的,在某种意义上说,没有产生这种缺陷的可能。
电熔化法一般用于树脂管的接合连接,此时使电流流过预先呈螺旋形绕在将插入插头的接头插口的内表面上的电阻丝,因此加热和熔化管子和接头。在先有技术中,通过在接头插口上配置观察孔并通过该观察孔确认树脂熔化的方法进一步证实熔化。
然而,这种已知的证实熔化的方法造成许多问题,例如熔化的树脂从观察孔流出,从而在管子和接头之间形成空腔,而且树脂一旦流出,在硬化时便形成毛刺。
本发明这方面的目的是提供一种不用观察孔证实树脂产品例如管子和接头熔化的方法,该方法可以防止由于树脂制品不完全熔化所产生的接合缺陷,另外,还提出一种证实树脂制品熔化的方法,该方法在接合之后不需要树脂制品的任何表面后处理。
因此,按照本发明的第七方面,提出了一种证实树脂制品熔化的方法,其特征在于,在接合第一树脂制品和第二树脂制品的熔化粘合树脂制品的方法中,将控制器的连接器连接到凸出于第一树脂制品表面的端销上,流过电阻丝的电流由上述控制器控制,该电阻丝嵌入第一树脂制品和第二树脂制品的接合表面上,其端部连接到上述端销上,第一树脂制品和第二树脂制品被熔化;当将连接器连接在上述端销上时,在开始操作时应用树脂制品型号识别装置识别第一树脂制品的型号,并设定相应的加热方式。
传感器臂最好突出于连接器并插入位于树脂制品中的凹孔中,该凹孔的深度随树脂制品的型号改变,树脂制品型号根据传感器臂的移动长度进行识别。
温度鉴定装置利用在上述传感器臂头部上的温度传感器与凹孔底面的接触来检测第一树脂制品的表面温度,可以利用该检测结果,根据开始操作时的第一树脂制品的温度来校正加热方式。
采用这种配置可以同时检测树脂溶化时的膨胀和温度。当采用这种证实熔化的方法时,因为在熔化时检测树脂的膨胀和温度,所以可以证实树脂制品的熔化而不用设置观察孔,可以采用现有的传感器来检测树脂的膨胀和温度而不设置特别的传感器。另外,因为检测树脂的膨胀和温度,所以可以检测树脂的熔化而不增加另外的成本。
按照本发明的第七方面,提供了一种证实树脂制品熔化的方法,其特征在于,在接合第一树脂制品和第二树脂制品的树脂制品熔化方法中,将控制器的连接器连接于凸出于第一树脂制品表面的端销上,用上述控制器控制电阻丝的电流,该电阻丝嵌入到第一树脂制品和第二树脂制品的接合表面中,而且其端部连接到上述端销上,因此上述第一树脂制品和第二树脂制品被熔化;采用包含夹具构件的夹具,该构件固定第一树脂制品和第二树脂制品,因此将第一树脂制品和第二树脂制品固定在接合位置,上述夹具构件的夹紧作用在熔化期间由膨胀压力松开。
当采用这种证实熔化的方法时,在开始操作之前夹住树脂制品的夹具构件自动地由熔化期间的树脂膨胀压力松开,因而可以确认树脂部件的熔化而不需要形成观察孔,并且还可以简单地根据夹具构件的机械操作证实树脂部件的熔化。
按照本发明的第七方面,提供了一种证实树脂制品熔化的方法,其特征在于,在接合第一树脂制品和第二树脂制品的树脂制品熔化方法中,将控制器的连接器连接在凸出于第一树脂制品表面的端销上,利用上述控制器控制供给电阻丝的电流,该电阻丝嵌入第一树脂制品和第二树脂制品的接合面中,并且电阻丝的端部连接到上述端销上,因此第一树脂制品和第二树脂制品被熔化,检测电流值和使该电流流过上述电阻丝的电路电压值,这些电流和电压值以相同的比例改变,当线路的电阻在至少规定的时间内保持常数时便可检测这种熔化。
当采用这种证实熔化的方法时,检测控制器的控制值,因此可以证实树脂部件的熔化而不需要设置观察孔,因为可以直接找到伴随着树脂熔化产生的电改变,所以可确实地证实树脂部件的熔化。
常规的电熔化接合方法不能与金属管连接件或部件相匹配。
因此本发明的第八方面提出使电熔化部件可以与金属部件相接合的装置。
按照本发明的第八方面,提供一种管子连接件,该连接件包括具有可与金属管部件接合的装置的第一轴向端部和具有加热件的第二轴向端部,该加热件通电流时产生热量,从而电熔化塑料管部件;第一和第二轴向端部被接合在一起。
本发明第八方面的实施例能使电熔化部件连接在金属部件上。
在常规电熔化焊接方法中,要求配置插头和插口作为连接部件,因此通常很难连接大直径管和滑衬管(slip-lining)。
本发明的第九方面提出一种不需要分开插口的配置法。本发明还提出一种有利于连接大直径管和滑衬管的配置法。
按照本发明的第九方面,提供了一段管子,该管子的端部包括独立的加热件,该端部适合于利用加热件的电熔化直接连接到不同管长的管子端部上。
采用这种配置法不需要分开的插口。
按照本发明的第九方面,提供了一种用于形成电熔化接合的插头或插口,该插头或插口包括埋入其壁部分中的独立的加热件。
采用这种配置法,使得大直径管和滑衬管的接合更为方便。
一般采用电熔化法来连接树脂管的接头,其时电流通过预先呈螺旋形绕在要插入接头的接头插口内表面中的电阻丝,管子和接头因此受热并熔化。在先有技术中证实熔化的方法是在接头插口上设置观察孔,并通过该观察孔确认树脂熔化。
然而,这种已知的证实熔化的方法存在许多问题,例如熔化的树脂从观测孔中流出,由此在管子和接头之间形成空隙,而且树脂一旦流出,在硬化后便形成毛刺。
本发明这方面的目的是提出一种不使用观测孔证实树脂制品例如管子和接头熔化的方法,该方法可以防止由于不完全熔化造成的接合缺陷,还提出一种证实树脂制品熔化的方法,该方法在接合之后不需要对树脂制品作任何表面后处理。
按照本发明的第十方面,提供了一种用于电熔化连接管子部件的加热件,包括加热件,该加热件包括镍或镍合金,特征是加热件适合于作温度传感器。
镍具有较高的电阻系数,这意味着镍丝或镍基合金丝的电阻随温度显著变化,结果是,连接件事实上具有装在内部的热电偶,可以直接在焊接区进行测量。这意味着,焊接过程可准确测量而不发生上述任何不利影响。另外,镍虽然贵,但其防腐性好,用低电压大电流时镍优于铜,对于通常需要长时间加热的大连接件,镍的加热时间好(短)于铜的加热时间。
下面采用举例的方法参照
本发明不同方面的实施例,这些附图是
图1是涉及本发明第一和第二方面的加热方式的曲线图;图2是本发明第一和第二方面的电熔化装置的示意图;图3是本发明第一和第二方面的控制器的示意截面图;图4是本发明第一和第二方面的接头截面图;图5是本发明第一和第二方面的连接器示意截面图;图6是本发明第一第二方面的电熔化控制线路示意图;图7是本发明第一和第二方面的控制流程图;图8是本发明第一和第二方面的熔化控制流程图;图9是本发明第三和第四方面的控制线路图;图10是本发明第三和第四方面的电熔化装置图;图11是本发明第三和第四方面的接头截面图;图12是本发明第三和第四方面的在加热件和控制器之间进行连接的平面图;图13是本发明第三和第四方面的加热方式的曲线图;图14至16是本发明第三和第四方面的操作流程图;图17是图12配置的变型图;图18示出本发明第五方面的熔化控制曲线;图19示出本发明第五方面的电熔化接头和控制器;图20示出本发明第五方面的电熔化接头接受部分的截面图;图21示出本发明第五方面的电熔化控制器的连接器的截面图;图22是本发明第六方面的接头的截面图;图23是本发明第六方面的电熔化装置的示意图;图24是本发明第六方面的控制器连接的示意图;图25是本发明第七方面的装置的示意图;图26是本发明第七方面的插口的横截面图;图27是本发明第七方面的控制器连接的示意图;图28是本发明第七方面的夹具装置图;图29是图28夹具的详细图;图30是本发明第七方面的控制线路示意图;图31是本发明第七方面的加热方式曲线;图32至34是本发明第七方面的操作流程图;图35是图28和29所示夹具装置的部分放大截面图;图36是本发明第八方面的过渡接头截面图;图37是本发明第九方面的包含线圈的插口壁的部分截面图。
