专利名称:用于分布的氢产品的集成的燃料处理装置的制作方法
技术领域:
本发明涉及燃料处理装置,并且尤其涉及用于分布的氢产品的燃料处理装置。
背景技术:
大家已经公认的对于燃料电池汽车的长期成功使用的关键要素是氢的基础设施的发展。燃料电池车辆被许多人设定为内燃机车辆的最终的代替者,或者最低限度为内燃机车辆的补充物。这主要是由于对温室气体和大气污染排放物,化石燃料的长期可利用性,以及能源供应安全性的关心的增长所驱动的。氢核交换膜(PEM)燃料电池是朝着商业上可行的燃料电池车辆的几乎所有的当前努力的焦点,其需要氢作为燃料。实际上,近几年来朝向由更轻便的烃类燃料在车上制造氢的努力已经被放弃,并且几乎所有的燃料电池车辆厂商现在都集中在给车辆加上高纯度的液态或者气态氢。
大规模制造氢的方式是已知的。甲烷的蒸汽转化是当前可以大规模制造氢的主要的方式。现在,世界上的大约一半的氢的产量用于石油提炼厂,主要用于汽车燃料的生产。另外的40%消耗在氨工业生产上。然而,在美国氢的年产量比得上汽油消耗量仅仅两天的值。而且,氢现在主要是以大的工业规模制造。对于成功的运输基础设施,氢的补给网络必须均匀分布。然而,氢非常难于被分布。气态氢具有一个最低能量密度,使得其难于以一定的量进行传送,而这是一个运输燃料电池基础设施所需的。以液态形式分布氢也是困难的,其需要较低的温度(22k),并且甚至液态形式的氢具有低的能量密度。因为考虑到这些问题,可以合理的推断出氢的基础设施需要依赖于高纯度氢的分布制造,其中氢的基础设施能够提供给燃料电池车辆的补给需求。
运输燃料电池基础设施所需的广泛分布的氢的制造规模远远小于通常提炼厂或者氨所制造的氢的制造规模。现在寻求许多的方法,通过这些方法高纯度的氢可以小规模的经济的制造。一种这样的制造方法是将当前大规模制造氢的众所周知的方法应用在小规模制造上。大规模制造氢的主要的方法是通过在催化剂的帮助下蒸汽转化天然气(甲烷)。蒸汽转化反应制造氢和一氧化碳,如下
蒸汽转化反应高度吸热,每消耗一摩尔甲烷需要206千焦能量。一些产生的CO通过相关的水煤气转换反应被转换成CO2
该反应是放热的,并且每消耗一摩尔CO的释放出41千焦的能量。甲烷的蒸汽转化通常实施在700℃到900℃的温度范围内。由于该反应是吸热的,热量必须供给反应物。这通常是通过装载催化剂到一系列设置在反应堆(furnace)的管中。氢可通过许多已知的方法,例如金属膜片或者变压吸附(PSA),从蒸汽转化产物气体(重整产物)中提取出。
人们已经长时间的认识到为了使得天然气的蒸汽转化在较小规模上是可行的,而该较小规模是燃料电池车辆的分布的氢气制造所需,需要在发热的燃烧器和吸热的蒸汽转化反应之间的更大的集成化。建立这样系统的努力已经在过去获得一些成功,但是工艺效能始终受到将所需的热量传送入蒸汽转化反应中,而不会产生极端高(>1000℃)金属温度的能力限制。
发明内容
在此公开了以高度集成的蒸汽转化燃料处理装置方式的本发明的实施例,其结合变压吸附(PSA)并且能够以一定规模释放高纯度的氢,该规模十分适合于运输燃料电池基础设施的分布的氢的制造。该燃料处理装置克服了先前结构的热传递的局限性,并且因此能够实现高水平的氢产品效率而不会产生极端高的金属温度。
根据本发明的一个特征,集成的蒸汽重整炉(steam reformer)/燃烧器组件提供使用在燃料处理装置中,该燃料处理装置提供蒸汽/燃料供给混合物在该组件中重整并且提供燃烧器供给物在该组件中燃烧。
作为一个特征,该集成的蒸汽重整炉/燃烧器组件包括外壳,其定义了彼此间处于热传递关系的第一和第二轴向延伸的,同心的环形通道;第一盘旋翅片位于第一通道中以引导通过供给混合物,该第一盘旋翅片涂有催化剂,该催化剂可在供给混合物中诱发所需的反应;并且第二盘旋翅片位于第二通道中以引导通过燃烧器供给物,第二盘旋翅片涂有催化剂,该催化剂可在燃烧器供给物中诱发所需的反应。
