用于容纳、运输低温流体的工艺部件、容器及管路的制作方法

文档序号:4561505阅读:393来源:国知局
专利名称:用于容纳、运输低温流体的工艺部件、容器及管路的制作方法
技术领域
本发明涉及用于容纳、运输低温流体的工艺部件、容器及管路,更具体地讲涉及由超高强度、低合金钢制成的工艺部件、容器及管路,该合金钢的镍含量小于9%(重量),拉伸强度高于830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
在工业中,常常需要具有足够韧性的工艺部件、容器和管路来无故障地处理、容纳和运输低温下的流体,即低于约-40℃(-40°F)温度。在烃类和化学处理工业中尤其如此,例如低温处理已用于实现烃类液体和气体的组分分离,也用于氧和二氧化碳液体的分离和储存。
在工业中还有其它一些低温工艺,包括如低温发电循环、制冷循环和液化循环。在低温发电过程中,一般采用逆向兰金循环及其派生方法通过从超低温源回收可用的低温能量来产生电力。在最简单的循环方式中,使用与发电机相连的可产生功的涡轮将合适的液体,如乙烯,在低温下冷凝,用泵加压,然后汽化并膨胀。
泵广泛地用于移动处理和制冷系统中的低温流体,其中温度可低于约-73℃(-100°F)。另外,在处理过程中当易燃流体释放入火炬系统时,流体压力会降低,例如通过一个压力安全阀,流体压力的降低会引起与之相伴的流体温度降低,如果压力降低很大,所引起的流体温度会很低,使得在火炬系统中惯常使用的碳钢的韧性不足,一般碳钢在低温下会发生断裂。
在许多工业应用领域,流体在高压下储存和运输,即同压缩气体一样。通常,压缩气体的储存和运输容器由标准市售碳钢或铝制成,以达到频繁装卸的流体运输容器所需的韧性,并且容器的器壁必须较厚以提供容纳高加压压缩气体所需的强度。具体讲,加压气体钢瓶已广泛地用于储存和运输气体,举例来说,如氧气、氮气、乙炔、氩气、氦气和二氧化碳。另一种方式是将流体的温度降低,制成饱和液体(如果必要的话甚至使之过冷),这样流体便可以作为液体储存和运输。流体可在与其始沸点条件相对应的压力和温度下液化。如果存在储存和运输加压低温流体的低成本方法的话,在加压低温条件下储存和运输流体在经济上具有其优越性,这决定于流体的特性。可用几种方法来运输加压低温流体,如油罐车、油罐火车和船舶运输。当加压低温流体在加压低温状态由当地配给站使用时,除上述储存和运输容器外,另一种可供选择的方法是输送管线配给系统,即可生产和/或储存大量低温流体的中心储存区域与当地配给站或用户之间的管路。所有以上的运输方法均需要使用由这样的材料制成的储存容器和/或管路,该材料应具有足够的低温韧性以防止断裂并具有足够的强度以保持高流体压力。
韧脆转变温度(DBTT)划分了结构钢的两个断裂范围,低于DBTT温度,钢中的断裂易于以低能量解理断裂(脆断)方式,而高于DBTT温度,钢中的断裂易于以高能量韧性断裂方式,对于制造上述在低温条件下使用和其它在低温服役条件下承载的工艺部件及储存容器所用的焊接钢材,其基体钢和焊接热影响区的DBTT均必须远低于服役温度,以防止由低能量解理断裂所导致的失效。
通常用于低温结构件的含镍钢,例如镍含量大于约3wt%的钢,具有低的DBTT,但其抗拉强度也较低。一般来说,市售的含镍量分别为3.5wt%,5.5wt%和9wt%的钢,其DBTT分别约为-100℃(-150°F),-155℃(-250°F)和-175℃(-280°F),拉伸强度最高分别为约485MPa(70Ksi),620MPa(90Ksi和830MPa(120Ksi)。为了实现所述强度与韧性的组合,这些钢一般需进行价格昂贵的处理,如双退火处理。在低温应用场合,工业界目前使用的是这些商品化的含镍钢,原因在于它们的低温韧性好,但必须针对它们较低的拉伸强度进行设计,一般来说,为满足承载、低温场合的要求,设计时需要钢的厚度过大。因此,由于这些钢的成本高并且所需要的厚度大,所以这些含镍钢在承载、低温场合下使用时一般价格昂贵。
尽管一些市售的碳钢具有低至约-46℃(-50°F)的DBTTS,但常用来建造市售的用于烃类和化学处理的工艺部件和容器的碳钢,其韧性不足以在低温条件下使用。按照惯例,目前常使用低温韧性好于碳钢的材料,例如上述商品化的含镍钢(3.5wt%~9wt%Ni)、铝(Al-5083或Al-5085)、或不锈钢来制造在低温条件下使用的商业化的工艺部件和容器,并且,有时使用一些特殊的材料,如钛合金和环氧树脂浸渍的编织玻璃纤维复合材料。然而,用上述材料制成的工艺部件、容器和/或管路,为得到所需的强度,常需要增加壁厚,这就加大了必须支撑和/或运输的所述部件和容器的重量,常大大地加大项目的成本。另外,这些材料比标准碳钢贵得多,部件和容器的壁厚加大后,其支撑和运输费用提高,加上制造上述部件和容器的材料成本提高,这会降低整个项目在经济上的吸引力。
所以,需要合适的工艺部件和容器以经济地容纳和运输低温流体,也需要合适的管路以经济地容纳和运输低温流体。
因此,本发明的主要目的在于提供适于经济地容纳和运输低温流体的工艺部件和容器,并提供适于经济地容纳和运输低温流体的管路。本发明的另一目的是提供由这样的材料制成的工艺部件、容器和管路,该材料同时具有足够的强度和断裂韧性以容纳加压低温流体。
上述新型工艺部件和容器可有利地用于,如回收天然气液体的低温膨胀设备,液化天然气(“LNG”)处理和液化工艺,Exxon ProductionResearch Company率先采用的控制凝固区域(“CFZ”)工艺,低温制冷系统,低温发电系统,与乙烯和丙烯生产相关的低温处理过程。使用这些新型的工艺部件、容器和管路,可有利地降低常规碳钢在低温服役时经常发生的低温脆性断裂危险。另外,这些工艺部件和容器也可提高项目的经济吸引力。
图2是依据本发明的固定管板、单通道式热交换器示意图。
图3是依据本发明的釜形再沸器热交换器示意图。
图4是依据本发明的膨胀式进料分离器示意图。
图5是依据本发明的火炬系统示意图。
图6是依据本发明的流送管式分配网络系统示意图。
图7是用在逆向兰金循环中的本发明冷凝系统示意图。
图8是用在串联式制冷循环中的本发明冷凝器示意图。
图9是用在串联式制冷循环中的本发明汽化器示意图。


图10是依据本发明的泵系统示意图。
图11是依据本发明的处理塔系统的示意图。
图12是依据本发明的另一种处理塔系统的示意图。
图13A是对于给定的裂纹长度,临界裂纹深度和CTOD断裂韧性及残余应力之间的关系图。
图13B是裂纹的几何尺寸(长度和深度)示意图。
虽然本发明结合其优选的实施方案进行了描述,但应当理解的是本发明并没有因此而受到限制。相反地,本发明旨在覆盖所有的替代方案、修改方案和等效方案,它们都包含在附后的权利要求书所定义的本发明的精髓和范围内。发明详述本发明涉及适于处理、容纳和运输低温流体的新型工艺部件、容器及管路。此外,涉及由包括超高强度、低合金钢材料制成的工艺部件、容器及管路,该合金钢的镍含量小于9wt%,拉伸强度高于约830MPa(120ksi)且DBTT低于约-73℃(-100°F)。优选地,该超高强度、低合金钢的基体板和焊接时的热影响区(HAZ)均具有优异的低温韧性。
提供适于处理、容纳低温流体的工艺部件、容器及管路,该工艺部件、容器及管路由包括超高强度、低合金钢的材料制成,该合金钢的镍含量小于约9wt%,拉伸强度高于约830MPa(120ksi)且DBTT低于约-73℃(-100°F)。优选地,该超高强度、低合金钢的镍含量低于约7wt%,更优选低于约5wt%。优选地,该超高强度、低合金钢的拉伸强度高于约860MPa(125ksi),更优选高于约900MPa(130ksi)。甚至更优选地,本发明的工艺部件、容器和管路由镍含量低于约3wt%的超高强度、低合金钢制成,其拉伸强度超过约1000MPa(145ksi),DBTT低于约-73℃(-100°F)。
五个共同未决的美国临时专利申请(“PLNG专利申请”),各自题为“用于处理、储存和输送液化天然气的改进的系统”,描述了用于储存和海上运输加压液化天然气(PLNG)的容器及油轮,该加压液化天然气处于约1035kPa(150psia)~约7590kPa(1100psia)的宽压力范围内和约-123℃(-190°F)~约-62℃(-80°F)的宽温度范围内。上述PLNG专利申请中的最近的优先权日为1998年5月14日,申请人的案卷号是No.97006P4,美国专利商标局(“USPTO”)给予的申请号为60/085467。所述第一个PLNG专利申请的优先权日为1997年6月20日,USPTO给予的申请号是60/050280。所述第二个PLNG专利申请的优先权日是1997年7月28日,USPTO给予的申请号是60/053966。所述第三个PLNG专利申请的优先权日是1997年12月19日,USPTO给予的申请号是60/068226。所述第四个PLNG专利申请的优先权日是1998年3月30日,USPTO给予的申请号是60/079904。此外,所述PLNG专利申请描述了用于处理、储存和运输PLNG的系统和容器。优选地,加压液化天然气燃料在约1725kPa(250psia)~约7590kPa(1100psia)的压力和约-112℃(-170°F)~约-62℃(-80°F)的温度下储存,更优选地,加压液化天然气燃料在约2415kPa(350psia)~约4830kPa(700psia)的压力和约-101℃(-150°F)~约-79℃(-110°F)的温度下储存,甚至更优选地,加压液化天然气燃料的压力和温度范围的低限为约2760kPa(400psia)和约-96℃(-140°F)。本发明的工艺部件、容器和管路可优选地用于处理PLNG,但本发明并不限于此。用于制造工艺部件、容器和管路的钢根据本文所述的公知断裂力学原理,对于任何超高强度、低合金钢,其镍含量低于9wt%而且具有足够的韧性来盛装低温液体,例如PLNG时,都可用于制造本发明的工艺部件、容器和管路。用于本发明的一个实例钢(并不因此限制本发明)是一种可焊接、超高强度、低合金钢,其镍含量低于9wt%,拉伸强度高于830MPa(120ksi),并且该钢具有足够的韧性以防止在低温操作条件下发生断裂(即一种失效现象)。用于本发明的另一个实例钢(并不因此限制本发明)是一种可焊接、超高强度、低合金钢,其镍含量低于3wt%,拉伸强度至少约1000MPa(145ksi),并具有足够的韧性以防止在低温操作条件下发生断裂(即一种失效现象)。优选地,这些实例钢的DBTT温度低于约-73℃(-100°F)。