本发明第一和第二方面,见图1~8。
下面根据图1~8详细说明本发明第一和第二方面的实施例。图1是加热方式图,图2是电熔化连接操作的说明图。图2中编号1是电熔化连接控制器。起动钮3、停止钮4和液晶显示器5配置在主机壳2上。电源线7接在插销6的端部上,该插销与电源连接,控制线9接在连接器8的端部,该连接器接在热塑性塑料树脂的旁边,电源线和控制线均从主机壳2上引出。
如图3所示,主机壳2是一个密封结构的方盒形状,它由方框侧板10、盖住侧板10顶端的顶板11和盖住侧板10底部的底板12组成。这可防止水浸入主机壳2,该机壳包括各种电气和电子零件以及其上安装这些零件的配电板。底板12由热辐射性能优越的金属材料如铝制作,在底板12下面有一个由许多热辐射叶片13构成的实体,底板12是热辐射板,所以可以防止机壳2内温度的升高,防止电气和电子部件受到热的作用。另外,还设置支架15,该支架使操作期间达到高温的电子控制部件14牢固地连接在底板12上,结果是可以防止产生高温。
图2中的编号16是热塑性树脂接头,编号17是热塑性树脂管,其材料与接头16相同。
如图4所示,构成套筒形状并包含电阻丝19的发热体20预先埋人要插入管17插头的接头16的各个插口18的内周表面内,该电阻丝折成双折沿圆筒卷成螺旋形,装在电阻丝19两端上的端销21固定在每个插口18的端部上并从上露出。
电阻丝19由简单的电阻丝如镍构成,并用与接头16相同的热塑性树脂材料作为绝缘包皮。
在每个插口18端部上的端销21、21之间形成一个凹部22,其深度根据接头16的规格、形状和尺寸而不同。
如图5所示,其中插入端销21、21进行连接的固定端子23、23被埋入连接器8的连接端部,活动端子25插入在固定端子23、23之间的凹部22,该端子25是插入端部的传感器臂。
在连接器8中,安装电位计规格传感器(grade sensor)26并在连接器部分8的活动端子25上沿规格传感器26的小齿轮27形成标准齿条28。当在插口18的各个端销21、21和连接器8的各个固定端子23、23之间进行连接时,便同时使连接器8的活动端子25进入插口18的凹部22,通过规格传感器26检测活动端子25的进出活动范围的参数可以确定接头15的规格。
活动端子25由弹簧29和制动器31固定在规格传感器26的标准位置,该弹簧沿伸出的方向压住活动端子25,该制动器31连接到规格传感器26的固定支架30并控制活动端子25的突出量。
活动端子25成形为管轴形,管轴形传感器盒32插入活动端子中并可随意在其中来回运动。热传感器33固定在传感器盒32的端部上,热传感器33的端部在活动端子25的端部露出,当活动端子25进入凹部22时,热传感器33的端部便与凹部22的底部接触,结果,可以检测电熔化连接操作开始时的接头16的温度(外部温度)。
另外,端部固定在连接器8上的控制线9连接在CPU34上,连接在固定端子23、23上的电源线、连接在规格传感器26上的规格信号传输线和连接在热传感器33上的热信号传输线均接在控制器1中。
如图6所示,用于构成微计算机的CPU34固定在控制器1中,连接在CPU34上的是起动钮3、停止钮4、规格传感器26、热传感器33、发热体20、显示器5和记录加热方式的存贮器35。配置的方式使得可以根据加热方式将电流输送到发热体,然后通过电熔化使管17的插头连接到接头16的插口18。
另外,每种接头规格的加热方式被记录在存贮器35中,如图1的加热方式曲线图清楚示出的那样,加热方式表示流过发热体20的电阻丝19的电流值(A)和时间的关系。从电熔化连接操作开始便接通电流,然后电流值(A)升到第一固定电流值(A1),在第一固定电流值(A1)保持第一时间(S1)。随后电流值(A)升到第二固定电流值(A2),在第二固定电流值(A2)保持第二时间(S2)。然后电流值(A)升到第五固定电流值(A5),这是最大的电流值,在此最大电流值(A5)保持第三时间(S3)。随后电流值(A)降到第三电流值(A3),在第三固定电流值(A3)保持第四时间。在经过第四时间(S4)之后,切断电流。
第四电流值(S4)是加热热塑性树脂到其熔化温度的电流值,该热塑性树脂是接头16、管17和电阻丝19的隔离复盖材料。第一到第三固定电流值(A1)、(A2)、(A3)低于第四固定电流值(A4),而第五固定电流值(A5)高于第四固定电流值(A4),其器序为A1<A2<A3<A4<A5。从电熔化连接操作开始到经过第二固定时间的这一段时间是干燥过程。在干燥处理中发热体20产生的热量用于蒸发附着在接头6的插口18的内周面和管子17的插头的外周面上的水分和干燥待熔化的表面。完成干燥过程之后到经过第三时间(S3)的这一段时间是熔化过程。在熔化过程中由发热体20产生的热量熔化接头16的插口18内周面、管子17的插头外周面和电阻丝19的复盖材料。在完成熔化处理之后到经过固定时间(S4)的这一段时期是连接过程。在此熔化过程中由发热体20产生的热量使熔化的树脂逐渐凝固成稳定的状态。
如图2所示,将控制器1带到要装管子的地方,将电源线7端部上的插销6连接在发电机或连接在装管子现场的其它电源上。在接头16的已经插入管子17插头的插口18端部上的端销21、21和控制器1的控制线9端部上的连接器8的固定端子23、23之间以及在凹部22和活动端子25之间进行连接后,接通控制器1的起动按钮3,结果开始自动控制,接头16的插口18和管子17的插头自动地熔化。如图1的加热方式曲线图和图7的流程图所示,当起动钮3接通时,规格传感器26和热传感器33的输出值被读入,并且根据规格传感器26的输出值,判定接头16的规格。之后执行选择设定的加热方式控制(初始设定),在这种控制中加热方式对应于从存贮器中读出的规格。随后执行干燥控制、熔化控制和连接控制,在这种控制中,发热体20的电流由选择设定的加热方式控制,最后完成电熔化连接。
如图8的流程图所示,对于熔化控制,当热传感器33的输出值(ta)在固定的范围内(例如10~30℃)时,根据初始设定的加热方式控制发热体20的电流。但是,当操作地点的外部空气温度高时,树脂温度急速上升。而当温度低时,则树脂温度上升缓慢。因此,调节加热方式,使得当热传感器33的输出值(ta)高于固定范围时,使加热方式的第三固定时间(S3)相应缩短,当其比较低时,则相应加长加热方式的第三固定时间。此后,发热体20的电流便根据调整后的加热方式进行控制。
当管17的插头没有正确地插入接头16的插口18时,从发热体20传输到树脂的热量便减小,因而加热体20的温度很快上升,随着温度的升高电阻也增加。另一方面,当它被正确插入时,从发热体20传输到树脂上的热量便增加,因此加热体20的温度上升慢。由于有这种特性,所以可利用这种现象即发热体20的电流值上升所需的时间将发生改变,来调查管17是否有不良插入。当从熔化控制开始发热体20的电流值(AX)升到低于加热方式的第四固定电流值(A4)的固定电流值(A0)所需的时间保持在固定时间(S0)内时,可认为管17正确插入,因而可继续向发热体20输送电流,进行电熔化连接操作。另一方面,当上升所需的时间超过固定时间(S0)时,可认为管17没插好,从而断开发热体20的电流,并在显示器5上显示管17未插好,因而在树脂熔化之前便中断电熔化连接操作,防止了在未插好的条件下熔化并将管17连接到接头16上。