在一个形式中,第一通道在第一端开口以接收供给混合物入第一通道中,该第一通道在相对端开口以将供给混合物引导出第一通道,第二通道在邻近相对端的位置开口以将燃烧器供给物引导入第二通道中,并且第二通道在邻近第一端的位置开口以将燃烧器供给物引导出第二通道中。
根据本发明的一个特征,该集成组件包括圆柱形壁;第一盘旋翅片,其粘接到该壁的径向向内的衬面上,第一翅片涂有催化剂,其在供给混合物和燃烧器供给物之一中诱发所需反应;和第二盘旋翅片,其粘接到该壁的径向向外的衬面上,第二翅片涂有第二催化剂,其在供给混合物和燃烧器供给物的另一个上诱发所需的反应。
在一个特征中,第一盘旋翅片的回旋轴向延伸以将供给混合物和燃烧器混合物之一引导通过该组件,第二盘旋翅片的回旋轴向延伸以将供给混合物和燃烧器混合物另一个引导通过该组件。
根据一个特征,第一催化剂是用于供给混合物的催化剂,并且第二催化剂是用于燃烧器供给物的催化剂。
在一个特征中,该组件还包括圆柱形水煤气转换反应器,其在离第一翅片的径向向内的位置处并且通过该组件中央地延伸。
根据本发明的一个特征,该集成组件包括第一圆柱形壁;第二圆柱形壁,其与第一圆柱形壁径向向内的隔开,以在第一和第二圆柱形壁之间定义第一轴向延伸的环形流动通道,并且第二轴向延伸流动通道由第二圆柱形壁的径向向内面对侧所定义。该组件还包括位于第一通道的第一盘旋翅片,第一盘旋翅片的回旋轴向延伸以将供给混合物和燃烧器混合物之一引导通过第一通道,该翅片涂有第一催化剂,其能在供给混合物和燃烧器混合物之一中诱发所需的反应;和第二通道盘旋翅片,其位于第二通道中,第二盘旋翅片的回旋轴向延伸以将供给混合物和燃烧器混合物之一引导通过第二通道,该第二翅片涂有第二催化剂,其能在供给混合物和燃烧器混合物另一个中诱发所需的反应。
根据本发明的一个特征,集成燃料处理单元包括外壳;蒸汽/燃料供给混合物供给源在外壳中;燃烧器供给物供给源在外壳中;和蒸汽重整炉/燃烧器在外壳中。该蒸汽重整炉/燃烧器组件包括彼此间处于热传递关系的第一和第二轴向延伸的同心的环形通道,第一通道连接到供给混合物的供给源,以在第一通道的一端接收供给混合物进入第一通道中,第二通道连接到燃烧器供给物的供给源,以在邻近第一通道的相对端的位置接收燃烧器供给物。该蒸汽重整炉/燃烧器还包括第一盘旋翅片,其位于第一通道中以引导供给混合物通过其中,第一盘旋翅片涂有催化剂,其可在供给混合物中诱发所需的反应;并且第二盘旋翅片位于第二通道中以引导通过燃烧器供给物,第二盘旋翅片涂有催化剂,该催化剂可在燃烧器供给物中诱发所需的反应。
在一个特征中,该集成燃料处理单元还包括圆柱形水煤气转换反应器,其在第一和第二流动通道径向向内的位置处延伸通过外壳。作为进一步相关的特征,集成燃料处理单元还包括燃烧器预热器。该燃烧器预热器包括外壳,其定义了彼此处于热传递关系的第三和第四轴向延伸的,同心的环形通道,第三通道与第二通道对齐并且直接连接到第二通道以引导燃烧器供给物进入第二通道,第四通道连接到水煤气转换反应器以接收来自水煤气转换反应器的重整产物。
作为一个特征,该集成燃料处理单元还包括在外壳中的同流热交换器。该同流热交换器包括彼此处于热传递关系的第三和第四轴向延伸的,同心的环形通道,第三通道与第一通道对齐并且直接连接到第一通道以引导供给混合物进入第一通道,第四通道设置在第三通道的径向向内处,并且连接到第一通道,以在供给混合物已经在第一通道重整之后从其中接收供给物。
本发明的其它目的,特征和优点将从回顾整个说明书,包括附加的权利要求和附图之后变得明显。
附图简要说明
