专利名称:固体样型制造的方法及其设备的制作方法
技术领域:
本发明涉及一种成层的样型制造方法及设备,以及特别是涉及一种其内具有能改进固体模型的生产的数个增压级的固体样型制造系统。
成层的制造方法的存在超过万年以上,体现在工匠们顺序地加入粘土卷来制作诸如各种罐和瓶之类的复杂物品。较近代的改进方法包括W.W.McCarroll的美国专利556,472号和R.Baker的美国专利1,553,300中所描述的金属溶敷(沉积)方法;A.J.Herbert发表在1982年的《图像工程的应用》(Appl.Phot.Eng.)杂志的“固体物的生成”文章中的和C.W.Hull的美国专利4,575,330号中的紫外线医用聚合物的沉积方法;W.E.Masters的美国专利4,665,492中的物料微滴的喷射方法;V.Pratt等人的美国专利5,038,014号中的颗粒烧结方法;P.L.DiMatteo的美国专利3,932,923号中描述的连续带状物的应用法;以及C.W.Hull等人的美国专利5,192,559号中的定形纸层的应用法。
这种累积的工艺规程称为成层的制造方法。在更近代的计算机化了的实施例中,要生成的有形零件的数学图画(通常)被分割成(多个)平面层片,而那些层片具有各自的形状并被用来制造成品零件。
最近几年中,成层的制造方法的最主要的应用就是快速成型法;快速地制成计算机辅助设计(CAD)模型的有形等同物,用于设计校验、干涉检查、用户检收、以及功能检验。在V.valavaara的美国专利4,749,347号中描述了可凝固材料的计算机控制沉积。用J.S.Batchelder等人1990年1月10日的IBM技术公开告示中的垂直定位的管嘴对Valavaara的技术作了改造。在S.S.Crump的美国专利5,121,329号中描述了一种使用线状或杆状固体材料进给的改良方法。另外的改良方法在S.S.Crump的5,340,433号专利和J.S.Batchelder等人的美国专利5,420,351号中作了描述。
本发明的目的是解决在改进基于成层的制造方法的挤压性能方面遇到的矛盾要求。本发明的核心焦点是使物料从管嘴挤出的速率和被挤压物粘度增大的能力同时增加,挤出速率增大就使有形零件能更快地制成,粘度增大的能力增加使制出的有形零件具有更多所需的机械性能,以及减小被挤压物的横截面积以达到较好的性能。已有的技术不能充分地达到高的需求压力、高的材料流通率及高的压力变化率的相结合。
本发明的第二个目的是为了在局部地改变被沉积材料的成分时更好地利用基于挤压的成层的制造方法的固有能力。这包括多级的挤压机,从几个材料源中的一个给挤压机自动地送料的能力,以及跟踪这几个材料源的工作效率和沉积性能。
本发明的第三个目的是提供能实现成层的制造方法的系统,它具有的功能使得在典型的工程环境下不需要操作者很多的帮助。这包括监测和改变加工工艺特性的能力,简化和自动搬运已生成的零件,对环境的振动的非敏感结构以及产生小的振动。
一种改进了的基于挤压的制造系统含有一台或多台的挤压机,每台挤压机包含至少二个增压级。在优选的实施例中,第一增压级是由热塑性的固体薄片通过孔口进入加热器腔室的运动来造成的。在其它的优选实施例中,薄片被存储在可拆卸的、电子示踪的匣子中并通过切断机构使它们从匣子中分离出来,该切断机构根据需求把薄片从匣子输送到牵引式送进机构。在每一个实施例中,第二增压级是利用泵来形成的,使第一增压级保持热塑性材料流体在所有期望的泵出率下流向泵。