从上述实用例子可清楚看出,通过向设置在热塑性树脂作的接头16的插口18的内周面上的发热体20供电,并使用使热塑性管17的插头熔化在上述接头16的插口18中的电熔化连接装置,当发热体20中的电流值(Ax)升到固定电流值(A0)所需要的时间超过固定时间(S0)时,需要采取措施检测管17是否插入不良,判断管子的插头是否未正确地插入接头16的插口18,并在按照检测方法检测检管17是否有不良插入的同时断开发热体20的电流。因为可以正确地检测不能用目测判断出来的管17的不良插入,而且在进行检测时就中断熔化和连接操作,所以不会出现由于管17的不良插入而引起的通常的熔化和连接失效,因而一般可以正确地熔化和连接。
从上面实用的例子可以清楚看到,通过向设置在热塑性树脂作的接头16的插口18的内周面中的发热体20供电,并使用使热塑性管17的插头熔化在上述接头16的插口18中的电熔化连接装置,可以执行干燥过程,在熔化过程之前的干燥过程中,热塑性树脂由上述发热体20加热,温度低于其熔化温度,在熔化过程中,热塑性树脂由上述发热体20加热到其熔化温度以上。即使有水附着在管17的插头或接头16的插口18上,因为熔化过程是在水蒸发之后进行的,熔化部分已完全干燥,所以可以避免先有的因水对电熔化连接装置和发热体的损害问题,结果是,通常可以进行正确的熔化。
本发明的第三和第四方面,见图9~17以下结合附图的图9~17详细说明本发明的第三和第四方面的实施例。图9是控制电路的示意图。图10示出整个电熔化装置的外观。在图中,101是电熔化装置的主体。在主体机壳102的上表面上具有用于搬移该装置的左、右把手103、104。在机壳102一侧的操作面板105的表面上有用于起动和结束熔化过程的按钮106和107、设定加热方式的按钮108、显示熔化过程状态、加热方式设定和输入的数字显示器以及产生各种音响警告信号的扬声器110。具有插头111的电源线112,其端部插在100V商业电源上,端部具有金属杆113的地线114插入地中或其它地方,端部具有连接器115的连接线116用于连接待熔化的制品的端子,该连接线也从上述装置主体的机壳102引出。
在图中117和118是接头和管子,它们是用相同的热塑性树脂作的并将被熔化和接合。
如图11和12所示,在上述接头117的各个插口118的内周面上已预先用二次模制法嵌入加热元件121,该加热元件是将具有绝缘层的电阻丝120绕成螺旋形形成一个套筒。同时,在上述接头117的各个插口119的端部上设置小孔119a,以便露出在其内周面上的电阻丝120的端子122、123,便于检验熔化。
电阻丝120的材料、长度、厚度和电阻可以根据接头117的材料、形状和尺寸即型号随意选择。
在上述接头117的各个插口119的端部上位于上述端子122、123之间配置凹部124,该凹部的深度按接头117的材料、形状和尺寸即型号而不相同。
插入并连接在上述端子122、123上的固定端子125、126凸出于上述连接器115的连接端部。插入上述凹部124的活动端子127凸出在该固定端子125、126之间。
在上述连接器115中有电位计128,该电位计起型号传感器的作用。在连接器115的活动端子127上设置啮合电位计128小齿轮129的齿条。其构造是使得当连接器115的端子125、126插入和连接到接头117的端子122、123上时,连接器115的活动端子127同时插入到接头117的凹部124中,使得活动端子127进入和移出的量可由电位计128检测,由此可以确定接头117的材料、形状和尺寸即型号。
上述活动端子127相对于电位计128的位置由弹簧131和制动件133确定,该弹簧沿活动端子127凸出的方向施加压力,该制动件与电位计128的支架132接触并调节活动端子127的运动。
上述连接器115具有装在其中的温度传感器134,该温度传感器134的检测表面135被配置成经连接器中的孔136面向外,使得上述温度传感器134可以检测紧靠接头的外部的空气温度。
端部连接在上述连接器115上的连接线用于将连接上述端子125、126的电力线137、连接于电位计128的连接线138和连接于上述温度传感器134的连接线139连接于上述装置的主体101。
如图9所示,装置的上述主体101具有构成微计算机的控制器140,该控制器如此构成,使得用于起动和结束熔化过程的上述按钮106和107、用按钮108设定加热方式的装置141、上述显示器109、上述扬声器110的语言合成电路142、上述电位计128、上述温度传感器134和贮存加热方式的存贮器143均连接在上述控制器140上,同时,接头117的加热件121也通过上述连接器115连接在上述控制器140上,接头117的型号根据电位计128的输出鉴定、选择和设定对应于上述接头117型号的加热方式,并按照上述加热方式控制加热部件121的发热(功)量,由此进行接头117和管118的熔化过程。
上述存贮器143存贮各种类型接头117的加热方式。从图13的加热方式曲线图可知,上述加热方式确定送到加热件121的电流值(A)和时间(t)。在熔化过程开始时便通电流。当达到设定的电流值1(A1)时,保持时间1(t1)。经过时间(t1)后,电流(A)在时间4(t4)内降低一特定量。当达到设定的电流值2(A2)时,保持时间2(t2)。经过时间2(t2)之后,使电流值降至零。
接头117和管118的树脂被配置成可以利用由上述设定的电流值1(A1)在加热件121中产生的热量熔化,并且熔化的树脂由设定的电流值2(A2)在加热件121中产生的热量凝固,由此将接头117和管118结合在一起。
当接头117和管118之间的间隙(L)大时,传输到树脂上的热量便小,加热件121的温度便急速上升,这样电阻便增加。另一方面,当上述空间(L)小时,加热元件温度上升缓慢。装置被作成可以根据这种现象,利用从开始熔化过程到达到设定的电流值1(A1)的起动时间差(t3)来检测接头(17)和管(18)之间的间隙(L)并修正上述的加热方式。
同样,当执行熔化过程处的外部气温高时,树脂温度急速增加,而温度低时则上升缓慢。装置被配置成加热方式也可以根据外部气温传感器134的输出进行修改。
本实施例按照上述概括的方式配置。将电熔化装置的主体101带到要进行熔化处理的地方。将上述装置主体101的电源线112上的插销111插入在进行熔化处理处提供的电源上,接地线114端部上的金属杆113被插入地中,这样,上述装置的主体101便作好开始熔化过程的准备。将管118的端部插入接头117的插口118。将在装置主体101的连接线116的端部上的连接器115的固定端子125、126和活动端子127插入接头117的已经插入管118的插口119端部上的端子122、123和凹部124中。当接通熔化处理的按钮106时,过程便自动化进行。如图14的流程图所示,当接通起动熔化过程的按钮106时,装置首先读电位计的输出,鉴定接头116的材料、形状和尺寸即型号,从存贮器143读对应于那种型号的加热方式,然后自动执行熔化过程的初始设定。首先向加热件121输送电流。当达到设定的电流值1(A1)时,装置读温度传感器134的输出值,计算间隙(L),计算合适的热量(功),并按照该计算量修改在初始设定时间选择和设定的加热方式。当经过修改的加热方式的时间(t1)经过之后,使电流值(A)在时间(t4)内降低规定的量。当经过这段时间和达到设定的电流值2(A2)时,便停止降低电流值(A)。随后,在经过时间(t2)之后,使电流值(A)降至零,由此完成熔化过程。
如图16的流程图所示,为了读入型号选择器141的输出值还可使用设定加热方式的按钮108。在这种情况下,如果相应的加热方式存贮在存贮器143中,则可以读出该加热方式并开始熔化过程。如果相应的加热方式未贮存在存贮器143中,则通知操作者不能起动这一过程。