图1是体现本发明的燃料处理系统的示意图;图2是本发明的集成蒸汽重整炉/燃烧器组件的透视图;图3是本发明的集成的燃料处理单元的一个实施例的剖视图;图4是示出了流体流过图3的燃料处理单元的流动示意图;图5是图3的集成的燃料处理单元的从上看下来的部分透视图;图6是对于图2的蒸汽重整炉/燃烧器的一个实施例,示出了温度分布图的温度对照流动通道图;图7是本发明的集成的燃料处理单元的另一个的实施例的从上看过去的部分透视图;图8是图7中的线8-8所环绕的部分和集成的燃料处理单元的重点选取部件的放大剖视图;图9是图7中的线9-9所环绕的部分和集成的燃料处理单元的重点选取部件的放大剖视图;图10是图7中的线10-10所环绕的部分和集成的燃料处理单元的重点选取部件的放大剖视图;图11是沿着图10中的线11-11的剖视图;图12是类似图10的视图,但是重点显示了集成燃料处理单元的其它的部件;图13是类似图10和12的视图,但又重点显示了集成燃料处理单元的另外其它的部件;图14是在图7中的线14-14所环绕的部分的放大视图;图15是沿着图14中线15-15看过去的视图;和图16是类似图8的视图,但是重点显示了集成燃料处理单元的其它的部件。
具体实施例方式
在图1中示出了高度集成的燃料处理装置的系统简图。在该系统中,燃烧器所需的燃料的唯一源是来自压力回转吸收装置(PSA)22的耗氢废气21。PSA的高压端优选设计运行在100psig,而PSA的低压端设计运行在接近大气压(1psig)。从燃烧器25的燃烧器排气24中重新获得的热量用于蒸发器29中,以蒸发和过热用于蒸汽重整炉28的水供给物26,而且在燃料预热器31中预热用于蒸汽重整炉28的天然气供给物30。从蒸汽重整炉28中排出的重整产物流32中重新获得热量,并且该热量还用来预热在同流热交换器36中现在混合的蒸汽天然气供给物34。水煤气转换(WGS)反应器38用来增强氢的制造。水煤气转换反应器38的下游处,附加热量从重整产物流32中重新获得,并且用来预热燃烧器供给物40和供给入蒸发器29的水供给物26。重整产物流32被冷却到适合于PSA22的温度,并且过剩水量被冷凝下来。在此操作中除去的热量处于相当低的温度,并且不能重新获得。冷凝物41能够被恢复并且再使用,如果需要这样做的话。
通过利用集成了重整炉28和燃烧器25的集成蒸汽重整炉和燃烧器42,优化的氢转换可在此结构中完成,并且具有高效的热传递特征。在此说明书中,集成的蒸汽重整炉和燃烧器42将下文中称为SMR反应器42。如图2最佳的示出,SMR反应器42被构造为高温合金的金属筒44,其中第一盘旋翅片构件46沿着筒44的整个圆周铜焊接到内表面48上,并且第二盘旋翅片构件50沿着筒44的整个圆周铜焊接到外表面52上。内部翅片46被冲洗并涂有水蒸汽转化催化剂,外部翅片50被冲洗并涂有能够氧化氢和甲烷两者的催化剂。筒44有足够的厚度被用于作为压力容器54的一部分,如图3所示,其包括高压蒸汽重整炉供给物34和重整产物流32,如图4所示。圆柱形金属套管56和58(在图2中未示出)用来分别引导流过涂层的翅片构件46和50。
图3和4是出了完全装配的燃料处理装置20的一个实施例。该燃料处理装置20由圆柱形高压容器54组成,该高压容器54位于在低压缸或者容器60的内部并且与其同轴。用于蒸汽重整炉28的水和天然气供给物26,30被蒸发(就水而言)并且在盘管62中预热,该盘管62位于两个筒44,60之间。该预热供给物34通过在容器54的圆顶头部66处的管64进入压力容器54中,并且进入到同流换热器36中。
同流换热器36的结构类似于SMR反应器42,其中有利的增大(highly augmented)的翅片构件70和72(例如百叶窗板的或者矛状偏移量的翅片)铜焊接到筒56的外侧和内侧表面76和78两者上。流体凭借圆柱形金属套管44和80被再次引导通过这些翅片构件70,72。同流换热器筒56和翅片70,72被设定尺寸,从而使得包围粘接到外表面76的翅片70的环形区域与包围SMR反应器42中的水蒸汽转化催化剂涂层翅片46的环形区域相等同。同流换热器筒56在一侧延伸通过翅片70,72的端部与SMR反应器42的长度近似相等的量。这样允许同流换热器筒56起到用于反应器42的预先提到的内套筒56的作用。相似地,SMR反应器筒44能够延伸通过翅片46,48,从而使得其起到用于同流换热器36的外套筒44的作用。