图1是基于挤压的成层的制造系统的示意图。
图2是基于挤压的成层的制造系统的线料驱动装置示意图。
图3表示的是含有两个增压级系统的本发明实施例。
图4(a)及4(b)表示的是热塑性材料薄片的外形轮廓。
图5a表示的是带电子示踪的匣子,用于装存和分配薄片材料。
图5b是匣子的前部及顶部(部分)的立体图。
图6表示的是在本发明所使用的台板中的管嘴测量传感器。
图1一般地表示了基于挤压的成层的制造方法中的工艺流程。计算机辅助设计(CAD)程序装在处理器102中并生成描述要加工的零件104的几何外形的文件。这一文件通过通信联线106传送至下一级处理器108,处理器108含有通过计算把文件(指文件中含有的零件轮廓)细分成与样型110相对应的体积单元的程序,样型110可通过从管嘴来的挤出物来形成。增加了附加的体积单元112以便在构成零件期间为零件提供机械支承。体积单元连续地供给以使沉积材料得到合适的支持以及使先沉积的材料不会和后续沉积相干涉。
瞬时速度和沉积率与挤压头所采用的轨迹有关,该挤压头用来完成体积单元112的加工工序。根据通过导线114接收来的信号,电子控制器116控制机器人/横梁架118随着确定的轨迹和时基使挤压头120及管嘴122相对于支承底衬板124顺序地定位。挤压机以预定的挤压率同步地把热塑性材料挤压出管嘴122以便生产出成品零件126。零件126用一层低熔点的热塑性粘合剂128粘结在底衬板124上,粘合剂128的功用将在下面进一步详细的研究。
两级增压高速的成层的制造方法中使用的挤压机的结构是以峰值压力容量、压力灵敏度、压力均匀度、离析的气体、温度适应性、可靠性及成本来规定的。
峰值压力有意义的挤压材料的粘度(V)从塑性材料及液态金属的几厘泊变化到工程塑料的约10,000泊。管嘴孔口内直径(d)的有利范围从0.003英寸至0.03英寸。管嘴沉积挤压物(其横截面近似等于管嘴孔口)的最大线速度(V)从0.2英寸/秒变化到大约20英寸/秒。假定孔口的长度常用的是二倍于孔口的内直径,可再写出描述管中压降的泊萧公式用来估计把挤压物挤出管嘴孔口时的有关压降ΔP=64·ν·V/d在低速的极限、低粘度以及大尺寸孔口的情况下,所需的工作压力高出周围环境约0.00006磅/英寸2;在高速极限、高粘度及小尺寸孔口的情况下,所需的工作压力高出周围环境约60,000磅/英寸2,或是大于低压力极限十亿倍。
压力灵敏度当横梁架趋近直线轨迹的非共线交叉点时,机械方面的限制使得横梁架放慢其沿直线轨迹运动的速度。而必须尽可能快地制成零件的时间方面的限制需要横梁架于离开这个交叉点时加速。结果是,管嘴相对于支承基座的瞬时矢量速度的标量变化非常快。例如,横梁架以0.3个重力加速度(g)的加速度在20英寸/秒速度下运动,它将在50毫秒时完全停下来。这表示了挤压机的从零至全压力或从全压力回到零的最大响应时间。
压力均匀度挤压率的变化量(不包括制造零件所需的变化量)导致成品零件表面上可见的波纹。为使挤压显得均匀通常需要的变化度为小于或等于百分之一。
离析的气体许多挤压材料在被传送通过挤压机时释放出气体。热塑性聚合物有些潮湿,当它们被加热至熔化温度时将释放出水汽和蒸气。增塑剂、单分子物体及氧化物能释放出其它类型的气体。在挤压机的增压部分中的气体起到调节箱或调节器的作用并降低挤压机的压力灵敏度。于是,在优选实施例中,挤压材料的体积带着全压力保持尽可能小的体积。