在上述实施例中,使接头117的插口119端部上的凹部124在形状上产生机械变化,并且电位计128将凹部124的深度转换成电信号,控制器根据该信号可以自动鉴别接头的材料、形状和尺寸即型号。
但是如图17所示那样,也可以用二次模制法预先将电阻元件144埋入接头117的插口119内,该电阻元件144的电阻值可根据上述接头117的材料、形状和尺寸即型号而不同。然后将电阻元件144的一端连接到加热元件121的电阻丝120上,与上述电阻元件144的另一端相连接的端子145在加热元件121的端子122和123之间外露于接头117的插口119的端部。插入和连接到上述端子145的固定端子146位于控制器140连接器115的连接端部,凸出在用于连接加热件121的端子125和126之间。在连接器115一侧的端子125、126和146同时插入和连接在接头117一侧的端子122、123和145内。因此,通过将接头117的电阻元件144的电阻值输入到控制器140,控制器140便可以利用接头117在电学上的改变鉴定接头117的材料、形状和尺寸即型号。
从上述实施例可清楚看出,因为该树脂制品的电熔化装置具有控制器,所以可以正确地熔化树脂制品,在上述装置中,接头的树脂通过向与待熔化的树脂制品结合的加热件供电而被熔化;上述控制器根据加热方式控制上述加热元件的热量,控制的方法是,在熔化过程开始时加热功率上升,直至达到设定的功率水平1,在该功率水平1保持时间1,然后在时间4内降低规定的量,在此之后功率水平达到设定的功率水平2,并在该水平保持时间2,最后结束熔化过程。
因为该装置可以利用从熔化过程开始到达到设定功率水平1所需的时间来检测待熔化树脂制品之间的间隙,所以它可以正确地测定待熔化的树脂制品之间的间距而不需要任何特殊的装置。
因为控制器的连接到待熔化树脂制品的连接器具有可检测外部空气温度的温度传感器,所以可直接检测紧靠待熔化树脂制品的外界温度。
因为装置可以根据待熔化树脂制品之间的间隙和外部空气温度修改加热方式,所以可以获得相应于待熔化制品不同间隙测量值和熔化过程所处位置环境温度的正确热量。
因为利用设定的功率水平1装置可使待熔化树脂制品的温度升到一个高于树脂熔点但低于使其变质或受损温度的温度,所以可以防止由于过分加热待熔化树脂制品而引起的树脂变质或受损。
从上述实施例可以清楚看到,本发明提供了一种用于树脂制品的电熔化装置,在该装置中,通过向附着在待熔化树脂制品的加热件输送电力熔化接头树脂,该设置具有控制器,该控制器可按待熔化树脂产品的型号预先读机械的或电的变化以便鉴定待熔化树脂制品的型号,并选择、设定对应于该待熔化树脂制品的加热方式,并自动地进行熔化过程。由此根据待熔化树脂制品的型号自动地和适当地执行设定的加热方式(初始设定),因而任何一个人都能正确地操作和执行树脂制品的熔化过程。
另外,因为控制器的连接器具有两种端子,一种端子连接到待熔化树脂表面或端部上露出的电阻丝的两端的端子上,另一种端子连接到构成机械的或电的变化以便鉴定待熔化树脂制品型号的部件上,所以可以通过将控制器的连接器连接到待熔化树脂制品的方法进行初始设定,而不需要任何特殊的操作。
本发明的第五方面,见图18和21下面参照附图的18至21详细说明本发明第五方面的实用例子。图18是EF接头自动熔化控制中的控制曲线图,图19示出EF接头和EF控制器的一个例子。图中201是T型EF接头,在该接头中,一对连接销204凸出于连接在热塑性树脂管202端部上的各个接收口203的端表面。图中205表示EF控制器,它包括用于自动熔化控制的CPU并具有控制线207,其端部具有可连接在连接销204上的连接器206;电源线209,其端部上具有可连接在电源上的电源插销208;起动开关210;停止开关211;和显示器212。
采用与EF接头构成材料(热塑性树脂)相同的材料用作绞合线的包皮线而构成加热丝213,该加热丝嵌入EF接头201的各个接收口203的内周面上,如图20所示。图20中可以看到,电热丝213以线圈的形式嵌入各个接收口203的内周面上,该电热丝折成双折,使得它的两个端部凸出于接收口203的端表面,该两个端部连接于连接销204。
EF接头201的插入连接销204的开孔214形成在EF控制器205连接器206的端面上,传感器壳215从插入孔214之间伸出。传感器壳215恒定地受弹簧216作用而向外凸出,其最大凸出长度受制动器217的限制。将其端部装有热敏电阻218的空心螺纹轴219拧入传感器壳215的轴向孔而将热敏电阻218装在传感器壳215的尖端,做成这样的配置,使得当连接连接器206时,传感器壳215的尖端可以与EF接头接收口203的端表面接触并检测EF接头201的温度(环境温度)。
当将EF控制器205的电源插销连接到电源上并将EF控制器205的连接器206连接在如图19所示已插入管202的EF接头201接收口203的连接销204上时,接通起动按钮210便可由控制器205开始EF接头201的自动熔化控制。
从图18可清楚看到,当起动起动按钮210而将熔化操作开始信号送到CPU时,读热敏电阻218的输出值便可检测环境温度(初始温度T1),测定在此初始温度T1时加热丝213的电阻值,然后向加热丝213输送电流(步骤1)。
当功率达到设定的值时,计算电阻的变化的程度,在设定的固定时间间隙内开关控制器,利用PID算法计算树脂比热。在这种情况下,可以在某种程度上预测树脂的比热和加热丝213的电阻温度系数。在此例中,重复三次开关动作,可以看出,加热丝13的温度在T2和T3之间反复上升和下降(由于响应滞后该温度将超过T2和T3)。开始开关控制的设定值即加热丝213的温度T2设定在比树脂熔化温度低得多的温度(步骤2)。
参考步骤2中计算的比热和电阻变化程度,使功率逐步上升,在每步中,计算电阻变化程度,在恒定的时间间隔内进行开关控制并计算比热的变化程度。在这种情况下可以判断开初预测的加热丝213的电阻与温度的依赖关系和树脂比热是否合理,如果它们不合理,则可以调整它们,从而可以进一步确定加热丝213的电阻温度系数(电阻特性)和树脂比热并确定熔化树脂的最佳温度场。在此例中,功率以四步上升,在每步中进行一次开关控制,可见看到,在加热丝213的温度从T2升到T4之后,它暂时地降到T5,当它再从T4升到T6后,它又暂时降到T7,在从T6升到T8之后,它又暂时降到T9,在又从T8升到T10之后,它暂时降到T11,然后又回到T10,还可以看到,通过在第四步中作的验证可以找到最佳温度场。还存在这些情况,即验证操作结束于第一步的情况和增加到第五步或第六步的情况。最好将步的数目限制到例如10,并在第十步停止供电和发出警告。由于功率按上述步式上升,所以可以防止加热丝213被加热到造成树脂变质的温度(步骤3)。
当第三步骤中计算的比热变化程度低于一个常数时,停止升高功率并在恒定的时间间隔内进行开关控制,当比热低于一个常数时,停止供电。在此例中,当作为在第四步中功率升高的结果,加热丝213的温度达到最佳温度T10时,如比热变化的程度低于一常数,则停止增加功率并进行开关控制,执行同等温度操作,该操作使加热丝213的温度保持在最佳温度T10。作为同等温度操作的结果,当树脂温度接近加热丝213温度时,每次进行开关控制时的功率变化幅度变小,即比热变小,随后当树脂被加热到加热丝213的温度T10时,比热近似为零,即树脂熔化,当树脂已熔化并充分发展时便停止供电,结束熔化操作(步骤4)。
这种配置还可以作成根据在第三步骤中计算的比热值计算到切断电源的同等(parallel)温度操作的延续时间和在开始同等温度操作之后经过计算的预定时间切断电源。