在完全地装配的燃料处理装置20中,蒸汽重整炉供给物34流过同流换热器36的外部翅片70,然后穿过SMR反应器42的内部的(水蒸汽转化催化剂涂层)翅片46,在那里它被转换成富氢的重整产物32。然后重整产物流32被阻挡,从而使得当其流出蒸汽转化翅片46时,其向上转动并且经过延伸的同流换热器筒56的内表面78,并且向上流动通过同流换热器36的内部翅片72,在那里它传递热量给进来的蒸汽重整炉供给物34。
水煤气转换(WGS)反应器38是圆柱形催化剂涂层整料84,其被绝缘材料86包围并且位于同流换热器36的内套筒80之内。重整产物流32流出同流换热器36并朝着压力容器54的顶部的方向,在那里由于圆顶头部88其被迫反向,该圆顶头部从进入压力容器54的预热蒸汽重整炉供给物34中分离重整产物32。重整产物32向下流过筒80和90中心处的WGS整料84。当流出WGS反应器38时,重整产物流32朝着压力容器54的壁44,92被转向并且通过燃烧器预热器94。
燃烧器预热器94的结构非常类似于SMR反应器42和同流换热器36的结构,其中非常增长的翅片构件96,98(例如百叶窗翅片)铜焊到筒92的内侧和外侧表面100,102两者上。当对于反应器42为这种情况时,筒92作为压力容器54的一部分并且被焊接到SMR反应器筒44上。重整产物32通过在预热器94的内侧表面102的翅片98,并且将热量传递给燃烧器供给气体40上,该气体40通过在逆流方向上的预热器94的外表面100上的翅片96。当离开翅片96时,重整产物32越过水预热器104,该水预热器104由盘管106组成,用于蒸汽重整炉28的水26流过盘管106。期望重整产物32可以在这些预热器94,104中被冷却至这样的程度,使得一些水可以从重整产物32中冷凝下来。在水预热器104的下游处,重整产物32(和任何冷凝物)到达压力容器54的底层圆顶108处并且排出容器54,以通到热交换器110,其可以冷却重整产物32降至适合于PSA22的温度。从该热交换器110中的重整产物32移去的热量被认为是废热,并且能够被排放周围环境中。
现在接近大气压(1psig)的从PSA来的耗氢废气21与燃烧器空气112混合以组成燃烧器供给物40。该供给气体40进入低压缸60中并且向上流动通过燃烧器预热器94,并且进入到SMR反应器42的外表面52上的翅片50中。燃烧器供给物40垂直向上流动通过该催化剂涂层翅片50,对通过SMR反应器42的内表面48上的翅片46的气流32进行逆流。当流动通过翅片50时,在燃烧器供给物40中的氢,甲烷,和一氧化碳被催化地燃烧。产生的热量被传导通过SMR反应器42的圆柱形壁44并且供给到发生在翅片46上的吸热的蒸汽转化反应中,该翅片46固定到SMR反应器42的内表面48上。
当离开反应器42的翅片50时,燃烧器废气24继续向上流过低压和高压气缸44,60之间的环形区域,通过水蒸发器29和天然气预热器31。水蒸发器29和天然气预热器31由盘管62组成,其存在于筒44,60之间的环形空间之内。预热液态水26进入在底部的盘管62并且向上流,接收流过管62的高温燃烧器排气24的热量。当水通过管62时,其完全蒸发,然后适度地过热。天然气30在沿着盘管62的长度的一些点进入到盘管120中,并且与过热蒸汽相混合。然后两种流体被在盘管62的剩余长度中的燃烧器排气进一步加热,在它们被管送入高压容器54之后。可选择的设计(在图7和9中最佳的示出)是天然气在水盘管的下游(相对于燃烧器废气流24)的分离的盘管中预热,并且两者流体可以混合在离开它们相应的盘管热交换器之后。
大多数的燃烧反应通常发生在催化剂区域的相对小的初始长度上。使得燃烧反应在反应器42的长度上更加均匀分布是有利的。由于燃烧反应是传播限制的,通过初始区域这样能够实现到一定的程度,其中该初始区域处盘旋翅片构件50为连续的,因此提供了最小化了传播的进一步层流,以及出口区域,其中通过利用百叶窗,缝隙,矛状物等等盘旋翅片构件50被形成湍流,以促进反应物的更大的传播,以便于甲烷,氢和一氧化碳的最终的去除。
