热增强微电路封装及其形成方法

文档序号:4512901阅读:187来源:国知局
专利名称:热增强微电路封装及其形成方法
技术领域
本发明涉及用于半导体和微电路器件的冷却装置,更具体地,本发明涉及增强冷却的微电路封装。
背景技术
越来越多用在军事和先进的商业系统的先进电子半导体和微电路器件需要先进和小型的电子器件用于多种应用中。用做开关的功率晶体管需要高通量应用,发送/接收组件需要保持等温。过去采用的许多热管理方法在这些类型的苛求应用中不再适合。尤其是在在商业和军事装置中使用的先进的飞机系统中。
新的微电路设计适用于更容易操作的飞行器、较高功率和密度的航空电子设备以及更多如秘密行动的飞行器。这些先进的电子系统产生更多的热,必须保持冷却以便有效工作。
已知的系统使用不同类型的热沉。这些系统在液压系统中具有高静态损耗、低效率的机械泵以及低效率的空气循环制冷系统,由此需要使用大面积的热沉。此外,越来越多地使用易更换/压力易变的液压机械系统,现已设计和使用了许多创新的热沉和热电容器。例如,一些塑料或陶瓷封装的器件具有光背面的铜板热沉。热通过铜迹线从引线传递到附带的PCB。大的集成微电路系统适用这些热沉,但不总是很适合。
随着飞行器中复杂和较小“占地面积”的电子设备和电子控制系统数量的增加,对于MEA设备(例如,发动机IS/G和全动平尾(stabiliator)致动器)产生新的集中热负载和更苛刻的环境。这些也增加了在减少MEA和类似部件的重量和体积时的热问题,例如(a)先进的局部冷却技术;(b)提高热传递技术;(c)微冷却技术;(d)高热通量应用的封装设计;(e)低损耗/高温度功率半导体;以及(f)高温电动机/发电机。对于高热流通量和高密度封装,这些提高的热传递要求需要更多的先进的冷却系统直接应用到各集成电路,用于整个冷却这些电路。在许多的先进系统中需要封闭的回路系统,应该是自给的,与各个元件相关,并且不依靠较大的系统应用。

发明内容
本发明的一个目的是提供一种更有效和热增强的微电子封装,提供了如半导体功率晶体管等的微电路器件的集成冷却,并提供了一种集成冷却微电路器件的热增强的微电路封装。
本发明包括热增强的微电路封装,包括具有微电路器件腔的微电路封装、容纳在微电路器件腔中的微电路器件、以及有效(operatively)连接到所述微电路封装的微电子机械(MEMS)冷却组件,所述冷却组件包括毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体槽,用于在所述蒸发器和冷凝器之间传送蒸汽和流体并蒸发和冷凝冷却流体,所述蒸发器有效与所述微电路器件相连,用于使用时冷却所述微电路器件。
有利的是,热增强的微电路封装包括具有微电路器件腔的微电路封装,该腔用于容纳微电路器件。微电子机械(MEMS)冷却组件有效连接到微电路封装。该冷却组件包括毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体的槽,用于在所述蒸发器和冷凝器之间传送蒸汽和流体并蒸发和冷凝冷却流体,所述蒸发器有效与所述微电路器件相连,用于使用时冷却所述微电路器件。
在本发明的一个方案中,毛细泵回路冷却线路形成在硅基底上,即硅晶片,并包括蒸发器、冷凝器以及在硅基底中形成的互连冷却流体槽。在本发明的另一方案中,蒸发器的至少一部分形成在微电路封装内。
在本发明的再一个方案中,热增强的微电路封装是由低温共烧陶瓷(LTCC)形成的球栅阵列封装,并具有本领域公知的球栅阵列,以及容纳微电路器件的微电路器件腔,所述器件可以是绝缘栅双极晶体管(IGBT),通过本领域公知的技术带连接到球栅阵列。冷却液贮存器有效连接到蒸发器。在本发明的一个方案中,芯吸(wicking)结构形成在蒸发器内。蒸发器和冷凝器可以由多个槽形成,每个具有约25到约150微米的高度和宽度。冷却液槽也可以由多个蒸汽管线和多个液体管线形成,每个具有基本上大于宽度和高度的长度。