钢制造技术的最近进展使得制造具有优异低温韧性的新型超高强度、低合金钢成为可能。例如,授予Koo等人的三个美国专利5531842、5545269和5545270描述了一些新型的钢和用于加工这些钢的方法,以用来生产拉伸强度约为830MPa(120ksi)、965Mpa(140ksi)或更高的钢板。为使超高强度、低合金钢不仅在基体钢中而且在焊接时热影响区(HAZ)中都具有优异低温韧性,其中所描述的钢和处理方法已经被改进和变动,以提供钢的化学成分和生产方法来生产超高强度、低合金钢。这些超高强度、低合金钢也具有改善的韧性,其韧性超过标准市售的超高强度低合金钢。在题为“具有优异低温韧性的超高强度的钢”的共同未决的临时专利申请中,描述了这种改良钢,其优先权日为1997年12月19日,该申请被美国专利商标局(USPTO)确定的申请号为60/068194;在题为“具有优异低温韧性的超高强度奥氏体时效钢”的共同未决的临时专利申请中,也描述了这种改良钢,其优先权日为1997年12月19日,该申请被美国美国专利商标局(USPTO)确定的申请号为60/068252;在题为“具有优异低温韧性的超高强度双相钢”的共同未决的临时专利申请中,同样描述了这种改良钢,其优先权日为1997年12月19日,该申请被美国美国专利商标局(USPTO)确定的申请号为60/068816。(总体来说“钢专利申请”)。
在所述钢专利申请中描述的和下面的实例中进一步描述的新型钢尤其适合于建造本发明的工艺部件、容器和管路,优选厚度约为2.5厘米(1英寸)和更大尺寸的钢板,所述钢具有下列特性(ⅰ)在基体钢和焊接热影响区,DBTT均低于约-73℃(-100°F),优选低于约-107℃(-160°F);(ⅱ)拉伸强度大于830MPa(120ksi),优选大于约860MPa(125ksi),更优选大于约900MPa(130ksi);(ⅲ)优良的可焊性;(ⅳ)沿厚度方向的显微组织和性能基本一致;和(ⅴ)改善的韧性,超过标准市售的超高强度低合金钢。甚至更优选的是,这些钢的拉伸强度大于约930MPa(135ksi),或大于约965MPa(140ksi)或大于约1000MPa(145ksi)。
第一个钢实例正如上面所讨论的,优先权日为1997年12月19日、题为“具有极好低温韧性的超高强度的钢”、USPTO给予的申请号为60/068194的共同未决的美国临时专利申请描述了一种适合用于本发明的钢。它提供了制备超高强度钢板的一种方法,该超高强度钢板的显微组织主要包括回火细晶板条马氏体、回火细晶下贝氏体或其混合物,其中该方法包括以下步骤(a)将钢坯加热到足够高的再加热温度,使(ⅰ)钢坯充分均匀化,(ⅱ)钢坯中所有铌和钒的碳化物、碳氢化物充分溶解,(ⅲ)在钢坯中形成细小的初始奥氏体晶粒;(b)在奥氏体发生再结晶的第一温度范围内,通过一道或多道热轧将钢坯轧成钢板;(c)在高于Ar3转变温度且低于Tnr温度的第二温度范围内,通过一道或多道热轧将钢板进一步减薄;(d)以约10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率将钢板淬火至淬火停止温度,该淬火停止温度低于约MS转变温度加上200℃(360°F);(e)停止淬火;(f)将钢板进行回火处理,回火温度约为400℃(752°F)~Ac1转变温度,优选至多(但不包括)Ac1转变温度,保温足够的回火时间以析出硬化颗粒,即一种或多种ε-铜,Mo2C,或铌和钒的碳化物和碳氮化物。足以析出硬化颗粒所需的时间主要取决于钢板的厚度、钢板化学成分和回火温度,而且可由本领域内熟练的技术人员进行确定。(参见术语表中有关主要地、硬化颗粒、Tnr温度、Ar3转变温度、Ms转变温度、Ac1转变温度和Mo2C的定义)。
为了确保在室温和低温下的韧性,该第一实例钢优选具有这样显微组织主要包括回火细晶下贝氏体、回火细晶板条马氏体或其混合物。优选将诸如上贝氏体、孪晶马氏体以及MA之类的脆性组分降至最低。在该第一钢实例中以及在权利要求书中,“主要”指的是至少为约50%(体积)。更优选的显微组织至少包括约60%~80%(体积)的回火细晶板条马氏体、回火细晶下贝氏体或其混合物。甚至更优选的显微组织至少包括约90%(体积)的回火细晶板条马氏体、回火细晶下贝氏体或其混合物。最优选地,显微组织基本上包括100%的回火细晶板条马氏体。
按照第一钢实例,钢坯的生产过程以通常的方式进行,而且在一个实施方案中,该钢坯包含铁和下述合金元素,合金元素的加入量优选下表Ⅰ中所列出的重量范围表Ⅰ合金元素范围(wt%)碳(C) 0.04-0.12,更优选0.04-0.07锰(Mn) 0.5-2.5,更优选1.0-1.8镍(Ni) 1.0-3.0,更优选1.5-2.5铜(Cu) 0.1-1.5,更优选0.5-1.0钼(Mo) 0.1-0.8,更优选0.2-0.5
铌(Nb) 0.02-0.1,更优选0.03-0.05钛(Ti) 0.008-0.03,更优选0.01-0.02铝(Al) 0.001-0.05,更优选0.005-0.03氮(N) 0.002-0.005,更优选0.002-0.003有时在钢中添加钒(V),优选的钒含量至多约0.10wt%,更优选的钒含量约为0.02wt%~0.05wt%。
有时在钢中添加铬(Cr),优选的铬含量至多约1.0%(重量),更优选的铬含量约为0.2wt%~0.6wt%。
有时在钢中添加硅(Si),优选的硅含量至多约0.5wt%,更优选的硅含量约为0.01wt%~0.5wt%,甚至更优选的硅含量约为0.05wt%~0.1wt%。
有时在钢中添加硼(B),优选的硼含量至多约0.0020wt%,更优选的硼含量约为0.0006wt%~0.0010wt%。
钢中的镍含量优选至少约1wt%。如果需要提高焊接后的性能,钢中的镍含量可增至约3wt%以上。镍含量每增加1wt%,钢的DBTT温度预计降低10℃(18°F)左右。镍含量优选低于9wt%,更优选低于约6wt%。为使钢的成本降至最低,优选将镍含量降至最低。如果镍含量增至超过约3wt%,锰含量可减少到约0.5wt%~0.0wt%。因此,从广义上说,优选的锰含量至多约2.5wt%。
另外,优选将钢中的残渣基本上减至最少。磷(P)含量优选低于约0.01wt%。硫(S)含量优选低于约0.004wt%。氧(O)含量优选低于约0.002wt%。
稍微详细地讲,上述第一实例钢的制备方法如下形成具有上述所需成分的板坯;将板坯加热到约955℃~约1065℃(1750°F-1950°F)的温度;在奥氏体再结晶的第一温度范围内,即高于约Tnr温度,通过一道或多道热轧将板坯压缩约30%~70%,形成钢板;之后在低于Tnr温度但高于Ar3转变温度的第二温度范围内,通过一道或多道热轧,将钢板减薄约40%~80%。然后将热轧钢板以约10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火至适宜的QST(见术语表中的定义)温度,该QST温度大约在MS转变温度加上200℃(360°F)以下,此时淬火被终止。在该第一钢实例的一个实施方案中,钢板随后被空冷至室温。该方法可用于形成这样的显微组织该显微组织优选主要包括细晶板条马氏体、细晶下贝氏体、或它们的混合,或者,更优选包括基本上100%的细晶板条马氏体。在该第一钢实例的钢中,直接淬火的马氏体具有超高强度,但它的韧性可通过在约400℃(752°F)~约Ac1转变温度之间的合适的温度下进行回火而得以改善。在这个温度范围内进行回火还可降低淬火应力,进而提高钢的韧性。尽管回火可提高钢的韧性,但通常会引起相当大的强度损失。在本发明中,由回火引起的强度损失通过析出弥散硬化来弥补。在马氏体组织的回火过程中,由细小的铜析出和碳化物和/或碳氮化物的混合所引起的弥散硬化可用来优化其强度和韧性。上述第一实例钢的独特的化学成分,可使其在约400℃~约650℃(750°F-1200°F)这一宽温度范围内进行回火而不引起淬火状态强度的任何明显损失。优选地,钢板的回火温度为约400℃(752°F)~Ac1转变温度,保温时间应足以使硬化颗粒(见本发明的定义)析出。该处理方法可促进钢板的显微组织转变成以回火细晶板条马氏体、回火细晶下贝氏体、或它们的混合为主。此外,足以使硬化颗粒析出的保温时间主要取决于钢板的厚度、钢板的化学成分以及回火温度,而且该时间可由本领域内熟练的技术人员进行确定。