图6示出了在SMR反应器42之内期望的典型的温度分布图。SMR供给物32,34从右到左流动,同时燃烧器供给物从左到右流动。在翅片46和50的最大的顶点处的温度,和在气缸壁44的二者之一的表面上的温度也被描述。在图中可以看出,在SMR反应器42之内的热传递足以保持金属温度在1000℃以下。将SMR流32,34和燃烧器流50运行在逆流方向,而不会引起危险的高金属温度的能力会导致重整产物的出口温度基本上高于重整产物的入口温度,因此最佳化了甲烷至氢的转换,并且最小化了同流换热器36的所需的有效性。
由于这种结构避免了对额外供给到燃烧器25的天然气的需要,燃料处理装置20的控制被大大的简化。在SMR反应器42内的温度可以通过调整燃烧器气流112进行控制,基于位于反应器42的外套筒58上的传感器(未示出)所提供的温度反馈,在该外套筒的区域峰值排气温度是可预想到的。通过结合水预热器104的可调节的水旁通阀(未示出),进一步的控制是可能的,从而使得供给到蒸发器29的水26的温度能够通过改变流过预热器104的百分比进行调节。从位于到WGS反应器38的入口122处的温度传感器的反馈可以潜在地作为用于该阀的控制源。
高度的热集成导致体积紧凑的高压容器54,因此最小化运行在应用所需的高温和高压下的容器所需的壁厚。在该应用中所描述的燃料处理装置20的一个优选实施例是具有压力容器54,其直径为6英寸,大约40英寸的总长,并且预计能够重整6.25kg/hr的天然气,在77.5%的氢的制造效率下(氢的LHV通过PSA去除,假定在重整产物中氢的75%被去除,通过天然气供给物的LHV进行分开),导致氢的制造率为1.87kg/hr。
燃料处理单元20的另一个实施例在图7-16中被示出。该实施例不同于图2-4中的地方在于(a)水预热器104已经从整体化装置20中移出到外部位置中,并且燃烧器94延伸到预先由水预热器104所占领的区域;(b)PSA废气入口和重整产物出口,与这些地方相关的区域一起,已经被修改;和(c)用于天然气预热器31的分离的盘管130已经增加到用于水蒸发器29的盘管62的下游侧。
如在图3的燃料处理单元20中,SMR反应器42的翅片46,50仅仅被铜焊到筒44上,并且燃烧器预热器94的翅片96,98仅仅被铜焊到筒92上,其中筒44和92在它们的邻近端被焊接以形成高压容器54的圆柱形壁。而且,如图3所示的燃料处理单元20的实施例一样,圆柱形挡板或者壁132用来延伸过流动通道的内界面,该流动通道用于通过盘管62,130的一部分的燃烧器排气24,这些盘管延伸越过压力容器54的顶部66。圆柱形挡板132被间断焊接到压力容器54的顶部66上,但是没有接触盘管62,130或者低压容器60。因此,高压容器54和低压容器60仅仅在两个位置机械地接合。如图8最佳的示出,第一位置是在邻近压力容器54的底部处,在那里空气/PSA废气入口构件134被焊接到用于高压容器54下部的圆顶头部108上和用于低压容器60的下部的圆顶头部136上,以形成刚性连接。第二位置是邻近燃料处理单元20的顶部,如图9最佳的示出,其中盘管62,130在第一位置处被焊接到低压容器60上,并且在第二位置处通过供给混合物入口管构件142被焊接到高压容器54的圆顶状顶盖66上。构件142包括供给混合物进气歧管143,其通过适当的装配连接机构连接到盘管62和130的相应的出口端144和145处,和具有内部混合构件147的向下延伸的混合管146(在图示实施例同时示出的是中央的仪表管148,其可以对于生产单元可选择的进行淘汰)。该第二连接机构远非刚性,并且由有效的两个弹簧(盘管62,130)制成。因此,高压容器54和低压容器60在轴向上相互之间是基本上是自由的,并且尽管容器60的外壳58趋向运转更热,在差别的热膨胀不会产生显著的应力。