因为上述控制方法可以用到任何制造商的EF接头上,所以EF控制器205的连接器206最好作成可以连接到不同厂家作的EF接头连接销上。例如最好提供两个连接器206,可以分别插在不同的连接销上。另外,如果构成温度传感器的热敏电阻装在连接器中而使连接发生困难时,还可将检测外界空气温度的温度传感器放在EF控制器205的机壳上,以外界空气温度作起始温度。
如上所述,因为本发明的这一方面在控制期间可以判断树脂型号和加热丝的物理特性,而且在判断的同时,可以寻找和计算加热熔化树脂的最佳功率水平(温度场),因此可以正确地熔化所有EF接头而不管EF接头的型号或厂家。
另外,尽管除开加热丝而外通常还将具有对应于EF接头型号的电阻值的电阻器埋入EF接头中,并利用读该电阻器的电阻值区分EF接头型号,但在本发明中不需要这些电阻器,所以EF接头成本降低,简化了EF控制器连接器的结构。
另外,尽管在过去在管子和EF接头之间的间隙对控制构成相当的干扰并造成有熔化缺陷的制品,但是本例通过比热检测熔化接合状况,间隙不构成干扰而且可消除熔化缺陷。
本发明的第六方面,见图22至24下面通过图22至24所示的例子详细说明本发明的第六方面。图22是树脂制品301的部分放大截面图,图23是电熔化操作的说明示意图。图中,编号301是控制器;302是装在长方箱形主机壳顶表面上的便于搬动控制器的左右把手;303是主机壳前表面上的操作面板,在该板上有起动和停止电熔化操作的按钮304和305、设置加热方式的多个按钮306……、目视显示熔化操作状态和设定的与输人的加热方式等的数字显示器307和产生多种警告与忠告声音的扬声器308。电源线310的端部上有插销309,它连接于100V交流市电上,地线312的端部上有金属杆311插入地等,连接线314的端部上有连接器313,它从控制器301的主机壳引出连接到树脂制品。
在图中,315和316是接头(树脂制品1)和管子(树脂制品2),它们是用同样材料(聚乙烯树脂)作的热塑性制品,该制品通过使其邻接表面熔化而被粘合在一起。
如图22和23示出那样,用双折电阻丝318形成螺旋形套筒的加热件利用插入形成法嵌入到接头315插口315a的内周表面上,电源阳端子320和321的接触表面接触接头315插口315a端表面上的电阻丝318的端部。
电阻丝318由热塑性树脂(最好与接头相同)复盖的电阻丝材料例如镍构成,电阻丝318的材料、长度和粗细被选择为适合于接头315的材料、形状和尺寸。
另外,预先将其电容按接头的材料、形状和尺寸加以区分的电容器313埋入接头315的插口315a,该电容器322的一端连接于电阻丝318的一个端部。与电容器322另一端部相连接的型号信号输出阳端子323的端部接触表面在接头315插口315a的端部上的阴电源端子320和321之间露出。
另一方面,阳端子324、325和326凸出于连接器313的连接端表面,并被固定,使得可同时插入阴端子320、321和323并与它们连接。型号信号输入阳端子326在阳端子324和325之间,形成管形形状,管形温度传感器壳327装在阳端子326中,可以自由滑动,在温度传感器壳327的头部安装作为温度传感器的热敏电阻328。温度传感器壳327由弹簧329的向着阳端子326作用的压力固定,热敏电阻328的头部保持凸出于阴端子326并可自由移进和移出;阳端子325、325、326和热敏电阻328均连接到控制器301。
接通和断开电流的开关部分330在构成加热件的电阻丝318的中间部分形成。开关部分330断开位于接头315插口315a最内部分的加热件319的一个端部,该开关部分位于电阻丝318的弯曲端部。在该断开的端部除去电阻丝318的复盖层,露出电阻丝;另一端与电源阳端子320连接的电阻丝的一端和另一端与电源阴端子321连接的电阻丝的一端在非接触状态期间(开关断开)露在接头315插口315a外周侧的最内部分的外面。仅当管子316的端部正确插入到接头315的插口315a的最内部分时,电阻丝的另一端才保持与管子316端部的外周面上接触;如果管子316的端部没有正确地插到接头315的插口315a的最内部分,则加热件319不发热。
应用一个弹簧接触片使开关部分303进行确实的开关,简单的方法是,在接头315的插口315a的内周面上形成一个槽,以便控制接触片的位置。
将控制器301搬到熔化操作的地点,将电源线310端部上的插销309插入在熔化操作地点的电源上,并将地线312端部上的金属杆311插入熔化操作地点的地中和设定控制器301使其可以进行熔化操作。将管子316的端部插入接头315的插口315a并定位。用夹具(未示出)保持接头315和管子316在接触位置。将在控制器301的连接线314端部上的连接器313的阳端子324、325和326插入到接头315的已经插入管子316的插口315a的端面上的阴端子320、321和323中,然后接通熔化操作起动按钮,自动开始熔化操作。因此当压下并接通熔化操作起动按钮时,电流便流过电阻丝318并从接头315读型号识别信号和温度型号。基于这些信号设定对应于这种树脂制品型号的加热方式,即由加热件319给出的热量和加热时间。利用这种加热方式控制电阻丝318的电流,由此利用加热件319产生的热量熔化管子316外周面和接头315插口315a内周面上的树脂,使它们变成熔化态。
在这种熔化操作中,如果管子316的端部没有定位在正确地插入到接头315插口315a的最内部分的位置,则电阻丝318的开关部分330处于打开的状态,因此加热丝318不可能流过电流,不能进行熔化。仅当管子316的端部定位于正确插入到接头315的插口315a的最内部分的位置时,电阻丝318的开关部分330才接通,使得电流可以流过电阻丝318和可以执行熔化操作。
从上述例子可以清楚看到,在本发明的第六方面中,树脂制品1 315和树脂制品316被定位在接合位置,控制器301的连接器313被连接到露在树脂制品1 315表面上的两端销320和321上。流过电阻丝318的电流由控制器301控制,该电阻丝埋入树脂制品1 315和树脂制品2 316的接触表面中,其端部连接到端销320和321上。因此熔化树脂制品1 315和树脂制品2 316。在本发明的方法中,接通和断开电流的开关303被形成在电阻丝318的中间位置,仅当树脂制品1 315和树脂制品2 316正确定位在结合位置时,才能进行熔化操作。因此这种方法可以防止接合缺陷,在某种意义上具有先有技术中未曾见到的显著效果。
本发明的第七方面,见图25至35首先根据图25至35详细说明本发明第七方面的检测树脂制品熔化的方法。
图25是本发明熔化检测方法的说明图。在图中,401是控制器;402是用于搬动装置而装在长方形箱式主机壳上表面上的左、右把手;404、405是起动和停止熔化操作的按钮;406是多个输入按钮,位于主机壳的前表面上,用于在操作面板403上设定加热方式;407是数字显示器,显示目视的熔化操作状态和设定与输入的加热方式;408是扬声器,产生一系列信息的和警告的声音。还有电源线410,在其端部是连接100V交流市电的插销409;地线端部的金属杆411插入例如地中;端部上有连接器413的连接线414连接在树脂制品上。所有这些线均从控制器401的主机壳上引出。
在图中,415和416是待熔化接合的用相同物质(例如聚乙烯树脂)作的热塑性树脂制品的接头(树脂制品1)和管子(树脂制品2)。417是夹具,它将接头415和管子416固定在接合位置以便进行熔化。