为了满足这些矛盾的要求,以及使挤压机的数量少,它在制造时成本不贵,使用时性能可靠,由挤压机完成的增压过程被分成两级或多级。每级仅对某些规范作出必须的优化。增压级是机械的子单元,挤压材料流过它并在其输出口产生高于输入口的压力。
在所有的优选实施例中,第一增压级增大了由挤压材料遭受的从初始压力至中间压力的绝对压力。初始压力通常是周围的大气压力。中间压力是初始压力与把挤压材料挤压出管嘴所需的峰值压力之间的压力。中间压力是在最大的所需体积沉积率下把挤压材料挤压入第二增压级的入口时所需的压力。更具体地说,在所有期望的体积沉积率下,中间压力保证挤压材料充分地流向第二增压级并保证挤压材料不中断流动。
在所有优选的实施例中,第二增压级含有泵,该泵增大了挤压材料受到的从中间压力至把挤压材料在预定的速率升至最大的所需的体积沉积率时从管嘴挤压出去所需的任一瞬时压力的绝对压力。
图2表示的是线料驱动装置,在其中利用电机204驱动衬有橡胶的滚子206,挤压直径为0.07英寸的热塑性线料202,以便滑过孔口208进入加热管210并从管嘴212穿出。这种机构是第一增压级的一个实施例。
图3表示的是本发明的优选实施例,使用了含有齿形带304、齿轮306、压板308、驱动电机310及编码器312的牵引式驱动装置302。电机310和驱动带304的作用是强制送进矩形体或薄片形的挤压材料314穿过预热器入口316进入加热通道(预热器)318,通道318含有加热元件319。挤压材料以液体可流动的形态离开预热器318流过区域320。
该牵引机构是第一增压级的优选实施例。其它的第一增压级机构可能包含皮下注射器、杆式驱动器、齿轮泵以及气动或液压的增压装置。
除了提供足够的压力向挤压机的第二级送料之外,第一级还实现了几项其它的功能。如果挤压材料没有存着而是在可流动状态下被传输,则第一级将要导致挤压材料流动。在优选实施例中,第一级是加热热塑性塑料的液化器。当第一级的输出口的压力相对低时,挤压机的第一级中释放出的气体就被分离出来。
在图3中,从预热器318中的液态挤压材料内释放的气体从联通通道322中的挤压材料内分离出来并且透过第二增压级入口处的旋转密封垫324而逸出挤压机。
通过第一增压级的挤压材料的送料率可借助从第二级来的背压、从第一级的输出压力来的反馈或各反馈机构的联合作用来调节。在图3中,压力传感器326联接在联通通道322上并向控制器提供指示该处压力的信号,依次,控制器调节牵引式驱动装置302的送料率。
如同J.S.Batchlder等人在美国专利5,312,224中所描述的,第二增压级包含一锥形的粘稠物泵330。从联通通道322来的液态挤压材料320被送入旋转的推进器332中,变速电机336在凹形的套筒内旋转以把液态挤压材料驱向和挤出可拆卸的管嘴338及孔口340。
图3中的结构满足了高的压力、快的压力灵敏度和压力均匀度的要求。当使用高粘度挤压材料时,第一级防止泵在其输入处因缺料而磨损或出现气穴现象。其它的第二级含有齿轮泵、摇摆活塞泵、叶轮泵、单头和双头蜗杆泵等等。
挤压材料的盛装由于成层的加工方法的性质,在生成零件的过程中有大量的挤压材料被配送出去;典型的沉积率是在每小时0.1至10立方英寸之间。在系统中如果挤压材料被限定在单种类型时,有几种有效的材料处置技术。这些包括从卷筒来的线料,从远距离容器来的液体进料,从漏斗来的丸状进料,以及从盛箱来的片状进料。