如同图3的燃料处理单元20的实施例一样,同流换热器36的翅片70,72仅仅被铜焊到同流换热器筒56上,而不是高压容器54或者邻近的内侧表面上。如图10最佳的示出,高压容器54和同流换热器筒56仅仅在顶端机械的结合,在那里两者都焊接到供给混合物分配环150上,该环150用来安装圆顶头部88和筒56至高压容器54上。如图11最佳的示出,供给混合物分配环150包括多个有角度隔开的孔152,这些孔允许蒸汽重整炉供给物34通过并到同流换热器36和SMR反应器42中。由于部件54,56仅仅在一端连接,它们可以响应于不同的热膨胀随意独立地移动,并且在其上因此不会产生显著的应力结果。优选的,内侧筒80没有接触翅片70,72或者筒78,而是借助于凸缘,环状挡板154连接到压力容器54的筒44的内部,该挡板154焊接到筒44和80两者上,如图12最佳的示出。由于内侧筒80和高压容器仅仅在一个位置被连接,它们可以响应于不同的热膨胀随意独立于另一个移动,因此不会产生显著的应力。
如同图3的燃料处理装置20的实施例一样,WGS反应器38的圆柱形壁90通过一对平的,环状的挡板156,158连接内侧筒80上,该挡板156,158焊接到WGS筒90的两端上,如图13最佳的示出。位于底部的挡板158也焊接至内侧筒80的内部。因为在WGS筒90和内侧筒80之间的气室环不是流动通道,该气室环在两端不需要气密密封。因为上部环状的挡板156相对于内侧筒80可自由地移动,筒80和90能够响应于不同的热膨胀相互之间移动,因此不会产生显著的应力。
如同图3的燃料处理单元20的实施例一样,燃烧器预热器区域的中心的体积通过圆柱形外壳160所占领,该外壳160优选填满了绝缘材料,如图14最佳的示出。齿形的圆盘162被焊接外壳160的底部和压力容器54的筒92的内部。如图15最佳的示出,有角度地隔开切口164被提供在圆盘162的周边,以便于允许重整产物流32通过。优选地,外壳160没有固定到翅片98上。再次,由于外壳160和压力容器154仅仅在一端连接,它们可以响应于不同的热膨胀独立地移动,并且在其上因此不会产生显著的应力结果。
如图16最佳的示出,重整产物流32借助于小直径管166流出燃料处理单元,该小直径管焊接到压力容器54的底盖108上。燃烧空气112借助于大直径管168进入到单元20的底部,该大直径管168优选与压力容器54同心。PSA废气入口构件134包括与管168相同直径的管172,PSA废气入口管174,和燃烧器气流/PSA废气喷射器176,其包括多个圆周隔开的孔178,其喷射PSA废气入该气流112中。虽然重整产物出口管166和废气进口构件134相互之间在两个位置处刚性连接,考虑到不同热膨胀所产生的应力,在PSA废气流21和重整产物流32之间存在极少的温度差。因此,没有显著的应力被产生。
权利要求
1.一种使用在燃料处理系统中的集成的蒸汽重整炉/燃烧器组件,其提供在所述组件中被重整的蒸汽/燃料供给混合物和在所述组件中被燃烧的燃烧器供给物;该组件包括一外壳,其限定了彼此处于热传递关系的第一和第二轴向延伸的同心的环形通道,第一通道在第一端开口以接收供给混合物入第一通道中,该第一通道在相对端开口以将供给混合物引导出第一通道,第二通道在邻近相对端的位置开口以引导燃烧器供给物入第二通道中,并且第二通道在邻近第一端的位置开口以将燃烧器供给物引导出第二通道;第一盘旋翅片,其位于第一通道中以引导通过供给混合物,所述的第一盘旋翅片涂有催化剂,所述的催化剂可在所述的供给混合物中诱发所需的反应;和第二盘旋翅片,其位于第二通道中以引导通过燃烧器供给物,第二盘旋翅片涂有催化剂,所述的催化剂可在所述的燃烧器供给物中诱发所需的反应。
2.如权利要求1所述的组件,其中所述第一通道位于所述第二通道的径向向内处。