如图26和27所示,作为电阻丝的加热件419形成螺旋套筒形式,以插件形式预先插入上述接头415的插口415a的内周表面内。端销402和421连接在电阻丝418的端部,平行地凸出于上述接头415的插口415a的端表面。
上述电阻丝418是例如镍丝的电阻丝,用热塑性树脂(最好与接头树脂相同)包皮。电组丝418的材料、长度、粗细和电阻可以根据制品的材料、形状和尺寸选择。
在接头415的插口415a端面上的端子420和421之间形成凹孔422,其深度随接头415的材料、形状和尺寸而异。
其中插入端销进行连接的固定端子423和424嵌入连接器413的连接端面,其头部插入凹孔422的作为传感器臂的活动端子425凸出在固定端子423和424之间。
作为型号传感器的电位计426装在连接器413内部,在连接器413中的活动端子上形成齿条428,用于啮合电位计426的小齿轮427。当接头侧的端子402和421与连接器413侧的端子423和423相连接时,在连接器413侧的活动端子425的头部便插入接头415侧的凹孔422,电位计426可以检测活动端子425的运动范围,由此可以鉴定制品的型号,包括材料、形状和尺寸。
弹簧429使活动端子425保持与电位计426的固定支架430接触,该弹簧沿活动端子425凸出的方向施加压力,活动端子425由制动器431定位在自由滑动电位计426的标准位置,该制动器限制活动端子425在凸出方向的移动。
活动端子425成形为管状形,可拆卸的管状温度传感器壳432插入并固定在活动端子425中。作为温度传感器的热敏电阻433装在温度传感器壳432的头部,当热敏电阻433的端表面露于活动端子425的端面上而连接器413与接头415相连时,热敏电阻433便与凹孔422的底表面接触,当熔化操作开始时,便可检测接头415的表面温度(大气温度)。
连接在连接器416端部上的连接线414将连接于端子414和423的电源线、连接于电位计426的连接线和连接于热敏电阻433的连接线连接到控制器401上。
如图28和29所示,夹具417具有固定制品而不是固定接头415插口415a的夹具构件1434和固定管子436的夹具构件2435。两种夹具构件434和435由装在待夹制品上的半圆形的夹臂436和437构成,夹具构件1的一个夹具臂436和夹具构件2的一个夹具臂436通过连接臂438被联接;夹具臂436的一端如此联接,使得另一夹具臂的一端可绕枢轴439自由转动;连接螺栓404将活动夹具臂437的另一端部连接在固定夹具臂436的另一端部上。接头415和管子416通过夹具416的相应夹具构件434夹紧在结合位置。
如图30所示,控制器401的微机(CPU)441具有开始和停止熔化过程的按钮404和405、包括输入加热方式设定的按钮406……的加热方式设定装置442、显示器407和扬声器408的音响合成电路443。电位计426、热敏电阻433和记录加热方式的存贮器444均连接到CPU441。CPU441通过连接器413连接到接头415的加热件419。根据电位计426的输出鉴定接头415的型号,按照接头的型号选择和设定加热方式,根据该加热方式控制加热件419的电阻丝418的电流,由此电熔化接头415和管子416。
如图31所示,当每种接头型号415的加热方式贮存在存贮器444中时,加热方式示出时间(t)和通过加热件419的电阻丝的电流(A)之间的关系。从熔化操作开始便流过电流,当达到设定电流1(A1)时,在该设定电流1(A1)保持时间1(t1),经过时间1(t1)后,在时间2内按固定的速度降低电流(A)。当达到设定的电流2(A2)时,在该设定电流2(A2)保持时间3(t3)。当经过时间3(t3)后,使电流降至零。
因而在接头415和管子416之间的接合处的树脂由设定的电流1(A1)流过加热件419产生的热熔化,熔化的树脂由加热件419通过设定电流2(A2)产生的热量调节,因此接头415和管子416熔化。
如果接头415和管子416之间的间隙大,则传输到树脂上的热量小,加热件的温度上升快,温度上升导致电阻增加。相反,如果间隙小,则传输到树脂上的热量大,加热件419的温度上升慢。利用这些特性,可以利用电流(A)从熔化操作开始到达设定电流(A1)所经过的时间(t4)检测在接合处的接头415和管子416之间的间隙,并且由此校正加热方式。
另外,还作成可利用热敏电阻433的输出校正加热方式,因为当外界大气温度在开始熔化操作时比较高,则树脂升温快,相反,当外界大气温度低时,则树脂升温慢。
将控制器401搬至熔化操作现场,将电源线412的端部的插销411连接到在熔化现场提供的电源上,将接地线412端部的金属杆413插入熔化操作现场的地中并设定控制器,使其可以进行熔化操作。将管子416的端部插入接头415的插口415a中并定位。利用夹具417将接头415和管子416固定在接合位置。将控制器401连接线414端部上的连接器413的活动端子423和端子423与424插入到在接头415的已插入管子416端部的插口415a端表面上的凹孔422和端子420与421中。接通熔化开始按钮404便自动开始熔化操作。如图32和33的流程图所示,当熔化操作开始按钮404接通时,使读电位计426和热敏电阻433的输出,并根据电位器426的输出鉴定接头416的型号。然后从贮存器444读对应于这种信号的加热方式,随后自动设置熔化操作的起始设定。
随后,将电压加在加热件419的电阻丝418的端部,使电流流过电阻丝。当电阻丝418的电流(A)达到设定电流1(A1)时,便根据电流从开始熔化操作到达设定电流1(A1)所经过的时间(t4)计算接头415和管416之间的间隙。然后根据热敏电阻的输出值计算适当的热量(功)并根据该热量校正初始设定的加热方式。在进行校正之后经过规定的时间(t1)之后,以固定的比例降低电流(A)并达到设定的电流2(A2)。在经过降低电流的时间(t2)之后,停止降低电流(A),并且经过时间(t3)之后,使电流降到零。由此完成由控制器401执行的熔化操作。当熔化操作由控制器(401)完成时可以拔掉连接器413,夹具417应在熔化树脂已冷却并在室温下硬化之后撤去,由此接头415和管子416完全接合在一起。
下面详细说明在电熔化树脂制品例如接头415和管子416之后确认熔化的三种方法。
(确认树脂制品熔化的第一种方法)在此方法中,采用型号识别装置来选择和设定适合于接头415的加热方式,在该识别装置中利用电位计426(型号传感器)和装在控制器401的连接器413上的活动端子425测量接头415上的凹孔422的深度,由此确定接头415的型号;采用包括热敏电阻433的温度识别装置来测量开始熔化操作时接头415的温度(外界大气温度),该热敏电阻433嵌入与凹孔422的底部接触的活动端子425的头部。因此当接头415的插口315a的树脂受加热件419加热并膨胀时,靠近加热件419的凹孔422的底部便升高,因而使活动端子425进一步移离熔化操作开始时的位置,随树脂温度升高该种运动变大。热敏电阻在熔化操作期间一直保持与凹孔422的底部接触。
因此,如从图34的流程图可清楚看到的那样,通过比较在熔化操作开始时和加热之前的电位计426的输出值以及在熔化操作期间和加热之后的电位计426的输出值,便可以证实插头415的插口415a和管子416之间的接合处的树脂完全熔化。当这种比较显示差值大于设定值而且热敏电阻433的输出也大于设定值时,熔化是完全的。
因此,检测熔化期间树脂膨胀的温度可以证实树脂熔化。