在优选的实施例中,使用了挤压材料源的固体薄片。薄片的尺寸按下述方法确定。预热入口316具有高为H和宽为W的矩形开口,而预热器318具有长度为L的直通道。在系统的最大挤压率Q下,在这一直筒部分(假定是片状流体)中的挤压材料的保压时间Tdwell为Tdwell=L·H·W/Q使足够的热量从预热器318的内表面扩散穿透挤压材料所需的熔化时间是用指数衰减时间来表征的,恒等于Tdwell=H2·ρ·C/K·π2此处K、C及ρ分别是挤压材料的热传导系数、热容量及密度。因为保压时间必须至少约是指数熔化时间的三倍大,就要求入口的厚度H,以及因此薄片的厚度要满足条件H≤L·W·K·π2/3·Q·ρ·C在优选的实施例中,使挤压机在尺寸和质量保持小的需要加上机械的干涉约束,限制了L和W至多大约分别是1英寸和0.75英寸。热塑性聚合物的K大约是0.2瓦/米(公制),ρ大约是1.2克/厘米3,以及C大约是1.3焦耳/克(公制)。因此对于10英寸3/时的最大挤压率,薄片的厚度应小于0.18英寸。薄片不应显著地薄于这一极限,以便在薄片被牵引式驱动装置302驱使进入预热器318中时不发皱或弯曲。
图4a表示的是薄片402的例子。典型的尺寸为H=0.15英寸,W=0.75英寸,而长度L为2英寸。由于牵引式驱动器302把薄片串402挤压入预热器310,最好使每一个薄片的形状做成其前导端与另一薄片的尾端相配合并能抗剪切。薄片402的优选实施例包含前导端404,它被做成可与槽状尾端406相配合的形状。这种结构的优点是前导端404引导薄片402穿过预热器318的入口。
图4b表示的是变化的实施例,该处的薄片408具有锁舌410,它与锁槽412相配合并可通过两薄片的联接部来传递拉力及压缩力。
薄片需要附加的包装。在储存和处置过程中需要防止它们被颗粒污染。也常需要使它们和水汽绝缘。它们需要在包装中打捆以易于搬运,能使非熟练的操作者在系统中装料和卸料,以及当包装中的薄片已部分地或全部地消耗时能进行卸料。在制造零件期间,当挤压机必须把一种挤压材料换成另一种时,两种材料都必须能通过挤压机。如果希望系统用不同的挤压材料制造后续的零件而不用操作者干预,就必须在系统中储存每一种材料。如果几台挤压机在系统中能够沉积不同的材料,那么那些不同的材料必须能够通过每一台挤压机。
图5a表示的是储存许多薄片502的匣子504的优选实施例。当薄片502被移离匣子时,弹簧装载滑板505经过压板506使薄片502被压向匣子504的前方。匣子504至少在四面围着薄片,在储存可移动的带料(图中未表示)期间阻挡着前部的薄片。匣子504将典型地被压缩捆扎后进行运输。
在使用中,匣子504用手工插入匣子托架508中,托架508使匣子504在切断机构510下定位,而且通过恒力弹簧512及臂514把力施加到压板506上,以便在薄片消耗后使薄片前进,臂514通过匣子504顶部的槽532延伸(见图5b)。
切断器510包含驱动电机512、齿轮驱动装置514、导向螺杆516及组合螺母和切断器齿518。根据要求,牵引式驱动装置302定位在匣子504的下方,而切断器齿518穿过位于匣子504的前方的槽530(图5b)并压迫最前面的薄片通过匣子上的出口槽522并使它座落在牵引式驱动装置302之中。
电子式的读和写装置524,诸如可电删除的只读存储器被装在匣子504上,以便在匣子用手工插入时,通过联接器526与控制系统建立电联系。装置524完成功能的变化的电子示踪工作。它向控制系统通告在匣子中的挤压材料的种类以及配送材料的合适挤压参数。它能记录匣子中的薄片的实时数量并提供匣子的系列数量。