3.如权利要求1所述的组件,其中所述的第二盘旋翅片在其下游段具有湍流(turbulated)表面,以及在其上游部分处的非湍流(unturbulated)表面。
4.如权利要求1所述的组件,其中所述的第一和第二盘旋翅片的至少一个具有表面增大,该表面增大沿着所述的第一和第二盘旋翅片的所述的至少一个的轴长变化,以改变在整个轴长上的反应。
5.如权利要求1所述的组件,其中第一和第二盘旋翅片粘接到一壁的相对侧,该壁从第二通道中分离第一通道。
6.如权利要求5所述的组件,其中所述翅片仅仅粘接至所述壁。
7.如权利要求1所述的组件,还包括圆柱形水煤气(water-gas)转换反应器,其在所述的第一和第二流动通道的径向向内的位置处中央地延伸通过所述的外壳。
8.一种使用在燃料处理系统中的集成的蒸汽重整炉/燃烧器组件,其提供在所述组件中被重整的蒸汽/燃料供给混合物和在所述组件中被燃烧的燃烧器供给物;该组件包括一圆柱形壁;第一盘旋翅片,其粘接到所述的壁的径向向内衬面上,第一翅片涂有第一催化剂,其在所述的供给混合物和所述的燃烧器供给物之一中诱发所需反应;和第二盘旋翅片,其粘接到所述的壁的径向向外面衬面上,第二翅片涂有第二催化剂,其在所述的供给混合物和燃烧器供给物的另一个上诱发所需的反应。
9.如权利要求8所述的组件,其中第一盘旋翅片的回旋轴向延伸以将所述的供给混合物和所述的燃烧器供给物之一引导通过所述的组件,第二盘旋翅片的回旋轴向延伸以将所述供给混合物和所述燃烧器供给物另一个引导通过所述的组件。
10.如权利要求8所述的组件,其中第一催化剂是用于所述供给混合物的催化剂,并且第二催化剂是用于燃烧器供给物的催化剂。
11.如权利要求8所述的组件,其中所述的第一和第二盘旋翅片的至少一个具有表面增大,该表面增大沿着所述的第一和第二盘旋翅片的所述的至少一个的轴长变化,以改变在整个轴长上的反应。
12.如权利要求8所述的组件,还包括圆柱形水煤气转换反应器,其在所述的第一翅片的径向向内的位置处中央地延伸通过所述的组件。
13.一种使用在燃料处理系统中的集成的蒸汽重整炉/燃烧器组件,其提供在所述组件中被重整的蒸汽/燃料供给混合物和在所述组件中被燃烧的燃烧器供给物;该组件包括第一圆柱形壁;第二圆柱形壁,其与第一圆柱形壁径向向内地隔开,以在第一和第二圆柱形壁之间限定第一轴向延伸的环形流动通道,和在第二圆柱形壁的径向向内面对侧所限定的第二轴向延伸流动通道;第一盘旋翅片,其位于第一通道中,第一盘旋翅片的回旋轴向延伸以将所述的供给混合物和所述的燃烧器供给物之一引导通过第一通道,第一翅片涂有第一催化剂,其能在所述的供给混合物和所述的燃烧器供给物所述的之一中诱发所需的反应;和第二盘旋翅片,其位于第二通道中,第二盘旋翅片的回旋轴向延伸以将所述的供给混合物和所述的燃烧器供给物的另一个引导通过第二通道,第二翅片涂有第二催化剂,其能在所述的供给混合物和燃烧器供给物的另一个中诱发所需的反应。
14.如权利要求13所述的组件,其中所述的第一和第二盘旋翅片被粘接到第二圆柱形壁上。
15.如权利要求14所述的组件,其中第一盘旋翅片不粘接到第一圆柱形壁上。
16.如权利要求13所述的组件,其中所述的第一和第二盘旋翅片被铜焊到第二圆柱形壁上,并且第一盘旋翅片不粘接到第一圆柱形壁上。
17.如权利要求13所述的组件,其中第一催化剂是用于所述燃烧器供给物的催化剂,并且第二催化剂是用于供给混合物的催化剂。
18.如权利要求13所述的组件,还包括第三圆柱形壁,其与第二圆柱形壁径向向内隔开以限定用于第二通道的环形形状。
19.如权利要求18所述的组件,其中所述的第一和第二盘旋翅片被粘接到第二圆柱形壁上。
20.如权利要求19所述的组件,其中所述的第二盘旋翅片不粘接到第三圆柱形壁上。
21.如权利要求20所述的组件,其中所述的第一盘旋翅片不粘接到第一圆柱形壁上。
22.如权利要求18所述的组件,其中所述的第一和第二盘旋翅片被铜焊到第二圆柱形壁上,所述的第二盘旋翅片不粘接到第三圆柱形壁上,并且所述的第一盘旋翅片不粘接到第一圆柱形壁上。