(证实树脂制品熔化的第二种方法)在这种方法中,如图25、28、29和35清楚示出那样,夹具417具有固定接头415的插口415a的夹具构件3 445。该夹具构件3 445由两个固定部件的半圆形夹臂446和447构成。夹具构件3 445与连接夹具构件1 434和夹具构件2 435的联接臂438的中间部分整体成形,夹具臂447的一端通过枢轴448可自由转动地连接在夹具臂446上。还有定位凹部449和定位凸出部450,它们将活动夹臂447的另一端可自由脱开地连结在固定夹臂446的另一端。夹具构件3445的夹臂446和447的另一端由定位凹口449和定位凸出部450接合在一起,使得在熔化操作之前夹具构件445的内径几乎等于接头415插口415a的外径。当接头415的插口415a和管416完全熔化时由于膨胀压力的作用,定位凸出部450脱出定位凹部449,这样便松开夹具构件3 445对接头415插口415a的固定。因此通过夹具417的夹具构件3 445的这种自动松开可以证实树脂制品的完全熔化。
(证实树脂制品熔化的第三种方法)在这种方法中,检测电阻丝418上的电流和其电压值。
电路的电阻(R)随树脂温度增加而改变,一直持续至树脂熔化时。从试验可以清楚看出,当树脂完全熔化时温度变化减小,线路电阻(R)在时间(t4)内变成稳定的。在这种方法中,如图31所示,因为可以从熔化操作开始通过遵从加热方式的变化电压(V)确定电流(A),所以当检测电流和电压并且电流和电压以相同的比例改变时,电路电阻值便是稳定的。该电阻(R)在特定的时间内保持稳定,因此通过这一现象可以证实树脂制品的完全熔化。
当电流从加热方式中的设定电流1(A1)降到设定电流2(A2)时总是要发生这种现象。这是树脂已经加热规定时限的时间和树脂已熔化的时间。
从上述例子可以看出,在本发明中,树脂制品1 415和树脂制品416被设置在接合位置,控制器401的连接器413被连接到凸出于树脂制品1 415表面的端销420和421上。使电阻丝418通电,其电流由控制器401控制,该电阻丝埋在树脂制品1 415和树脂制品2 416的接触表面内,其端部连接在端销420和421上,因此树脂制品1 415和树脂制品2 416被同时电熔化。以下列方式确认这种熔化。在操作开始时应用型号识别装置来确定树脂制品1 415的型号作并设定适当的加热方式当连接器413连接到端销420和421时,凸出于连接器413的传感器臂不同深度地嵌入到树脂制品1 415表面上的凹孔422并利用传感器臂425的运动检测凹孔422的深度。根据在操作开始时树脂制品1 415的温度利用温度检测装置校正加热方式。在这种校正中,利用温度传感器433检测树脂制品1 415的表面温度。该传感器433装在与凹孔422底面接触的传感器臂425的头部。因为可以同时检测树脂正熔化的温度和膨胀,所以可以检测树脂熔化时的温度和膨胀,因而确认树脂的熔化,而不像先有技术那样需要检测孔。另外,还不需要用于树脂温度或膨胀的特殊传感器,因为这些功能可由现有的传感器426和433执行。而且,因为检测正熔化的树脂的温度和膨胀二者,所以可以确实地证实树脂制品的熔化而不需要多余的成本。
可用以下方法证实树脂制品的熔化。将树脂制品1 415和树脂2 416设置在接合位置,将控制器连接器连接到凸出于树脂制品1 415的表面的端销420和421上,电热丝418的电流由控制器401控制,该电热丝嵌入树脂制品1 415和树脂制品2416的接合表面中,其两端连接到上述端销420和421,由此熔化树脂制品1 415和树脂制品2 416,夹具构件445固定树脂制品1 415和树脂制品2 416,它是将树脂制品1 415和树脂制品2 416固定在接合位置的夹具417的构件,在熔化期间在膨胀压力的作用下可使夹具部件445的夹持松开。因此可证实树脂产品的熔化而不使用观察孔,而且还可以简单地采用夹具417的机械操作证实树脂产品的熔化而不用控制器401。
也可以采用以下方法证实树脂产品的熔化。将树脂制品1 415和树脂制品2416设置在接合位置,将控制器401的控制器连接器413连接在凸出于树脂制品1415表面上的端销420和421上,电阻丝的电流由控制器401控制,该电阻丝嵌入树脂制品1 415和树脂制品2 416的接合表面中,其两端连接于端销420和421。树脂制品1 415和树脂制品2 416被熔化。检测电流流过电阻丝418的线路的电流(A)和电压(V),该电流(A)和电压(V)以相同的比例改变,可以检测线路电阻(R)在至少规定的时间内线路电阻(R)是否保持常数。当采用这种方法证实树脂制品的熔化时,检测该控制器401的控制值,因此可以检测树脂产品的熔化而不用在先有技术中的观察孔。另外,因为可以直接检测伴随树脂熔化的电学改变,所以可确实地证实树脂制品的熔化。
本发明的第八方面,见图36图36示出用作过渡连接件的管连接件500。过渡连接件500可使电熔化件连接到金属(特别是黄铜或钢)管部件例如阀上。
过渡连接件的塑料轴向端部502包括嵌入电熔化线圈508的插口506。该线圈的操作方式完全与上述加热件中任何一个适当的加热件操作方式相同。上述控制箱中任何一个相当的控制器可以用来控制插口506和插入到插口506的塑料管的电熔化连接。
过渡连接件还包括金属轴向端部分504,该部分具有包括外螺纹表面501的圆筒部分510。该金属部分可利用例如螺纹501固定在适当的部件例如阀门上。过渡连接件500的塑料部分502在制造期间模制在金属部分504上。塑料部分502在筒型部分503上具有径向向内伸的键形结构514,其内部用于装金属部分504。在塑料部分502的圆筒部分503中装着的金属圆筒部分524的径向外表面上金属部分504具有相应的径向向外伸的键形结构512。金属部分504包括外伸的环形凸出部526,它密封塑料部分的圆筒部分503的轴向端部。
过渡连接件500还包括居中径向向内伸的腹部501,该腹部构成由过渡连接件连接的金属管和塑料管之间的中间流路。
该连接件能使塑料端部502电熔化,能使金属端部504用常规机械连接法连接到金属部件,因此构成电熔化部件和金属管部件之间的界面。
本发明的第九方面,见图37图37示出通过管子接头的轴向截面图,在该管子接头中,加热件埋入管壁而不是埋入独立的连接件例如插口中。接头602包括第一管部分604和第二管部分606,它们利用中间线圈608成型在一起。达到这一点的方法是,在第一管部分604上形成颈区域,该颈区域形成一个其直径小于管壁部分其余直径的轴向端部区。管子部分606具有内径稍增大的径向内开口部分,以便容纳第一管部分604的颈区域。结果,管部分604的颈部分可以嵌入到管子部分606的相应开口部分,而线圈608夹在中间。
这种配置由于使用线圈608的隔离的加热件而变得更为方便,这种配置能够直接接合大直径的管和滑衬管而不用另外的插口部件或模制件。
这种配置还能够组成管部件例如插口,而线圈埋在壁表面内而不是定位在壁表面上。在这种情况下由例如插口壁代替管壁。
加热件的金属丝如果需要可用镍或镍合金如镍铬合金制作。虽然镍比较贵,但它具有优良的防腐蚀特点,更重要的是它具有较高的电阻系数。这意味着镍或镍基合金丝的电阻显著随温度变化,使得连接件实际上具有一个装在里面的热电偶,可以直接测量在接合区域的温度。这构成本发明的第十方面。在应用低电压高电流时镍比铜好,和铜相比,对于通常需要进行长时间加热的大连接件,镍的加热时间比较短。
权利要求
1.一种电熔化连接装置,在该装置中,通过向紧贴热塑性树脂接头插口的内周面上配置的发热体输送电流,使热塑性管子的插头熔化,从而使其固定在上述插口中,该装置的特征在于,当流过发热体的电流上升到设定电流值所需的时间超过设定时间时,使用检测机构检测管子是否没插好,判断出管子插头未正确地插入接头插口中,而且,在根据检测机构检测管子的不良插入时,断开发热体的电流。