第二个钢实例正如上面所讨论的,优先权日为1997年12月19日、题为“具有优异低温韧性的超高强度奥氏体时效钢”、USPTO给予的申请号为60/068252的共同未决的美国临时专利申请描述了其它适合用于本发明的钢。它提供了制备超高强度钢板的一种方法,该超高强度钢板具有微层状的显微组织,包括约2vol%~10vol%的奥氏体膜层及约90vol%~98vol%的主要为细晶马氏体和细晶下贝氏体的板条。其中该方法包括以下步骤(a)将钢坯加热到足够高的再加热温度,使(ⅰ)钢坯充分均匀化,(ⅱ)钢坯中所有铌和钒的碳化物、碳氮化物充分溶解,(ⅲ)在钢坯中形成细小的初始奥氏体晶粒;(b)在奥氏体发生再结晶的第一温度范围内,通过一道或多道热轧将钢坯轧成钢板;(c)在高于Ar3转变温度且低于Tnr温度的第二温度范围内,通过一道或多道热轧将钢板进一步减薄;(d)以约10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率将钢板淬火至淬火停止温度(QST),该淬火停止温度约在MS转变温度~MS转变温度加上100℃(180°F)之间;(e)停止淬火。在一个实施方案中,上述第二实例钢的工艺方法还包括使钢板从QST温度空冷至室温。在另一个实施方案中,上述第二实例钢的工艺方法还包括以下步骤使钢板在QST温度基本等温地保持不超过约5分钟,然后将钢板空冷至室温。在又一个实施方案中,该第二实例钢的工艺方法还包括以下步骤将钢板以低于约1.0℃/秒(1.8°F/秒)的速率从QST温度缓冷至多约5分钟,然后空冷至室温。在又一个实施方案中,本发明的工艺方法还包括以下步骤将钢板以低于约1.0℃/秒(1.8°F/秒)的速率从QST温度缓冷至多约5分钟,然后空冷至室温。该方法可促进钢板的显微组织转变成约2vol%~10vol%的奥氏体膜层和约90vol%~98vol%的主要为细晶马氏体和细晶下贝氏体的板条(参见术语表中对Tnr温度、Ar3和MS转变温度的定义)。
为确保室温和低温下的韧性,在微层状显微组织中的板条优选主要包括下贝氏体或马氏体。优选将诸如上贝氏体、孪晶马氏体及MA之类的脆性组分降至最低。在该第二实例钢及在权利要求书中,“主要的”是指至少约50vol%。剩余的显微组织可包括附加的细晶下贝氏体、附加的细晶板条马氏体、或铁素体。更优选地,显微组织包括至少约60vol%~80vol%的下贝氏体或板条状马氏体。甚至更优选地,显微组织包括至少约90vol%的下贝氏体或板条马氏体。
按照第二钢实例,钢坯的生产过程以通常的方式进行。而且在一个实施方案中,该钢坯包含铁和下述合金元素,合金元素的加入量优选下表Ⅱ中所列出的重量范围表Ⅱ合金元素 范围(wt%)
碳(C) 0.04-0.12,更优选0.04-0.07锰(Mn) 0.5-2.5,更优选1.0-1.8镍(Ni) 1.0-3.0,更优选1.5-2.5铜(Cu) 0.1-1.0,更优选0.2-0.5钼(Mo) 0.1-0.8,更优选0.2-0.4铌(Nb) 0.02-0.1,更优选0.02-0.05钛(Ti) 0.008-0.03,更优选0.01-0.02铝(Al) 0.001-0.05,更优选0.005-0.03氮(N) 0.002-0.005,更优选0.002-0.003有时在钢中添加铬(Cr),优选至多约1.0%(重量),更优选为约0.2wt%~0.6wt%。
有时在钢中添加硅(Si),优选至多约0.5wt%,更优选为约0.01wt%~0.5wt%,甚至更优选为约0.05wt%~0.1wt%。
有时在钢中添加硼(B),优选至多约0.0020wt%,更优选为约0.0006wt%~0.0010wt%。
钢中的镍含量优选至少约1wt%。如果需要提高焊接后的性能,钢中的镍含量可增至约3wt%以上。镍含量每增加1wt%,钢的DBTT温度预计降低10℃(18°F)左右。镍含量优选低于9wt%,更优选低于约6wt%。为使钢的成本降至最低,优选将镍含量降至最低。如果镍含量增至超过约3wt%,锰含量可减少到约0.5wt%~0.0wt%。因此,从广义上说,优选的锰含量至多约2.5wt%。
另外,优选将钢中的残渣基本上减至最少。磷(P)含量优选低于约0.01wt%。硫(S)含量优选低于约0.004wt%。氧(O)含量优选低于约0.002wt%。
稍微详细地讲,上述第二实例钢的制备方法如下形成具有上述所需成分的板坯;将板坯加热到约955℃~约1065℃(1750°F-1950°F)的温度;在奥氏体再结晶的第一温度范围内,即高于约Tnr温度,通过一道或多道热轧将板坯压缩约30%~70%,形成钢板;之后在低于Tnr温度但高于Ar3转变温度的第二温度范围内,通过一道或多道热轧,将钢板减薄约40%~80%。然后将热轧钢板以约10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火至适宜的QST(见术语表中的定义)温度,该温度约在Ms转变温度~Ms转变温度加上100℃(180°F)之间,此时淬火被终止。在该第二钢实例的一个实施方案中,淬火终止后,钢板随后从QST温度空冷至室温。在该第二钢实例的另一个实施方案中,在淬火终止后,将钢板在QST温度基本上等温地保持一段时间,优选至多约5分钟,然后空冷至室温。在又一个实施方案中,将钢板以低于空冷的速率,即以低于约1℃/秒(1.8°F/秒)的速率缓慢冷却,优选冷却至多约5分钟。在又一个实施方案中,将钢板以低于空冷的速率,即以低于约1℃/秒(1.8°F/秒)的速率,从QST温度缓慢冷却,优选冷却至多约5分钟。在该第二钢实例的至少一个实施方案中,Ms转变温度为约350℃(662°F),因此,MS转变温度加上100℃(180°F)是大约450℃(842 °F)。
如本领域内的熟练技术人员所共知,可采用任何合适的方法使钢板在QST基本上保持等温,例如通过在钢板上放置一个热毯。如本领域内的熟练技术人员所公知,可采用任何合适的方法使钢板在淬火终止后缓慢冷却,例如通过在钢板上放置一个绝热层。第三个钢实例如上面所讨论的,优先权日为1997年12月19日、题为“具有优异低温韧性的超高强度双相钢”、USPTO给予的申请号是60/068816的共同未决的美国临时专利申请描述了其它适合用于本发明的钢。它提供了制备超高强度双相钢板的一种方法,该钢板的显微组织包括约10vol%~40vol%的第一相,该相基本上是100vol%(即基本纯粹的或“实质上的”)的铁素体,以及约60vol%~90vol%的第二相,该相主要是细晶板条马氏体、细晶下贝氏体、或它们的混合物。其中该方法包括以下步骤(a)将钢坯加热到足够高的再加热温度,使(ⅰ)钢坯充分均匀化,(ⅱ)钢坯中所有铌和钒的碳化物、碳氮化物充分溶解,(ⅲ)在钢坯中形成细小的初始奥氏体晶粒;(b)在奥氏体发生再结晶的第一温度范围内,通过一道或多道热轧将钢坯轧成钢板;(c)在高于Ar3转变温度且低于Tnr温度的第二温度范围内,通过一道或多道热轧将钢板进一步减薄;(d)在低于Ar3转变温度且高于Ar1转变温度的第三温度范围(即亚临界温度范围)内,通过一道或多道热轧将钢板进一步减薄;(e)以约10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率将上述钢板淬火至淬火停止温度(QST),该淬火停止温度优选约在MS转变温度加上200℃(360°F)以下;以及(f)停止淬火。在该第三钢实例的另一个实施方案中,QST温度优选在约Ms转变温度加上100℃(180°F)以下,更优选低于约350℃(662°F)。在该第三钢实例的一个实施方案中,步骤(f)之后钢板便空冷至室温。该方法有利于使钢板的显微组织转变成约10vol%~40vol%的铁素体第一相,及约60vol%~90vol%的第二相,该第二相主要是细晶板条马氏体、细晶下贝氏体、或它们的混合。(参见术语表对Tnr温度、Ar3和Ar1转变温度的定义。)为确保室温和低温下的韧性,该第三实例钢中第二相的显微组织应主要包括细晶下贝氏体、细晶板条马氏体、或它们的混合。优选将第二相中诸如上贝氏体、孪晶马氏体及MA之类的脆性组分降至最低。在该第三实例钢及在权利要求书中,“主要的”是指至少约50vol%。第二相显微组织的剩余部分可包括附加的细晶下贝氏体、附加的细晶板条马氏体、或铁素体。更优选地,第二相的显微组织包括至少约60vol%~80vol%的细晶下贝氏体、细晶板条马氏体、或它们的混合。甚至更优选地,第二相的显微组织包括至少约90vol%的细晶下贝氏体、细晶板条马氏体、或它们的混合。
按照第三钢实例,钢坯的生产过程以通常的方式进行。而且在一个实施方案中,该钢坯包含铁和下述合金元素,合金元素的加入量优选下表Ⅲ中所列出的重量范围表Ⅲ
合金元素范围(wt%)碳(C) 0.04-0.12,更优选0.04-0.07锰(Mn)0.5-2.5,更优选1.0-1.8镍(Ni)1.0-3.0,更优选1.5-2.5铌(Nb)0.02-0.1,更优选0.02-0.05钛(Ti)0.008-0.03,更优选0.01-0.02铝(Al)0.001-0.05,更优选0.005-0.03氮(N) 0.002-0.005,更优选0.002-0.003有时在钢中添加铬(Cr),优选至多约1.0wt%,更优选为约0.2wt%~0.6wt%。
有时在钢中添加钼(Mo),优选至多约0.8wt%,更优选为约0.1wt%~0.3wt%。
有时在钢中添加硅(Si),优选至多约0.5wt%,更优选为约0.01wt%~0.5wt%,甚至更优选为约0.05wt%~0.1wt%。