本发明还包括形成微电子机械(MEMS)冷却组件的方法,包括以下步骤深反应离子蚀刻硅晶片和淀积其上的氧化层,以形成配置成依附于微电路封装上的冷凝器、蒸发器以及互连冷却流体槽,所述深反应离子蚀刻步骤包括第一深反应离子蚀刻步骤以形成通孔,第二深反应离子蚀刻步骤以形成冷却流体槽,包括蒸发器和冷凝器,包括等离子体蚀刻淀积的氧化层以构图硅晶片。
为方便起见,还公开了形成微电子机械(MEMS)冷却组件的方法,包括深反应离子蚀刻(DRIE)硅晶片和淀积其上的氧化层,以形成配置成依附于集成电路封装上的冷凝器、蒸发器以及互连冷却流体槽的步骤。该步骤可以包括第一深反应离子蚀刻步骤以形成通孔,第二深反应离子蚀刻步骤以形成冷却流体槽,包括蒸发器和冷凝器。方法还包括等离子体蚀刻淀积的氧化层以构图硅晶片的步骤。


下面参考附图借助例子介绍本发明,其中图1示出了本发明的热增强微电路封装的示意性剖面图,形成为球栅阵列封装,并具有固定其上的微电子机械冷却组件。
图2示出了测试图1所示热增强微电路封装的测试结构的示意性正等轴测图。
图3示出了图1所示热增强微电路封装的工作部件的框图。
图4为例如图1所示热增强微电路封装的非限定性说明的例子。
图5示出了例如图1所示热增强微电路封装的一个例子的最大热传输与最大液体/蒸汽管线长度之间的曲线图。
图6示出了例如图1所示热增强微电路封装的放大示意剖面图。
图7-12示出了用硅制造互连冷却流体槽、蒸发器和冷凝器的顺序步骤图。
图13-16示出了在玻璃盖板中制造芯吸结构的图。
图17A为根据热增强微电路封装的第一实施例,硅基底即硅晶片的示意性正等轴测图,示出了蒸发器、冷凝器以及用于在蒸发器和冷凝器之间传送蒸汽和流体的互连冷却流体的槽。
图17B为图17A的微电路封装的示意性剖面图,示出了玻璃晶片和硅晶片之间的关系,以及蒸发器使用贮存器。
图18A和18B类似于图17A和17B,但示出了与冷凝器合作的充填输送管,并添加了热电偶管,用于容纳用于温度测试电路使用的热电偶。
图19示出了热增强微电路封装的另一个实施例,与冷凝器和互连冷却流体的槽相比,蒸发器形成在不同的结构层中。
具体实施例方式
下面参考附图介绍本发明。类似的数字指类似的元件。
本发明涉及热增强微电路封装20a,很有利是由于它提供了有效连接到微电路封装22的微电子机械(MEMS)冷却组件20,所述封装例如示出了的用于封装微电路器件的球栅阵列封装。这种器件的一个例子是绝缘栅双极晶体管(IGBT)24。冷却组件20具有毛细泵回路冷却线路26,集成冷却封装的微电路器件腔28内接收的微电路器件,在示出的实施例中,形成为球栅阵列封装,但本发明可以使用不同类型的电子器件封装。
在一个方案中,球栅阵列封装22由低温共烧陶瓷(LTCC)材料形成,并且包括微电路器件腔28并接收示出的绝缘栅双极晶体管24形式的微电路器件。
绝缘栅双极晶体管为强大的晶体管,能开关达到1000安。MOSFET和双极晶体管组合产生IGBT。通过将电压施加到金属栅产生电流,其中电压产生电场迫使荷正电的空穴离开离开栅。同时,它吸引电子,形成电流流过的N沟道。在形成为IGBT一部分的P-N-P双极晶体管中,小控制电流向基极增加了电子,并由发射极吸引空穴。这些空穴从发射极流到集电极并形成大的工作电流。控制电压施加到MOSFET并形成工作电流,进而作为控制电流施加到形成为IGBT一部分的P-N-P双极晶体管。该控制电流使较大的工作电流在双极晶体管中流动。由此,IGBT的工作电流为MOSFET和双极晶体管的组合电流,使这种类型的器件具有约10million的功率增益,对应于工作电流和电压与控制电流和电压的比值。该增益允许该器件连接到微电子电路,可与其它电路单片电路地形成功率器件,例如IGBT功率器件。