23.如权利要求13所述的组件,其中所述的第一和第二盘旋翅片的至少一个具有表面增大,该表面增大沿着所述的第一和第二盘旋翅片的所述的至少一个的轴长变化,以改变在整个轴长上的反应。
24.如权利要求13所述的组件,还包括圆柱形水煤气转换反应器,其在所述的第二圆柱形壁的径向向内的位置处中央地延伸通过组件。
25.集成燃料处理单元包括外壳;在所述外壳中的蒸汽/燃料供给混合物供给源;在所述外壳中的燃烧器供给物供给源;和在所述外壳中的蒸汽重整炉/燃烧器,该蒸汽重整炉/燃烧器包括彼此间处于热传递关系的第一和第二轴向延伸的同心的环形通道,第一通道连接到供给混合物的供给源,以在第一通道的一端接收供给混合物进入第一通道中,第二通道连接到燃烧器供给物的供给源,以在邻近第一通道的相对端的位置接收燃烧器供给物;第一盘旋翅片,其位于第一通道中以引导通过供给混合物,所述的第一盘旋翅片涂有催化剂,所述的催化剂可在所述的供给混合物中诱发所需的反应;和第二盘旋翅片,其位于第二通道中以引导通过燃烧器供给物,第二盘旋翅片涂有催化剂,所述的催化剂可在所述的燃烧器供给物中诱发所需的反应。
26.如权利要求25所述的集成燃料处理单元,其中所述的第一通道位于离所述第二通道的径向向内处。
27.如权利要求25所述的集成燃料处理单元,其中所述的第二盘旋翅片在其下游段具有湍流表面,以及在其上游部分处的非湍流表面。
28.如权利要求25所述的集成燃料处理单元,其中所述的第一和第二盘旋翅片的至少一个具有表面增大,该表面增大沿着所述的第一和第二盘旋翅片的所述的至少一个的轴长变化,以改变在整个轴长的反应。
29.如权利要求25所述的集成燃料处理单元,其中第一和第二盘旋翅片粘接到一壁的相对侧,该壁从第二通道中分离第一通道。
30.如权利要求29所述的集成燃料处理单元,其中所述的翅片仅仅粘接至所述壁。
31.如权利要求25所述的集成燃料处理单元,其中还包括圆柱形水煤气转换反应器,其在所述的第一和第二流动通道的径向向内的位置处延伸贯穿所述的外壳。
32.如权利要求31所述的集成燃料处理单元,其中还包括燃烧器预热器,其包括外壳,其限定了彼此处于热传递关系的第三和第四轴向延伸的同心的环形通道,第三通道与所述的第二通道对齐并且直接连接到所述第二通道,以引导燃烧器供给物进入第二通道,第四通道连接到所述的水煤气转换反应器以接收来自水煤气转换反应器的重整流。
33.如权利要求26所述的集成燃料处理单元,还包括在所述壳体中的同流热交换器,该同流热交换器包括彼此处于热传递关系的第三和第四轴向延伸的同心的环形通道,第三通道与所述的第一通道对齐并且直接连接到所述的第一通道,以引导供给混合物进入第一通道,第四通道设置在离第三通道的径向向内处,并且连接到第一通道,以在供给混合物已经在第一通道重整之后从其中接收供给混合物。
全文摘要
一集成的蒸汽重整炉/燃烧器组件(42)提供使用在燃料处理装置(20)中,该燃料处理装置(20)提供蒸汽/燃料供给混合物(34)在该组件中重整以及燃料供给物(40)在该组件中燃烧。该组件(42)包括外壳(44,58),其定义了彼此间处于热传递关系的第一和第二轴向延伸的同心的环形通道;第一盘旋翅片(46),其位于第一通道中以引导通过供给混合物,该第一盘旋翅片涂有催化剂,该催化剂可在供给混合物中诱发所需的反应。和第二盘旋翅片(50),其位于第二通道中以引导通过燃烧器供给物,第二盘旋翅片涂有催化剂,该催化剂可在燃烧器供给物中诱发所需的反应。
文档编号F28D7/02GK1922101SQ200580005226
公开日2007年2月28日 申请日期2005年2月16日 优先权日2004年2月17日
发明者M·J·赖因克, J·瓦伦萨, T·班德豪尔, N·塞勒, M·G·沃斯, M·麦格雷戈, D·C·格兰内茨克 申请人:穆丹制造公司