有时在钢中添加铜(Cu),优选范围为约0.1wt%~1.0wt%,更优选范围为约0.2wt%~0.4wt%。
有时在钢中添加硼(B),优选至多约0.0020wt%,更优选为约0.0006wt%~0.0010wt%。
钢中的镍含量优选至少约1wt%。如果需要提高焊接后的性能,钢中的镍含量可增至约3wt%以上。镍含量每增1wt%,钢的DBTT温度预计降低10℃(18°F)左右。镍含量优选低于9wt%,更优选低于约6wt%。为使钢的成本降至最低,优选将镍含量降至最低。如果镍含量增至超过约3wt%,锰含量可减少到约0.5wt%~0.0wt%。因此,从广义上说,优选的锰含量至多约2.5wt%。
另外,优选将钢中的残渣基本上减至最少。磷(P)含量优选低于约0.01wt%。硫(S)含量优选低于约0.004wt%。氧(O)含量优选低于约0.002wt%。稍微详细地讲,上述第三实例钢的制备方法如下形成具有上述所需成分的板坯;将板坯加热到约955℃~约1065℃(1750°F-1950°F)的温度;在奥氏体再结晶的第一温度范围内,即高于约Tnr温度,通过一道或多道热轧将板坯压缩约30%~70%,形成钢板;之后在低于Tnr温度但高于Ar3转变温度的第二温度范围内,通过一道或多道热轧,将钢板减薄约40%~80%。接着在低于Ar3转变温度但高于Ar1转变温度的亚临界温度范围内,通过一道或多道热轧,将其终轧压缩约15%~50%。然后将热轧钢板以约10℃/秒~40℃/秒(18°F/秒~72°F/秒)的冷却速率淬火至适当的淬火停止温度(QST),该QST温度优选在约MS转变温度加上200℃(360°F)以下,此时淬火被终止。在本发明的另一个实施方案中,QST优选在约Ms转变温度加上100℃(180°F)以下,更优选低于约350℃(662°F)。在该第三钢实例的一个实施方案中,淬火终止后,钢板空冷至室温。
在上面三个钢的实例中,由于Ni是一种昂贵的合金元素,钢中的镍含量优选低于约3.0wt%,更优选低于约2.5wt%,更优选低于约2.0wt%,甚至更优选低于约1.8wt%,以使钢的成本尽量降低。
本发明的其它合适的钢也在其它出版物中得到了描述,其中描述的超高强度、低合金钢含有低于约1wt%的镍,拉伸强度大于830MPa(120ksi),并具有优异的低温韧性。例如,在1997年2月5日公开的、国际申请号为PCT/JP96/00157、国际公开号为WO 96/23909(08.08.1996公报1996/36)(所述钢优选含有0.1wt%~1.2wt%的铜)的欧洲专利申请和优先权日为1997年7月28日、题为“具有优异超低温韧性的超高强度、可焊接钢”、USPTO给予的申请号为No.60/053915的未决的美国临时专利申请均描述了这类钢。
对于任何上面提到的钢,如本领域内熟练的技术人员所知,文中所使用的“厚度压缩百分率”是指与压缩前相比,钢板坯或钢板的厚度被压缩的百分率。仅出于解释的目的,而不由此限制本发明,厚约25.4cm(10英寸)的钢板坯在第一温度范围内可被压缩约50%(压下量是50%),厚度变为约12.7cm(5英寸),然后在第二温度范围内压缩约80%(压下量是80%),厚度变为约2.5cm(1英寸)。此外,仅出于解释的目的,而不由此限制本发明,厚约25.4cm(10英寸)的钢板坯在第一温度范围内可被压缩约30%(压下量是30%),厚度变为约17.8cm(7英寸),接着在第二温度范围内压缩约80%(压下量是80%),厚度变为约3.6cm(1.4英寸),然后在第三温度范围内压缩约30%(压下量是30%),厚度变为约2.5cm(1英寸)。文中所使用的“板坯”指一块具有任何尺寸的钢。
对于任何上面提到的钢,如本领域内熟练的技术人员所知,优选地,采用一种合适的方法将基本上整个板坯、优选整个板坯再加热到所需的再加热温度,例如通过将板坯在炉中放置一段时间。上述成分钢的具体再加热温度可由本领域内熟练的技术人员通过试验,或通过合适的模型计算容易地进行确定。另外,将基本上整个板坯、优选整个板坯的温度升高到所希望的再加热温度所需的炉温和再加热时间可由本领域内熟练的技术人员通过参考标准工业出版物容易地进行确定。
对于任何上面提到的钢,如本领域内熟练的技术人员所知,再结晶范围和非再结晶范围之间的界限温度,即Tnr温度,决定于钢的化学成分,更具体地,决定于轧制前的再加热温度、碳浓度、铌浓度以及在轧制道次中的压下量,本领域内熟练的技术人员可通过试验或通过模型计算来确定每一种成分钢的该温度。同样地,本文中每一种成分钢的Ac1、Ar1、Ar3和Ms转变温度均可由本领域内熟练的技术人员通过试验或通过模型计算进行确定。
对于任何上面提到的钢,如本领域内熟练的技术人员所知,除了用于基本上整个板坯的再加热温度之外,随后在描述本发明的处理方法中所提及的温度都是在钢表面测定的温度。钢的表面温度可通过使用,例如,光学高温计或其它任何适于测量钢表面温度的仪器进行测量。本文中所指的冷却速率是指在钢板厚度的中心或基本上中心处的冷却速率;淬火停止温度(QST)是指淬火终止后因热量从板的中部向外传导而使钢板表面所达到的最高或基本上最高的温度。例如,对本文中依照该实施例成分的钢进行试验性加热时,在钢板厚度的中心或基本上中心处放置一根热电偶以测量中心温度,而钢坯表面温度由光学高温计进行测量。由此可研究出钢板的中心温度和表面温度之间的关系,以便随后用于处理成分相同或基本上相同的钢,这样就可以通过直接测量表面温度来确定中心温度。此外,为达到要求的加速冷却速率所需的温度和淬火液的流量可由本领域内熟练的技术人员通过参考标准工业出版物进行确定。
本领域内熟练的技术人员应具有必要的知识和技能以使用本文提供的信息来生产超高强度、低合金钢板,该钢板具有适宜的高强度和韧性以用于制造本发明的工艺部件、容器和管路。其它合适的钢也可能存在,或者今后被研究出来,所有这些钢都在本发明的范围之内。
本领域内熟练的技术人员应具有必要的知识和技能以使用本文提供的信息来生产超高强度、低合金钢板,与本文所提供的实例钢板的厚度相比,该钢板的厚度已改变,但仍能生产出可用于本发明的具有合适高强度和合适低温韧性的钢板。例如,本领域内熟练的技术人员可利用本文提供的信息来生产一种厚度约为2.54cm(1英寸)的钢板,该钢板具有合适的高强度和合适的低温韧性,可用于制造本发明的工艺部件、容器和管路。其它合适的钢可能存在,或者今后被研究出来,所有这些钢都在本发明的范围之内。
当使用双相钢来制造本发明的工艺部件、容器和管路时,优选以下述方式来处理双相钢即为使钢形成双相结构而在亚临界温度范围内保持的一段时间应在加速冷却或淬火工步之前进行。优选地,钢的双相结构应在钢从Ar3转变温度~Ar1转变温度间的冷却过程中形成。依据本发明用于制造工艺部件、容器和管路的钢另外优选当加速冷却或淬火步骤结束后,即不采用需要任何诸如回火之类的再加热的进一步处理,钢的拉伸强度就已大于830MPa(120ksi),且DBTT温度低于约-73℃(-100°F)。更优选地,淬火或冷却步骤结束后,钢的拉伸强度高于约860MPa(125ksi),更优选高于约900MPa(130ksi)。在一些应用场合,优选当淬火或冷却步骤结束后,钢的拉伸强度高于约930MPa(135ksi)、或高于约965MPa(140ksi)、或高于约1000MPa(145ksi)。用于制造工艺部件、容器和管路的连接方法为制造本发明的工艺部件、容器和管路,需要一种连接钢板的合适方法。任何能为接头或接缝提供本发明上述所需的足够强度和韧性的连接方法都是合适的。优选地,适于提供足够的强度和断裂韧性以容纳被容纳或运输的流体的焊接方法可用于制造本发明的工艺部件、容器和管路。这种焊接方法优选包括合适的自耗焊丝、合适的自耗气体、合适的焊接方法以及合适的焊接工序。例如,倘若使用了合适的自耗焊丝-气体组合,在钢制造工业中广为人知的气体保护熔化极电弧焊(GMAW)以及钨极惰性气体保护焊(TIG)都可用于连接钢板。
在第一个焊接方法的实例中,使用气体保护熔化极电弧焊(GMAW)来形成下述化学成分的焊缝金属,它包括铁和约0.07wt%的碳、约2.05wt%的锰、约0.32wt%的硅、约2.20wt%的镍、约0.45wt%的铬、约0.56wt%的钼、低于约110ppm的磷以及低于约50ppm的硫。使用氧含量低于约1wt%的氩基保护气来焊接钢,例如上述任何一种钢。焊接的热输入量为约0.3 kJ/mm~1.5kJ/mm(7.6kJ/英寸~38kJ/英寸)。采用这种方法进行焊接可使焊接件(见术语表)的拉伸强度高于约900MPa(130kpsi),优选高于约930MPa(135kpsi),更优选高于约965MPa(140kpsi),甚至更优选的拉伸强度至少约1000MPa(145kpsi)。此外,采用这种方法进行焊接可使焊缝金属的DBTT低于约-73℃(-100°F),优选低于约-96℃(-140°F),更优选低于约-106℃(-160°F),甚至更优选低于约-115℃(-175°F)。