工人免操作功能成层的制造方法的许多功能是由操纵挤压机的工人来完成的。这些功能包括系统的机械调校、零件的初始安置和移去以及沉积过程(工序)的改进。图6表示的是可免去工人许多调校功能的传感器。一个或更多的磁传感器602被嵌入制作台板604中并在零件开始制造前向控制系统提供有关挤压机与底衬板的相对位置的信息。管嘴606的锥形外表面至少是部分地由铁磁体材料制成的。传感器602是高磁导率材料608制成的环形线圈,其一面被去除以形成与管嘴606的外形相对应的凹腔610。穿过环形线圈中心的绕组612构成感应器,它的电感量随管嘴606的位置而变化。管嘴与传感器的位置关系可根据3个自由度上的位移来测定。
所安装的传感技术最好是对管嘴606的温度及对不确定厚度的管嘴606上可能有的挤压材料覆盖物不敏感的。可替换的传感器技术包括热电偶、压力开关、应变片、电容传感器、红外线检测仪、光学发射器与接收器及声音测距仪。
最好沉积在可移离底衬板614上的零件是非常牢固地粘结在它上面的,以克服两种影响。当构造物没有支承在它们正确的位置上时,挤出材料往往会缠绕已沉积的构造物而产生应力。除此之外,还有沉积过程中自己产生的作用力,诸如从管嘴来的拉力以及并非静止的零件上的离心加速度产生的力,它们常会破坏已沉积的构造物,再有也需要使沉积在底衬板614上的零件在它上面粘结得不是很牢,以便零件能从挤压装置上搬离而无损伤。
在优选实施例中,这些相互矛盾的要求是通过在底衬板614上预先涂覆以熔化温度低于挤出材料的熔点的热塑性粘结剂616来解决的。在制作台板604中的加热器元件(未图示)使得零件在完成制造后能从底衬板上取下来。
因为可移离的底衬板614已变成被制造中零件的成形表面,它必须维持良好的确定轮廓;在优选的实施例中,它近似是平面。为减低可损耗的底衬板614的重量和成本,它们被制得足够薄,所以它们是柔性的,而它们的平面性由制作台板604的平直度来保证。
在优选实施例中,制作台板604是通过首先铸出框架并与3个精密的平行轨道相联接。框架被这些轨道悬在精密的面板上方,而面板与框架之间填充以可凝固的合成物,诸如环氧树脂和铝粒的混合物。最终的台板是全部平整的、轻的以及制造起来不贵的。
用来表征和控制典型的成层的制造系统所需的工序变量的数目通常有成百个。运用这些变量来获得最佳零件质量通常是由熟练工人来完成的。在简单的独一无二的系统中,这些变量的大多数临界值需要自动调节。在优选的实施例中,需要连续细调的关键变量是第二增压级中使用的粘稠物泵的标定值。这一标定是通过记录进入预热器的薄片消耗量并经过一段时间后与预定的薄片消耗量进行比较来完成的。在优选的实施例中,薄片的消耗量用安装在牵引式驱动装置302的齿轮或非驱动带上的光学编码器来测量。
工人免操作功能的重要因素是成层的制造系统和谐地融入它在其中工作的环境。这一般需要使系统依存于地区网络(LAN)和以近似激光打印机或其它打印机的方式运转,从服务器接受假脱机文件,处理排队请求,响应状态信息咨询。为了减小系统对它的环境的干扰,优选实施例是内部补偿的,以便不向它的支承传递纵向震动。优选实施例通过使所有的沉积功能元件联接到惯性底板上和把该惯性底板用隔震器与底盘相联来把系统的环境产生的机械噪音及震动与沉积系统相隔离。惯性底板是一垂直定位的铸造的矩形框架。
为了减少移动部件和惯性底板之间的机械联接件的数目,挤压机直接联接在惯性底板的直线轴承上。挤压机的运动(取为X方向)用与联接挤压机的同一根驱动带相联的平衡重块来补偿,并且平衡重块联接在惯性底板的相对侧的直线轴承上。台板的水平运动(取为Y方向)相似地用平衡重块来补偿,平衡重块直接架在台板下方的直线轴承上并在与台板相反的反向上运动。台板的垂直运动没有平衡重块,而其平衡重量是靠一对皮带来实现的。