球栅阵列封装22包括由焊料或其它已知的材料形成的球栅阵列30,并使用本领域中公知的球栅阵列制造技术,包括使用陶瓷材料,例如低温共烧陶瓷。绝缘栅双极晶体管24可以由本领域中公知的技术通过带式连接器24a(ribbon bond)或其它连接技术带连接到球栅阵列30。例如,绝缘栅双极晶体管可以是具有粘结并连接电路的背面的器件结构的一部分,这在本领域是公知的。
本发明,微电子机械(MEMS)冷却组件20有效连接到图1和6所示的球栅阵列封装22。该冷却组件包括毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体的槽用于在所述蒸发器和冷凝器之间传送蒸汽和流体并蒸发和冷凝冷却流体。
如图3所示,微电子机械冷却组件20的基本部件包括冷凝器42和蒸发器40,作为蒸发器毛细泵。蒸发器40包括芯吸结构46,以通过本领域中公知的芯吸效应在操作期间帮助芯吸流体。互连冷却流体的槽44形成为多个蒸汽管线47和多个液体管线48,每个的长度基本上大于宽度和高度,如图17A和17B的示意性正等轴测图所示。流体贮存器50可以和蒸发器40一起合作并通过存储器供料液管线52连接到蒸发器,如图3所示。热从微电路器件,例如绝缘栅双极晶体管引出并借助蒸汽管线47返回到冷凝器42,该冷凝器将蒸汽冷凝并借助芯吸结构46将液体通过毛细泵作用返回到蒸发器。
本发明的微电子机械(MEMS)冷却组件20可以通过标准的微电路制造技术在硅基底即硅晶片内形成。在本发明的一个实施例中,组件20具有设置在硅基底53上的玻璃盖54,并密封蒸发器40、冷凝器42以及互连冷却流体的槽44,如图17B和18B所示。
图7-12示出了在硅中制造这些部件使用的步骤的基本结构示意图。如图7所示,硅晶片53具有淀积的热氧化膜60,例如2微米厚。该淀积之后为光刻,如图8所示,光致抗蚀剂62涂覆到氧化物,然后等离子体蚀刻构图槽,如图9所示。第二光致抗蚀剂64设置在氧化物上,并进行图10所示的第二光刻步骤。通过第一深反应离子蚀刻(DRIE)形成通孔66,之后进行图12所示的第二深反应离子蚀刻(DRIE),产生冷却流体槽68。
图13-16示出了在玻璃盖板54中制造芯吸结构使用的步骤,可与本发明一起使用。该玻璃盖板可以形成对准地形成并阳极处理地连接到硅晶片,完成了以上介绍的形成封闭回路的微毛细泵回路冷却线路。在第一步骤中,在玻璃晶片72上淀积约1.4微米厚未掺杂的多晶硅70。涂覆光致抗蚀剂74,如图14所示,之后是光刻步骤。在图15中,等离子体蚀刻多晶硅70以构图多晶硅层,之后使用高浓度的氢氟酸通过湿蚀刻在玻璃晶片上形成芯吸结构,然后阳极处理地连接到硅晶片,从而完成制造。
图4示出了例如图6所示的热增强微电路的基本技术规格,不同的冷凝面积、蒸发器长度、槽高度、槽宽度/数量、蒸汽管线液力直径、液体管线液力直径、用于液体管线和蒸汽管线的最大雷诺数(reynoldsnumber)。这些图仅给出了可以根据本发明制造的封装类型的例子。
图5示出了最大热传输与最大液体/蒸汽管长度的曲线图,垂直轴上示出了毫米单位的最大液体/蒸汽管线长度,水平轴为总的Q,以瓦(W)为单位。
图2示出了可用于测试本发明的热增强微电路封装20a使用的测试夹具80,未示出具有连接器84的印刷布线板(PWB)82,具有连接到测试机构的电缆。齐平的球栅阵列(BGA)插座86接收固定热增强微电路封装,即用于绝缘栅双极晶体管的热增强微电路(TBGA)封装的搬运工具88。
图17A示出了封装20a的第一实施例,示出了蒸发器40内接收的芯吸结构46,以及与蒸发器相关的流体贮存器50。如上所述,蒸汽管线和液体管线连接到冷凝器42。图17B示出了图17A所示的结构。