在另一个焊接方法的实例中,使用GMAW方法来形成下述化学成分的焊缝金属,它包括铁、约0.10wt%的碳(优选小于约0.10wt%碳,更优选的碳含量为约0.07wt%~0.08wt%)、约1.60wt%的锰、约0.25wt%的硅、约1.87wt%的镍、约0.87wt%的铬、约0.51wt%的钼、低于约75ppm的磷和低于约100ppm的硫。焊接的热输入量为0.3kJ/mm~1.5kJ/mm(7.6kJ/英寸~38kJ/英寸),而且采用100℃(212°F)的预热。使用氧含量小于约1wt%的氩基保护气来焊接钢,例如上述任何一种钢。采用这种方法进行焊接可使焊接件(见术语表)的拉伸强度高于约900MPa(130kpsi),优选高于约930MPa(135kpsi),更优选高于约965MPa(140kpsi),甚至更优选至少约1000MPa(145kpsi)。此外,采用这种方法进行焊接可使焊缝金属的DBTT低于约-73℃(-100°F),优选低于约-96℃(-140°F),更优选低于约-106℃(-160°F),甚至更优选低于约-115℃(-175°F)。
在另一个焊接方法的实例中,采用钨极惰性气体保护焊(TIG)来形成下述化学成分的焊缝金属,它包括铁、约0.07wt%的碳(优选小于约0.07wt%的碳)、约1.80wt%的锰、约0.20wt%的硅、约4.00wt%的镍、约0.5wt%的铬、约0.40wt%的钼、约0.02wt%的铜、约0.02wt%的铝、约0.010wt%的钛、约0.015wt%的锆(Zr)、低于约50ppm的磷和低于约30ppm的硫。焊接的热输入量为0.3kJ/mm~1.5kJ/mm(7.6kJ/英寸~38kJ/英寸),而且采用100℃(212°F)的预热。使用氧含量低于约1wt%的氢基保护气来焊接钢,例如上述任何一种钢。采用这种方法进行焊接可使焊接件的拉伸强度高于约900MPa(130kpsi),优选高于约930MPa(135kpsi),更优选高于约965MPa(140kpsi),甚至更优选至少约1000MPa(145kpsi)。此外,采用这种方法进行焊接可使焊缝金属的DBTT低于约-73℃(-100°F),优选的低于约-96℃(-140°F),更优选低于约-106℃(-160°F),甚至更优选低于约-115℃(-175°F)。
使用GMAW或TIG焊接方法,可以得到与上述实例中化学成分相类似的焊缝金属。然而可以预料的是TIG焊比GMAW焊的杂质含量低,而且显微组织更高度细化,从而低温韧性得以改善。
本领域内熟练的技术人员应具有必要的知识和技能,可利用本文所提供的信息来焊接超高强度、低合金钢板,使其接头或焊缝具有适宜的高强度和断裂韧性以用于制造本发明的工艺部件、容器或管路。其它合适的连接或焊接方法可能存在,或者今后被研究出来。所有这些连接或焊接方法都在本发明的范围之内。工艺部件、容器和管路的制造提供由包括超高强度、低合金钢材料制成的工艺部件、容器和管路,该合金钢的镍含量小于9wt%,拉伸强度高于830MPa(120ksi),且DBTT低于约-73℃(-100°F)。优选地,该超高强度、低合金钢的镍含量低于约7wt%,更优选低于约5wt%。优选地,该超高强度、低合金钢的拉伸强度高于约860MPa(125ksi),更优选高于约900MPa(130ksi)。甚至更优选地,本发明的工艺部件、容器和管路由镍含量低于约3wt%的超高强度、低合金钢制成,其拉伸强度超过约1000MPa(145ksi),DBTT低于约-73℃(-100°F)。
本发明的工艺部件、容器和管路优选由具有优异低温韧性的超高强度、低合金的分立钢板制成。所述部件、容器和管路的接头或焊缝优选具有与超高强度、低合金钢板大致相同的强度和韧性,在一些情况下,低应力部位被证实具有约5%~10%的强度降低。具有优选性能的接头或焊缝可由任何合适的连接技术来形成。本文描述了示范性的连接方法,其副标题为“用于制造工艺部件、容器和管路系统的连接方法”。
如本领域内熟练的技术人员所熟悉在工艺部件、容器和管路系统(用于处理并运输加压低温流体)的设计中,可使用夏氏V型缺口(CVN)试验,尤其是使用韧脆转变温度(DBTT)来进行断裂韧性的评估和断裂控制。DBTT划分了结构钢中的两个断裂方式,低于DBTT温度,夏氏V型缺口试验中的破坏倾向于以低能量解理(脆性)断裂形式,而高于DBTT温度,破坏倾向于以高能量韧性断裂形式。用于承载并低温服役的、由焊接钢制成的容器,为避免脆性破坏,其DBTTs温度必须远低于该容器的服役温度,该DBTTs温度可由夏氏V型缺口试验确定。根据设计、服役条件和/或使用船级社的要求的不同,所要求的DBTT温度可在低于服役温度5℃~30℃(9°F~54°F)之间变化。
如本领域内熟练的技术人员所熟悉在设计由焊接钢制成、用于运输加压低温液体的储存容器时,应考虑的工作条件包括工作压力和温度以及可能施加到钢和焊接件(参见术语表)上的附加应力。标准的断裂力学测试,例如(ⅰ)临界应力强度因子(KIC),它用来测量平面应变的断裂韧性,(ⅱ)裂纹尖端张开位移(CTOD),它可用于测量弹塑性的断裂韧性,它们二者都为本领域内熟练的技术人员所熟悉,可用于确定钢和焊接件的断裂韧性。钢结构设计中通常有一些可以接受的工业规范,如BSI出版物上发表的“评估熔焊结构中最大允许裂纹的方法”,它通常被称作“PD 6493:1991”,可用于根据钢和焊接结构(包括HAZ)的断裂韧性以及施加在容器上的应力,确定出容器的最大允许裂缝尺寸。本领域内熟练的技术人员可通过以下内容完善断裂控制程序从而阻止断裂的开始,(ⅰ)合理设计容器以使施加的应力最小,(ⅱ)合理控制制造质量以使缺陷最少,(ⅲ)合理控制施加在容器上的使用寿命载荷和压力,(ⅳ)合理的检测制度以便可靠地检测容器中的裂纹和缺陷。用于本发明系统的优选设计原则是“破坏前泄漏”,对于熟练的技术人员而言,这是很熟悉的。以上内容一般在本文中称作“已知的断裂力学原理”。
下面是的一个非限定性实例,在一个程序中应用这些断裂力学的已知原理来计算给定裂纹长度下的临界裂纹深度,这个程序可用于断裂控制设计以防止压力容器(例如依据本发明的处理容器)中的裂纹萌生。
图13B示意了一条长度为315、深度为310的裂纹。根据下面的压力容器(例如依据本发明的容器)设计条件,使用PD6493来计算示于图13A中的临界裂纹尺寸曲线300的数值容器直径4.57米(15英尺)容器壁厚25.4毫米(1.00英寸)设计压力3445kPa(500psi)许用环向应力333MPa(48.3ksi)对于这个实例来说,假定表面缺陷长度为100毫米(4英寸),例如位于缝焊中的轴向裂纹。参照图13A,曲线300显示了在残余应力水平为屈服应力的15%、50%以及100%时,临界裂缝深度与CTOD断裂韧性和残余应力之间的关系。残余应力是由制造和焊接产生的,除非采用诸如焊后热处理(PWHT)或机械性应力消除技术使焊接应力消除,PD6493推荐使用的残余应力值是焊缝(包括焊接HAZ)中屈服应力的100%。
根据钢在最低服役温度下的CTOD断裂韧性,可以调整容器的制造过程以降低残余应力,也可以执行检测程序(用于初始检测和服役中检测)来检查和测量裂纹以同临界裂纹尺寸相比较。在这个实例中,如果钢在最低服役温度下的CTOD韧性为0.025mm用试验样品测得),而且残余应力减至钢屈服强度的15%,那么临界裂纹深度约是4mm(见图13A上的320点)。按照相似的计算步骤,如本领域内熟练的技术人员所熟知的,可以确定出对应于不同的裂纹长度和不同的裂纹几何形状的临界裂缝深度。使用这些信息,可以开发出质量控制规范和检验规范(所用技术、可检测的裂缝尺寸、检测次数),以确保裂纹在达到临界裂纹深度之前或在使用设计负载之前将裂纹探测出并进行补救。根据公开的CVN、KIC和CTOD断裂韧性之间的经验关系,0.025mm的CTOD韧性一般对应于约37J的CVN值。本实例并不旨在以任何方式限制本发明。
对于工艺部件、容器和管路,它们需要将钢弯曲成,例如,用作容器的圆筒状或用作管路的管状,此时优选在室温下将钢弯曲成所需的形状,以避免对钢优异的低温韧性造成不利影响。如果钢弯曲后必须加热才能获得所需的形状,则优选将钢加热到不高于约600℃(1112°F)的温度,从而保持钢显微组织(如上所述)的有益效果。低温工艺部件提供由包括超高强度、低合金钢材料制成的工艺部件,该合金钢的镍含量小于9wt%,拉伸强度高于830MPa(120ksi),且DBTT低于约-73℃(-100°F)。优选地,该超高强度、低合金钢的镍含量低于约7wt%,更优选低于约5wt%。优选地,该超高强度、低合金钢的拉伸强度高于约860MPa(125ksi),更优选高于约900MPa(130ksi)。甚至更优选地,本发明的工艺部件由镍含量低于约3wt%的超高强度、低合金钢制成,其拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)。这些工艺部件优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。
在低温发电循环,主要的工艺部件包括例如冷凝器、泵系统、汽化器和蒸发器。在制冷系统、液化系统、空气分离装置中,主要的工艺部件包括例如热交换器、处理塔、分离器以及膨胀阀或汽轮机。火炬系统经常在低温下运行,例如用于乙烯或天然气低温分离处理的减压系统(relief system)。图1示意了一些上述部件在甲烷气体馏除设备的使用情况,后文将详细介绍。下面更详细地说明依据本发明制造的具体部件,但并不因此而限定本发明。◆热交换器提供依照本发明制成的热交换器或热交换器系统。这样的热交换器系统部件优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。下例用于说明依据本发明的各种类型热交换器系统,但并不因此而限定本发明。