在优选实施例中,利用通过活性炭过滤器把空气抽回房间的办法来清除返回周围环境的空气中的挤压过程产生的挥发性物。
应当明白,上述的描述只是作为本发明的例证。技术人员可在不超脱本发明的情况下作出各种替代物及改造物。例如,上面曾经提到过的材料通常是热塑性材料,技术人员将明白本发明能使用其它材料,诸如液态金属、陶瓷膏、合成物等等。因此,本发明的意图是包括所有这种落入附录的权项的范围内的替代物、改造物及变化物。
权利要求
1.一种设备,其通过连续地在支承元件上面沉积多层可凝固材料来制造三维的有形物体,所说的设备包括用来提供挤压材料的管嘴装置;具有输入口和输出口的泵装置,所说的输出口与所说的管嘴装置能实现流体联通并向所说的管嘴装置提供流体状态的所说的可凝固材料的压力流体;与所说的泵装置相联接的原动装置,所说的原动装置用于使所说的泵装置向所说的管嘴装置提供可变压力和可变流通率的所说的可凝因材料;以及具有与所说的泵装置的所说的入口相联接的出口的增压级,增压级用于向所说的入口提供一定压力的液态的所说的可凝固材料,该增压级保证了在所说的泵装置中的所有工作级的增压和流通率下,为使所说的泵装置连续工作,在所说的入口可获得连续数量的所说的可凝固材料,保证所说的可凝固材料的不间断的流体流向并穿过所说的管嘴装置。
2.根据权利要求1的设备,其特征在于,供给所说的增压级的所说的可凝固材料是成串的固体薄片,以及所说的增压级包括用于容纳所说的固体薄片串的管道,而且在管道内实现加热以使所说的薄片的所说的可凝固材料变成液态;以及驱动装置,用于把所说的薄片物理地挤压入所说的管道以便使所说的液态的可凝固材料增压至所说的一定压力。
3.根据权利要求2的设备,其特征在于,提供的每一个所说的薄片都做成空间的前导表面及空间的跟随表面的形状,所说的薄片的前导表面制成的形状可和相邻的薄片的跟随表面相套叠。
4.根据权利要求2的设备,其特征在于,所说的驱动装置包括配置在送料路径附近两相对侧的第一和第二皮带驱动装置,用于容纳所说的皮带驱动装置的皮带之间的所说的薄片以及向该处传递驱动运动。
5.根据权利要求2的设备,进一步包括用于盛装许多所说的薄片的可拆卸的匣子装置;与所说的驱动装置并列的用于容纳匣子装置的托架;以及用于从所说的匣子装置分离出各个的薄片以及促使所说的薄片进入所说的驱动装置的装置。
6.根据权利要求5的设备,其特征在于,每个所说的匣子装置含有电子式的可读数据存储器,因为匣子要插入所说的托架中,所说的托架包含了用于与所说的数据存储器相联接的联接器装置,从而外部的控制器可获得所说的数据存储器中的数据。
7.根据权利要求1的设备,其特征在于,所说的泵装置是含有与所说的原动装置联接的旋转推进器的粘稠物泵,而配套套筒包围着所说的推进器,所说的配套套筒与所说的管嘴装置相联接。
8.根据权利要求1的设备,进一步包括可移离的用于盛纳来自所说的管嘴装置的所说的可凝固材料的底衬板;用于支承所说的可移离的底衬板的台板;引发所说的台板与所说的管嘴装置之间产生相对运动以控制所说的可凝固材料在所说的底衬板上的沉积的装置;以及把所说的底衬板粘结在所说的台板上的装置。