对于工作的绝缘栅双极晶体管的球栅阵列封装,图17A中的结构具有技术规格的以下例子A B蒸发器长度 1000微米1000微米蒸发器宽度 50微米 500微米冷凝器面积 5.0e+05平方微米 5.0e+05平方微米槽高度 50微米 50微米槽深度/数量 50微米/450微米/4蒸汽管线宽度150×350微米150×450微米液体管线宽度150×150微米150×150微米蒸汽/液体管线长度 25mm35mm液体管线Re数量 28 43蒸汽管线Re数量 434 494除去的发射热4瓦 4瓦图18A和18B示出了留有流体贮存器50的另一实施例,如图18A所示。热电偶管容纳阱90形成在蒸汽管线和液体管线中,用于容纳测量温度的热电偶。填充孔92通过填充管线有效连接到冷凝器,而间隔开的流体贮存器通过贮存器供料液管线连接到蒸发器,如图18A和18B所示。
图18A和18B可以具有多种尺寸,例如A B蒸发器长度 2000微米2000微米蒸发器宽度 1000微米1000微米冷凝器面积 2.0e+06平方微米 2.0e+06平方微米槽高度 50微米 50微米槽深度/数量 50微米/850微米/8蒸汽管线宽度150×350微米150×450微米液体管线宽度150×150微米150×150微米蒸汽/液体管线长度 25mm35mm液体管线Re数量 42 42蒸汽管线Re数量 578 488除去的发射热4瓦 4瓦图19示出了在硅基底即硅晶片内形成的冷凝器的一个实施例,而各种基板,例如不同的陶瓷基板,如低温共烧陶瓷,包括图19所示的蒸发器和管线。两层100,102之后为蒸发器层104。
图19结构的尺寸举例如下蒸发器长度 10000微米蒸发器宽度 50000微米冷凝器面积 7.5e+09平方微米槽高度 150微米槽深度/数量 50微米/50蒸汽管线宽度2500×1300微米液体管线宽度1000×1300微米蒸汽/液体管线长度 30mm液体管线Re数量 312蒸汽管线Re数量 4379除去的发射热227瓦本发明提供了一种有效并且容易制造自给的和封闭的回路系统。它作为微电子机械(MEMS)冷却组件形成,所述冷却组件包括毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体的槽。根据最终的应用和必要的热交换要求,使用的流体可以是乙醇或水。可以在玻璃晶片中制造芯吸结构,如图13-16所示,或者可以制备在硅中,取决于最终的使用要求。包括填充口的存储器可以重新配置,并且可以添加不同的口以帮助填充,并将液体直接提供到蒸发器。
在图18A中也提供温度测量阱。热电偶给出蒸发器、冷凝器以及冷却液管线中的温度。
可以制造垂直和水平构形。结构可以集成到电子微封装内,同时利用了高表面-体积比以增加热传输。结构可以利用微量热传输概念并且可以直接集成到硅和用于高热通量/高温度应用的SiC电子封装内,同时减少质量、体积和热管理措施的成本。集成的冷却线路减少了用于电位的接口增加了电子设备的可靠性。微翼也可以集成到电子封装内。
热增强封装,例如示出的用于IGBT的热增强球栅阵列封装可以适用于与常规的热管理技术,提供了用于大电流应用的多互连路径。可以扩展包括读出和控制互连并且可用于电路隔离,可以根据电流保护调节。它可以具有软件可触发的关闭,或者手动触发的关闭。
热增强的微电路封装包括具有微电路器件腔的微电路封装,该腔用于容纳微电路器件。微电子机械(MEMS)冷却组件有效连接到微电路封装并形成毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体的槽,用于在所述蒸发器和冷凝器之间传送蒸汽和流体并蒸发或冷凝冷却流体。
权利要求
1.一种热增强微电路封装,包括具有微电路器件腔的微电路封装、容纳在微电路器件腔中的微电路器件、以及有效连接到所述微电路封装的微电子机械(MEMS)冷却组件,所述冷却组件包括毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体槽,用于在所述蒸发器和冷凝器之间传送蒸汽和流体并蒸发和冷凝冷却流体,所述蒸发器与所述微电路器件有效连接,用于在使用时冷却所述微电路器件。
2.根据权利要求1的热增强微电路封装,其中所述蒸发器和冷凝器形成在硅基底中,并且所述冷凝器形成在硅基底中,而且所述蒸发器的至少一部分形成在所述微电路封装内。