例如图2是依据本发明的固定管板、单通道式热交换器系统20的示意图,在一个实施方案中,固定管板、单通道式热交换器系统20包括热交换器主体20a、管盖21a和21b、管板22(管板22的端部示于图2)、孔口23、隔板24、排放口25、管入口26、管出口27、壳体入口28和壳体出口29。下述应用实例用于说明依据本发明的固定管板、单通道式热交换器系统20在使用上的优点,但并不因此而限定本发明。
固定管板例1在第一个应用实例中,固定管板、单通道式热交换器系统20用作低温气体加工设备的进气交叉式热交换器,其壳侧顶部为甲烷馏除器,管侧为引入气体,引入气体通过管入口26进入固定管板、单通道式热交换器系统20,并通过管出口27引出,而顶部的甲烷馏除器流体通过壳体入口28进入,并通过壳体出口29流出。
固定管板例2在第二个应用实例中,固定管板、单通道式热交换器系统20用作甲烷馏除器的旁侧再沸器,其管侧为预冷进料,壳侧为沸腾着的低温塔侧流液体(cryogenic column sidestream liquid),用于去除底部产物中的甲烷。预冷进料通过管入口26进入固定管板、单通道式热交换器系统20,并通过管出口27引出,而低温塔侧流液体通过壳体入口28进入,并通过壳体出口29流出。
固定管板例3
在另一个应用实例中,固定管板、单通道式热交换器系统20用作RyanHolmes产品回收塔(product recovery co1umn)的塔侧再沸器,用来去除底部产物中的甲烷和二氧化碳。预冷进料通过管入口26进入固定管板、单通道式热交换器系统20,并通过管出口27引出,而低温塔侧流液体通过壳体入口28进入,并通过壳体出口29流出。
固定管板例4在另一个应用实例中,固定管板、单通道式热交换器系统20用作CFZCO2去除塔的塔侧再沸器,其壳侧为低温液体侧流,管侧为预冷进料气,用于去除富CO2的底部产物中的甲烷和其它烃类。预冷进气通过管入口26进入固定管板、单通道式热交换器系统20,并通过管出口27引出,而低温液体侧流通过壳体入口28进入,并通过壳体出口29流出。
在固定管板实例1~4中,热交换器主体20a、管盖21a和21b、管板22、孔口23、隔板24优选由镍含量低于约3wt%的合金钢制成,并具有足够的强度和断裂韧性来容纳要处理的低温流体。更优选地,以上部件由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。此外,热交换器主体20a、管盖21a和21b、管板22、孔口23、隔板24优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。固定管板、单通道式热交换器系统20的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
图3是依据本发明的釜形再沸器热交换器系统30的示意图,在一个实施方案中,该釜形再沸器热交换器系统30包括釜形再沸器主体31、溢流板32、热交换管33、管侧入口34、管侧出口35、釜入口36、釜出口37和排放口38。下述应用实例用于说明依据本发明的釜形再沸器热交换器系统30在使用上的优点,但并不因此而限定本发明。
釜形再沸器例1在第一个实例中,釜形再沸器热交换器系统30用于低温气体液体回收设备,其釜侧为约-40℃(-40°F)的汽化丙烷,管侧为烃类气体,烃类气体通过管侧入口34进入釜形再沸器热交换器系统30,并通过管侧出口35引出,而丙烷通过釜入口36进入,并通过釜出口37排出。
釜形再沸器例2在第二个实例中,釜形再沸器热交换器系统30用于冷冻贫油处理设备,其釜侧为约-40℃(-40°F)的汽化丙烷,管侧为贫油,贫油通过管侧入口34进入釜形再沸器热交换器系统30,并通过管侧出口35引出,而丙烷通过釜入口36进入,并通过釜出口37排出。
釜形再沸器例3在另一个实例中,釜形再沸器热交换器系统30用于Ryan Holmes产品回收塔,其釜侧为约-40℃(-40°F)的汽化丙烷,管侧为产品回收塔塔顶气体,用于冷凝塔内逆流。产品回收塔塔顶气体通过管入口34进入釜形再沸器热交换器系统30,并通过管出口35引出,而丙烷通过釜入口36进入,并通过釜出口37排出。
釜形再沸器例4在另一个实例中,釜形再沸器热交换器系统30用于Exxon的CFZ工艺,其釜侧为汽化制冷剂,管侧为CFZ塔顶气体,用于为塔逆流冷凝液态甲烷并将CO2排除在塔顶甲烷产品流之外,CFZ塔顶气体通过管入口34进入釜形再沸器热交换器系统30,并通过管出口35排出,而制冷剂通过釜入口36进入,并通过釜出口37排出。制冷剂优选包含丙烯或乙烯,也可以是下组组分的任意或全部混合该组包括甲烷、乙烷、丙烷、丁烷和戊烷。
釜形再沸器例5在另一个实例中,釜形再沸器热交换器系统30用于低温甲烷馏除器的塔底馏出物再沸器,其釜侧为塔底产品,管侧为用于去除塔底产品中甲烷的热引入气体或热油。热引入气体或热油通过管入口34进入釜形再沸器热交换器系统30,并通过管出口35引出,而塔底产品通过釜入口36进入,并通过釜出口37排出。
釜形再沸器例6在另一个实例中,釜形再沸器热交换器系统30用于Ryan Holmes产品回收塔的塔底馏出物再沸器,其釜侧为塔底产品,管侧为用于去除塔底产品中甲烷的热供给气体或热油。热供给气体或热油通过管入口34进入釜形再沸器热交换器系统30,并通过管出口35引出,而塔底产品通过釜入口36进入,并通过釜出口37排出。
釜形再沸器例7在另一个实例中,釜形再沸器热交换器系统30用于CFZ CO2去除塔中,其釜侧为塔底物液体,管侧为热供给气体或热油,用于去除富CO2的塔底液流中的甲烷和其它烃类。热供给气体或热油通过管入口34进入釜形再沸器热交换器系统30,并通过管出口35引出,而塔底液体通过釜入口36进入,并通过釜出口37排出。
在釜形再沸器实例1~7中,釜形再沸器主体31、热交换管33、溢流板32和(用于管侧入口34、管侧出口35、釜入口36、釜出口37的)进出口接头均优选由镍含量低于约3wt%的合金钢制成,并具有足够的强度和断裂韧性来容纳要处理的低温流体。更优选地,以上部件由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。此外,釜形再沸器主体31、热交换管33、溢流板32和(用于管侧入口34、管侧出口35、釜入口36、釜出口37)进出口接头均优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。釜形再沸器热交换器系统30的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
本发明热交换器系统的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。◆冷凝器提供依照本发明制成的冷凝器或冷凝器系统。更具体地讲,提供其至少有一个部件是依照本发明制成的冷凝器系统。这样的冷凝器系统部件优选由具有本文所述优异低温韧性的超高强度、低合金钢制成。下例用于说明依据本发明的各种类型冷凝器系统,但并不因此而限定本发明。
冷凝器例1参见图1,依据本发明的冷凝器用于甲烷馏除器气体设备10,用甲烷馏除器塔11将进料气流分为残余气和产品气流。在此具体实例中,用回流冷凝器系统12将甲烷馏除器塔11的塔顶馏出物(温度约为-90℃(-130°F))冷凝至回流储液罐(分离器)15中,回流冷凝器系统12同膨胀器13中流出的气体流交换热量,回流冷凝器系统12主要是一个热交换器系统,优选为上面所讨论的类型。值得注意的是回流冷凝器系统12可能是一个固定管板、单通道式热交换器(例如如图2所示并在上面已讨论过的固定管板、单通道式热交换器系统20)。再参见图2,膨胀器13中排出的气流通过管入口26进入固定管板、单通道式热交换器系统20,并通过管出口27流出,而甲烷馏除器的塔顶馏出物通过壳体入口28进入,并通过壳体出口29排出。
冷凝器例2参见图7,依据本发明的冷凝器系统70用于反向兰金循环,用诸如加压液化天然气(PLNG)(见术语表)或常规LNG(见术语表)之类的低温能量源中的低温能量产生电力。在此具体实例中,动力流体使用于闭环热力循环中,动力流体(以气体形式)在汽轮机中膨胀,接着以气体形式进入冷凝器系统70,动力流体以单相液体形式从冷凝器系统中流出,并用泵74加压,之后用汽化器76使之汽化,然后返回汽轮机72的入口。冷凝器系统70主要是一个热交换器系统,优选为上面所讨论的类型。值得注意的是冷凝器系统70可能是一个固定管板、单通道式热交换器(例如如图2所示并在上面已讨论过的固定管板、单通道式热交换器20)。
再参见图2,在冷凝器实例1和2中,热交换器主体20a、管盖21a和21b、管板22、孔口23、隔板24优选由镍含量低于约3wt%的超高强度、低合金钢制成,并具有足够的强度和低温断裂韧性来容纳要处理的低温流体。更优选地,以上部件由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的超高强度、低合金钢制成。此外,热交换器主体20a、管盖21a和21b、管板22、孔口23、隔板24优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。冷凝器系统70的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