2.一种电熔化连接装置,在该装置中,通过向紧贴热塑性树脂接头插口的内周面上配置的发热体输送电流,使热塑性管子的插头熔化,从而使其固定在上述插口中,该装置的特征在于,装置在熔化过程之前执行干燥过程,在干燥过程中热塑性树脂由上述发热体加热到低于其熔化温度,在熔化过程中热塑性树脂由上述加热体加热到高于其熔化温度。
3.一种熔化树脂制品的电熔化装置,其中,通过向装在待熔化树脂制品上的加热件供电便可熔化接头部件的树脂,其特征在于,该装置具有控制器,该控制器按照加热方式控制由上述加热件施加的热量,因此在熔化过程开始时功率水平上升,直至达到第一设定功率水平,并在该功率水平保持第一时间,然后在一个第二时间内降低规定的量,之后达到第二设定的功率水平并在该水平保持第三时间,随后熔化过程结束。
4.如权利要求3所述的树脂制品的电熔化装置,其特征在于,该装置根据从熔化过程开始到第一设定功率水平需要的时间来检测待熔化树脂制品之间间隙。
5.如权利要求3或4所述的树脂制品的电熔化装置,其特征在于,连接到待熔化树脂制品的控制器的连接器具有检测外界大气温度的温度传感器。
6.如权利要求4或5所述的树脂制品的电熔化装置,其特征在于,该装置可根据待熔化树脂制品之间的间隙和外部大气温度修改加热方式。
7.如权利要求3所述的树脂制品的电熔化装置,其特征在于,该装置利用第一设定功率水平使待熔化树脂制品的温度升到树脂熔点以上的一个温度,这个温度低于树脂变质或受损的温度。
8.一种树脂制品的电熔化装置,在这种装置中,通过向装在待熔化树脂制品上的加热件可熔化接头部件的树脂,其特征在于,该装置具有控制器,该控制器按照待熔化制品的型号可预先读机械的或电的变化,以便识别待熔化制品的型号,随后选择和设定对应于那种型号待熔化树脂制品的加热方式,并自动执行熔化过程。
9.如权利要求8所述的树脂制品的电熔化装置,其特征在于,控制器的连接器具有两种端子,一种端子将其连接到露出于待熔化树脂制品表面或端部上的在电阻丝两端上的端子,一种端子将其连接到为识别该待熔化树脂制品而构成机械的或电的变化的部件上。
10.一种电熔化接头自动熔化控制的方法,方法的特征在于(1)响应熔化操作起动信号,检测环境温度和测量在该环境温度下的电熔化接头电热丝的电阻值,并使设定的功率输送到上述电热丝;(2)当功率达到设定值,计算电阻变化程度,在设定的恒定时间间隔内进行开关控制,用PID算法计算树脂的比热;(3)根据在(2)中计算的电阻变化程度和比热,逐步增加功率,在每一步中计算电阻变化的程度,在设定的恒定时间间隔内进行开关控制和计算比热改变的程度;(4)当在(3)中计算的比热变化程度低于某个常数时,停止增加功率并进行恒定时间间隔的开关控制,当比热低于某个常数时,切断电源;
11.一种电熔化接头自动熔化控制的方法,其特征在于(1)响应熔化操作起动信号,检测环境温度和测量在该环境温度下的电熔化接头电热丝的电阻值,并使设定的功率输送到上述电热丝;(2)当功率达到设定值,计算电阻变化程度,在设定的恒定时间间隔内进行开关控制,用PID算法计算树脂的比热;(3)根据在(2)中计算的电阻变化程度和比热,逐步增加功率,在每步中计算电阻的变化程度,在设定的恒定时间间隔内进行开关控制和计算比热的改变程度;(4)当在(3)中计算的比热变化程度低于某个常数时,停止增加功率并进行恒定时间间隔的开关控制,根据步骤(3)计算的比热计算时间,在此时间之后切断电源。
12.一种熔化树脂制品的方法,其特征在于,将第一树脂制品和第二树脂制品定位在接合位置,使控制器的连接器连接于在第一树脂制品表面上露出的一对端销上,电阻丝的电流由控制器控制,该电阻丝嵌入第一树脂制品和第二树脂制品的接合表面,其端部连接于端销;开关电流的开关部分形成在电热丝的中间部分上,仅当第一树脂制品和第二树脂制品放置在规定的接合位置时,该开关才由第二树脂制品保持闭合,由此使电熔化操作可以进行。
13.一种证实树脂制品熔化的方法,其特征在于,在接合第一树脂制品和第二树脂制品的树脂制品熔化粘接方法中,使控制器连接器连接于凸出于第一树脂表面的端销,电阻丝的电流由上述控制器控制,该电阻丝嵌入第一树脂制品和第二树脂制品的接合面中,其端部连接于上述端销,使第一树脂制品和第二树脂制品熔化;当连接器被连接到上述端销上时,树脂型号识别装置用于在开始操作时识别第一树脂制品的型号和用于设定相应的加热方式。
14.如权利要求13所述的方法,其特征在于,传感器臂凸出于连接器,嵌入树脂制品上的凹孔,该凹孔的深度随树脂制品的型号改变,因此树脂制品的型号可根据传感器臂的移动长度确定。
15.如权利要求14所述的方法,其特征在于,使用温度识别装置,该识别装置利用装在上述传感器臂头部上的温度传感器与凹孔底面的接触来检测第一树脂制品的表面温度,应用所检测的结果根据开始操作时第一树脂制品的温度校正加热方式。
16.一种证实树脂制品熔化的方法,其特征在于,在接合第一树脂制品和第二树脂制品的熔化树脂制品的方法中,控制器连接器连接到凸出于第一树脂制品表面的端销,电阻丝的电流由上述控制器控制,该电阻丝嵌入第一树脂制品和第二树脂制品的接合表面中,其端部连接在上述端销上、由此熔化第一树脂制品和第二树脂制品;使用包括夹具构件的夹具,该夹具构件固定第一树脂制品和第二树脂制品,由此将第一树脂制品和第二树脂制品固定在接合位置,上述夹具构件的夹紧作用在熔化期间的膨胀压力作用下松开。
17.一种证实树脂制品熔化的方法,其特征在于,在接合第一树脂制品和第二树脂制品的熔化树脂制品的方法中,控制器连接器连接到凸出于第一树脂制品表面的端销,电阻丝的电流由上述控制器控制,该电阻丝嵌入第一树脂制品和第二树脂制品的接合表面中,其端部连接在上述端销上,由此熔化第一树脂制品和第二树脂制品,检测电流值和该电流流过上述电阻丝所经电路的电压值,这些电流值和电压值以相同的比例改变,当线路的电阻在至规定的时间内保持常数时,便可以检测这种熔化。
18.一种管连接件,该连接件包括第一轴向端部分和第二轴向端部分,第一轴向端部分包括与金属管部件接合的装置,第二轴向端部分包括加热件,该加热件由于通过电流而发热,从而使塑料管部件电熔化,使第一和第二轴向端部分接合在一起。
19.一段管子,在端部分中包括独立的加热件,该端部分适合于利用加热件的电熔化方法直接连接到不同长度的管子的端部分上。
20.在构成电熔化接头中使用的插头和插口,上述插头或插口包括埋入其壁部分中的隔离加热件。
21.在电熔化连接管部件中用的加热件,加热件包括镍或镍合金;其中加热件适合于用作温度传感器。
全文摘要
电熔化连接装置包括用于检测管接头(16)和管(17)不良装配的和中止焊接操作而不损坏接头的控制箱(1)。电熔化连接装置还包括用于测量管子和接头之间间隙的和改变焊接参数以进行补偿的控制箱(1)。电熔化连接装置在焊接之前加热管子和接头以保证表面是干燥的。电熔化焊接的插口具有埋在其壁部分的线圈(19)。在金属和电熔化的部件之间的接口处设置过渡连接件。电熔化装置包括用于检测所用接头型号的装置(8)。电熔化装置包括利用电阻检验、机械装置和连接器上的监示器检查焊接是否完成的装置。
文档编号B29C65/34GK1142796SQ94194989
公开日1997年2月12日 申请日期1994年12月14日 优先权日1993年12月15日
发明者熊谷胜 申请人:特殊工业株式会社, 东亚高级继手阀门制造株式会社