3.根据权利要求2的热增强微电路封装,其中所述微电路封装微由低温共烧陶瓷(LTCC)形成。
4.根据权利要求1的热增强微电路封装,其中冷却液贮存器有效连接到所述蒸发器,芯吸结构形成在所述蒸发器内。
5.根据权利要求1的热增强微电路封装,其中所述蒸发器和冷凝器由多个槽形成,每个具有约25到约150微米的高度和宽度,其中所述冷却液槽可以由多个蒸汽管线和多个液体管线形成,具有基本上大于宽度和高度的长度。
6.一种热增强微电路封装,包括具有微电路器件腔的微电路封装、容纳在微电路器件腔中的微电路器件、以及有效连接到所述微电路封装的微电子机械(MEMS)冷却组件,所述冷却组件包括毛细泵回路冷却线路,具有硅基底和蒸发器、冷凝器以及连接所述硅基底的互连冷却流体槽,用于在所述蒸发器和冷凝器之间传送蒸汽和流体并蒸发和冷凝冷却流体,所述蒸发器与所述微电路器件有效连接,用于在使用时冷却所述微电路器件,以及玻璃盖,所述玻璃盖位于所述硅基底之上并封闭所述蒸发器、冷凝器和互连冷却流体槽。
6.根据权利要求6的热增强微电路封装,其中所述蒸发器和冷凝器形成在硅基底中,并且所述冷凝器形成在硅基底中,所述蒸发器形成在所述微电路封装内,其中所述微电路封装微由低温共烧陶瓷(LTCC)材料形成。
7.根据权利要求6的热增强微电路封装,其中冷却液贮存器有效连接到所述蒸发器,芯吸结构形成在所述蒸发器内,其中所述蒸发器和冷凝器由多个槽形成,每个具有约25到约150微米的高度和宽度,其中所述冷却液槽可以由多个蒸汽管线和多个液体管线形成,每个具有基本上大于所述宽度和高度的长度。
8.一种热增强球栅阵列封装,包括球栅阵列封装并具有球栅阵列以及微电路器件腔,容纳在微电路器件腔中的微电路器件,以及有效连接到所述球栅阵列封装的微电子机械(MEMS)冷却组件,所述冷却组件包括毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体的槽,用于在所述蒸发器和冷凝器之间传送蒸汽和流体并蒸发和冷凝冷却流体,其中所述蒸发器与所述微电路器件有效连接,用于在使用时冷却所述微电路器件。
9.根据权利要求9的热增强球栅阵列封装,其中所述微电路器件可以是绝缘栅双极晶体管,所述绝缘栅双极晶体管带连接到所述球栅阵列。
10.根据权利要求8的热增强球栅阵列封装,其中所述蒸发器和冷凝器形成在硅基底中,所述冷凝器形成在硅基底中,所述蒸发器的至少一部分形成在所述球栅阵列封装内,所述球栅阵列封装微由低温共烧陶瓷(LTCC)形成,包括有效连接到所述蒸发器的冷却液贮存器。
11.根据权利要求8的热增强球栅阵列封装,其中芯吸结构形成在所述蒸发器内,所述蒸发器和所述冷凝器由多个槽形成,每个槽具有约25到约150微米的高度和宽度,其中所述冷却液槽可以由多个蒸汽管线和多个液体管线形成,每个具有基本上大于宽度和高度的长度。
12.一种形成微电子机械(MEMS)冷却组件的方法,包括以下步骤深反应离子蚀刻硅晶片和淀积其上的氧化层,以形成设置成依附于微电路封装的冷凝器、蒸发器以及互连冷却流体槽,所述深反应离子蚀刻步骤包括第一深反应离子蚀刻步骤以形成通孔,第二深反应离子蚀刻步骤以形成冷却流体槽,包括蒸发器和冷凝器,包括等离子体蚀刻淀积的氧化层以构图硅晶片。
全文摘要
一种热增强的微电路封装,包括具有容纳微电路器件的微电路器件腔的微电路。微电子机械(MEMS)冷却组件有效连接到微电路封装,并形成毛细泵回路冷却线路,具有蒸发器、冷凝器以及互连冷却流体槽,用于在蒸发器和冷凝器之间传送蒸汽和流体并蒸发和冷凝冷却流体。
文档编号F28D15/04GK1639863SQ01819827
公开日2005年7月13日 申请日期2001年11月28日 优先权日2000年11月30日
发明者查尔斯·纽顿, 雷蒙德·拉姆普夫, 卡洛尔·加姆林 申请人:哈里公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1