冷凝器例3参见图8,依据本发明的冷凝器用于由数个分级压缩循环构成的串联制冷循环80,串联制冷循环80的主要装置包括丙烷压缩机81、丙烷冷凝器82、乙烯压缩机83、乙烯冷凝器84、甲烷压缩机85、甲烷冷凝器86、甲烷蒸发器87和膨胀阀88。通过选择一系列沸点能够跨越整个制冷循环所需温度范围的制冷剂,每个循环阶段均在连续降低的温度下运行。在此串联循环实例中,对于LNG处理,采用了三种制冷剂丙烷、乙烯和甲烷,其典型温度见图8。在此例中,甲烷冷凝器86和乙烯冷凝器84的所有部件均优选由镍含量低于约3wt%的超高强度、低合金钢制成,并具有足够的强度和低温断裂韧性来容纳要处理的低温流体。更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的超高强度、低合金钢制成。此外,甲烷冷凝器86和乙烯冷凝器84的所有部件均优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。串联制冷循环80的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
本发明冷凝器系统的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。◆汽化器/蒸发器提供依照本发明制成的汽化器/蒸发器,或汽化器系统。更具体地讲,提供至少有一个部件是依照本发明制成的汽化器系统。这样的汽化器系统的各部件优选由具有本文所述优异低温韧性的超高强度、低合金钢制成。下例用于说明依据本发明的各种类型汽化器系统,但并不因此而限定本发明。
汽化器例1在第一个实例中,依据本发明的汽化器系统用于反向兰金循环,用诸如加压LNG(见本文定义)或常规LNG(见本文定义)之类的低温能量源中的低温能量产生电力。在此具体实例中,用汽化器将运输储存容器中的PLNG工艺液流完全汽化,加热介质可以是闭环热力循环(例如反向兰金循环)中用以产生电力所使用的动力流体,作为选择,加热介质可以由一种在开环系统中使PLNG完全汽化的流体组成,或者由几种凝固温度连续升高的不同流体组成,用以使PLNG汽化并逐渐升温至室温。在所有实例中,汽化器起热交换器的作用,优选为本文副标题“热交换器”下所详细讨论的类型。汽化器的使用方式和要处理液流的成分和特性决定了所需的热交换器具体类型。例如,再参见图2,其中可使用固定管板、单通道式热交换器系统20,一种诸如PLNG之类的工艺流体通过管入口26进入固定管板、单通道式热交换器系统20,并通过管出口27流出,而加热介质通过壳体入口28进入,并通过壳体出口29排出。在此例中,热交换器主体20a、管盖21a和21b、管板22、孔口23和隔板24优选由镍含量低于约3wt%的钢制成,并具有足够的强度和断裂韧性来容纳要处理的低温流体。更优选地,以上部件由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。此外,热交换器主体20a、管盖21a和21b、管板22、孔口23和隔板24优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。固定管板、单通道式热交换器系统20的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
汽化器例2在另一个实例中,依据本发明的汽化器用于由数个分级的压缩循环构成的串联制冷循环,如图9所示。参见图9,通过选择一系列沸点能够跨越整个制冷循环所需温度范围的制冷剂,串联循环90的两个分级的压缩循环中每个均在连续降低的温度下运行。串联循环90中的主要装置包括丙烷压缩机92、丙烷冷凝器93、乙烯压缩机94、乙烯冷凝器95、乙烯蒸发器96和膨胀阀97。在此实例中,对于PLNG液化处理,采用了两种制冷剂丙烷和乙烯,其典型温度见图9。乙烯蒸发器96优选由镍含量低于约3wt%的钢制成,并具有足够的强度和断裂韧性来容纳要处理的低温流体,更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。此外,乙烯蒸发器96优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。串联循环90的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
本发明汽化器系统的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。◆分离器提供这样的分离器或分离器系统(ⅰ)由镍含量低于约3wt%的超高强度、低合金钢制成,(ⅱ)具有足够的强度和低温断裂韧性来容纳低温流体。更具体地讲,提供至少一个部件为(ⅰ)由镍含量低于约3wt%的超高强度、低合金钢制成,(ⅱ)拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的分离器系统。这样的分离器系统部件优选由具有本文所述优异低温韧性的超高强度、低合金钢制成。下例用于说明依据本发明的一种分离器系统,但并不因此而限定本发明。
图4是依据本发明的分离器系统40示意图。在一个实施方案中,分离器系统40包括容器41、入口42、液体出口43、气体出口44、支撑裙座45、液面控制器46、隔离档板47、湿气提取器48和压力安全阀49。在一种应用实例中,并不由此限定本发明,依据本发明的分离器系统40可有利地用作低温气体厂的膨胀式进料分离器,以去除膨胀器的上游冷凝液体。在此实例中,容器41、入口42、液体出口43、支撑裙座45、湿气提取器支架48和隔离档板47优选由镍含量低于约3wt%的钢制成,并具有足够的强度和断裂韧性来容纳要处理的低温流体,更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。另外,容器41、入口42、液体出口43、支撑裙座45、湿气提取器支架48和隔离档板47优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。分离器系统40的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
本发明分离器系统的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。◆处理塔提供依照本发明制成的处理塔或处理塔系统。这样的处理塔系统部件优选由具有本文所述优异低温韧性的超高强度、低合金钢制成。下例用于说明依据本发明的各种类型处理塔系统,但并不因此而限定本发明。
处理塔例1图11是依据本发明的处理塔系统示意图。在本实施方案中,甲烷馏除器处理塔系统110包括塔体111、分离器盖112、第一入口113、第二入口114、液体出口121、蒸汽出口115、再沸器119和填充材料120。在一种应用实例中,并不由此限定本发明,依据本发明的处理塔系统110可有利地用作低温气体设备的甲烷馏除器,以将甲烷从其它冷凝烃类中分离出来。在此实例中,塔体111、分离器盖112、填充材料120和此类处理塔系统110内常用的其它内部部件优选由镍含量低于约3wt%的钢制成,并具有足够的强度和断裂韧性来容纳要处理的低温流体,更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。另外,塔体111、分离器盖112、填充材料120和此类处理塔系统110内常用的其它内部部件优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。处理塔系统110的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
处理塔例2图12是依据本发明的处理塔系统125的示意图。在此例中,处理塔系统125可有利地用作CFZ工艺中的CFZ塔,以将CO2从甲烷中分离出来。在此实例中,塔体126、熔化塔板(melting tray)127和接触塔板128均优选由镍含量低于约3wt%的钢制成,并具有足够的强度和断裂韧性来容纳要处理的低温流体,更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。另外,塔体126、熔化塔板127和接触塔板128优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。处理塔系统125的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
本发明处理塔的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。◆泵部件和系统提供依照本发明制成的泵或泵系统。这样的泵系统部件优选由具有本文所述优异低温韧性的超高强度、低合金钢制成。下例用于说明依据本发明的一种泵系统,但并不因此而限定本发明。