9.根据权利要求8的设备,其特征在于,所说的可移离的底衬板包括用于容纳所说的可凝固材料的支承及粘结涂层,所说的粘结涂层的熔点温度低于所说的可凝固材料的,因此液态可凝固材料的沉积引起了所说的粘结涂层的铺垫面积部分的熔化,而且由于所说的可凝固材料的凝固而使涂层发生硬化。
10.根据权利要求9的设备,其特征在于所说的支承是磁性材料片以及所说的台板包含用于吸引所说的磁性材料的磁性装置。
11.根据权利要求8的设备,其特征在于所说的台板包含至少一个磁传感器以及所说的管嘴装置包括有磁性材料,所说的磁传感器向控制器提供信号以控制用于引起相对运动的所说的装置。
12.一种向挤压机供应可凝固材料的薄片的设备包括用于盛装许多所说的薄片的可拆卸的匣子装置;用于容纳匣子装置的托架;以及用于从所说的匣子装置上分离出各个的薄片以及用于促使所说的薄片通向所说的挤压机的装置。
13.根据权利要求12的设备,其特征在于每个所说的匣子装置包含电子式可读数据存储器;因为匣子要插入所说的托架中,所说的托架含有与所说的数据存储器相联接的联接器装置,因此所说的挤压机的外控制器可获得所说的数据存储器中的数据。
14.根据权利要求12的设备,其特征在于所提供的每个所说的薄片被制成具有空间的前导表面和具有空间的跟随表面,所说的薄片的前导表面被制成可与相邻的薄片的跟随表面相套叠。
15.根据权利要求12的设备,其特征在于所说的挤压机包含有用于容纳来自所说的匣子的所说的薄片的增压驱动装置以及包括配置在送料路径周围相对两侧的第一和第二皮带驱动装置,该驱动装置用于容纳所说的皮带驱动装置的皮带之间的所说的薄片以及向该处传递驱动运动,该驱动运动驱使所说的薄片进入所说的挤压机的液化管道。
16.一种利用在支承元件上连续地沉积多层可凝固材料来制造三维的有形物体的方法,所说的方法使用的设备包含有用于供应被挤压材料的管嘴装置;具有输入口和输出口的泵装置,所说的输出口与所说的管嘴装置可实现液体联通并向所说的管嘴装置供应液态的所说的可凝固材料的增压流体;使所说的泵装置向所说的管嘴装置提供所说的可凝固材料的可变等级的增压和流通率的原动装置;以及具有联接在所说的泵装置的入口上的出口的增压级,该增压级用于向所说的入口提供液态下的所说的可凝固材料;所说的方法包括以下步骤控制所说的原动装置以使所说的泵装置向所说的管嘴装置供应所说的可凝固材料的连续的流体;和在某送料率和一定大小的力量下向所说的增压级送进所说的可凝固材料的薄片,该力量保证了在所说的增压装置中产生一定的压力,对于借助所说的泵装置的工作而产生的增压的所有工作级及流通率,该增压装置可保证在所说的入口处获得连续数量的所说的可凝固材料以使所说的泵装置连续工作,保证所说的可凝固材料的不中断流体流向并通过所说的管嘴装置。
全文摘要
一种改进了的基于挤压的制造系统含有一台或多台挤压机,每台挤压机包含至少两个增压级。在一个优选实施例中,第一增压级是由热塑性的固体薄片(314)通过孔口(316)进入加热器腔室(318)的运动来造成的,而第二增压级是由锥形粘稠物泵(330)来形成的,使来自第一增压级的挤压材料保持成热塑性流体(320)穿过联通通道(322)并装入旋转的推进器(332)中,变速电机(336)在内凹套筒(334)中旋转以驱使液体挤压材料在所有期望的泵出率下流向和流出可拆卸的管嘴(338)及孔口(340)。
文档编号B29C67/00GK1207187SQ96199049
公开日1999年2月3日 申请日期1996年11月6日 优先权日1995年11月13日
发明者约翰·塞缪尔·巴彻尔德, 罗伯特·R·杰克逊 申请人:斯特拉塔系统有限公司