现在参见图10,依照本发明制成的泵系统100,泵系统100主要由圆筒形或板形部件制成。低温流体通过连接到进口法兰102的导管进入圆柱形流体入口101,低温流体流入圆柱形外壳103内流至泵入口104,并进入使其压力能升高的多级泵105,多级泵105和驱动轴106由滚柱轴承和泵支架外壳(未示于图10)支撑。低温流体在连接到流体出口法兰109的导管中通过流体出口108离开泵系统100。诸如电动机(未示于图10)之类的驱动装置安装在驱动安置法兰210上并通过驱动连轴器211与泵系统100相连。驱动安置法兰210由圆柱形连轴器外壳212支撑。在此例中,泵系统100安装在管法兰(未示于图10)之间,但其它的安装系统也是可行的,例如将泵系统100浸入槽或容器中,这样低温流体不需连接管就可直接进入流体入口101,或者,泵系统100安装在另一种外壳或“泵盒(pump pot)”中,此时流体入口101和流体出口108均与泵盒相连,泵系统100易于移动以便保养或维修。在此例中,泵壳213、进口法兰102、驱动连轴器外壳212、驱动安置法兰210、安装法兰214、泵底板215以及泵和轴承支撑外壳217均优选由镍含量低于约9wt%、拉伸强度超过约830MPa(120ksi),且DBTTs低于约-73℃(-100°F)的钢制成。更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。另外,泵壳213、进口法兰102、驱动连轴器外壳212、驱动安置法兰210、安装法兰214、泵底板215以及泵和轴承支撑外壳217优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。泵系统100的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
本发明泵组件和系统的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。◆火炬系统及其部件提供依照本发明制成的火炬或火炬系统。这样的火炬系统部件优选由具有本文所述优异低温韧性的超高强度、低合金钢制成。下例用于说明依据本发明的一种火炬系统,但并不因此而限定本发明。
图5是依据本发明的火炬系统50的示意图。在一个实施方案中,火炬系统50包括排气阀56、管道系统(如侧线53、汇集主线(collectionheader line)52和火炬管线51,也包括火炬涤气器54)、火炬臂或火炬伸架55、排液管路57、排液泵58、排液阀59以及诸如点火器和吹扫用气体之类的辅助设备(未示于图5)。火炬系统50用于处理易燃流体,这些易燃流体因工艺操作条件而处于低温状态,或因释放入火炬系统50而冷至低温状态(即因通过安全阀或排气阀56时压力大幅度降低所致)。火炬管线51、汇集主线52、侧线53、火炬涤气器54以及其它一些与火炬系统50处于同样低温下的附加连接管道或系统均优选由镍含量低于约9wt%、拉伸强度超过约830MPa(120ksi),且DBTTs低于约-73℃(-100°F)的钢制成,更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。另外,火炬管线51、汇集主线52、侧线53、火炬涤气器54以及其它一些与火炬系统50处于同样低温下的附加连接管道或系统优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。火炬系统50的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
本发明火炬系统及部件的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。
除了上述本发明的其它优点之外,依据本发明制成的火炬系统对于当放气速率高时可能发生的震动有良好的抗力。低温流体的储存容器提供由镍含量低于约9wt%、拉伸强度超过约830MPa(120ksi),且DBTTs低于约-73℃(-100°F)的超高强度、低合金钢制成的储存容器。该超高强度、低合金钢的镍含量优选低于约7wt%,更优选低于约5wt%。该超高强度、低合金钢的拉伸强度优选超过约860MPa(125ksi),更优选超过约900MPa(130ksi)。甚至更优选地,本发明的容器由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的超高强度、低合金钢制成。这些容器优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。
除了上述本发明的其它优点(即总重量降低后,可节省运输、处理和地基所需的费用)之外,本发明储存容器的优异低温韧性对于因再装填而需频繁操作和运输的气瓶(如在食品和饮料工业中用来储存CO2的气瓶)尤其有利。近期宣布的工业计划要制造整批销售的低温CO2,以避免压缩气体的高压力。本发明的储存容器和气瓶可有利地用于在最优条件下存储和运输液化CO2。
本发明低温流体储存容器的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。管路提供流送管式分配网络系统,该系统的管路由镍含量低于约9wt%、拉伸强度超过约830MPa(120ksi),且DBTTs低于约-73℃(-100°F)的超高强度、低合金钢制成。该超高强度、低合金钢的镍含量优选低于约7wt%,更优选低于约5wt%。该超高强度、低合金钢的拉伸强度优选超过约860MPa(125ksi),更优选超过约900MPa(130ksi)。甚至更优选地,本发明流送管式分配网络系统的管路由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的超高强度、低合金钢制成。这些管路优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。
图6是依据本发明的流送管式分配网络系统60的示意图。在一个实施方案中,流送管式分配网络系统60包括管线,例如一级分配管路61、二级分配管路62、三级分配管路63、并包括主储存容器64和最终用途储存容器65。主储存容器64和最终用途储存容器65均设计为低温服役,即提供适当的绝热条件。可使用任何适当的绝热方式,例如(并不由此而限定本发明)高真空绝热、膨胀泡沫绝热、充气粉末和纤维材料绝热、抽真空粉末绝热或多层绝热,合适绝热方式的选择决定于所需的绝热性能,这对于低温工程领域熟练的技术人员来说是熟悉的。主储存容器64、管线如一级分配管路61、二级分配管路62和三级分配管路63以及最终用途储存容器65优选由镍含量低于约9wt%、拉伸强度超过约830MPa(120ksi),且DBTTs低于约-73℃(-100°F)的钢制成,更优选地,由镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)的钢制成。另外,主储存容器64、管线如一级分配管路61、二级分配管路62和三级分配管路63以及最终用途储存容器65优选地由具有本文所述优异低温韧性的超高强度、低合金钢制成。分配网络系统60的其它部件也可由具有本文所述优异低温韧性的超高强度、低合金钢制成,或由其它合适的材料制成。
通过流送管式分配网络系统可以分配将在低温条件下使用的流体的能力使得可使用更小型的现场储存容器,该容器在通过油罐车或铁路进行运输所述流体时是必须的。其主要优点在于可减少所需的储存容量,因为采用流送管式分配网络系统后,可以连续供应加压、低温流体,不必再定期输送。
依据本发明,对于低温流体的流送管式分配网络系统,其管路的设计标准和制造方法对于本领域内熟练的技术人员来说,应当是熟悉的,尤其是参考本文提供的内容之后。
本发明的工艺部件、容器和管路可有利地用于容纳和运输加压、低温流体或大气压力下的低温流体。另外,本发明的工艺部件、容器和管路可有利地用于容纳和运输加压的非低温流体。
尽管已根据一种或多种优选实施方案描述了本发明,但应当理解的是在不背离本发明范围的前提下,可以对其进行改动,本发明范围的阐明见下面的权利要求书。术语表Ac1转变温度加热过程中奥氏体开始形成的温度;Ac3转变温度加热过程中铁素体向奥氏体的转变完成时的温度;Ar1转变温度冷却过程中奥氏体向铁素体或向铁素体加渗碳体转变完成时的温度;Ar3转变温度冷却过程中奥氏体开始转变成铁素体时的温度;CFZ控制凝固区域;常规LNG大气压力下的液化天然气,约-162℃(-260°F);冷却速率 位于板厚度中央或大致中央处的冷却速率;低温 低于约-40℃(-40°F)的任何温度;CTOD 裂缝尖端张开位移;DBTT(韧脆转变温 描述结构钢中的两种断裂方式;低于DBTT的温度,破坏倾向于以低度)能量解理(脆性)断裂形式,而高于DBTT的温度,破坏倾向于以高能量韧性断裂形式;实质上 基本上100vol%;GMAW 气体保护熔化极电弧焊硬化颗粒 ε-铜、Mo2C、或铌和钒的碳化物和碳氮化物中的一种或多种;HAZ热影响区;亚临界温度 加热时从约Ac1转变温度至约Ac3转变温度,冷却时从约Ar3转变温度范围 至约Ar1转变温度;KIc临界应力强度因子;kJ 千焦尔;低合金铜 含有铁和总量低于约10wt%的合金添加剂的钢;MA 马氏体-奥氏体;最大允许裂纹尺寸临界裂纹长度和宽度;Mo2C 碳化钼的一种形态;Ms转变温度 冷却过程中奥氏体向马氏体转变时的开始温度;加压液化天然气 压力为约1035kPa(150psia)~7590kPa(1100psia)、温度为约-123(PLNG) ℃(-190°F)~-62℃(-80°F)的液化天然气;ppm 百万分之一份;主要的至少约50vol%;淬火 与空冷相反,选用一种流体来加速冷却,该流体具有提高钢冷却速率的倾向;淬火停止淬火终止后因热量从板的中部向外传导而使钢板表面所达到的最高或温度(QST) 基本上最高的温度;QST 淬火停止温度;板坯 一块具有任何尺寸的钢;拉伸强度 在拉伸试验中,最大负载与初始横断面面积之比;TIG焊接 钨极惰性气体保护焊;Tnr温度 奥氏体再结晶的最低温度;USPTO 美国专利商标局;焊接件焊接接头,包括(ⅰ)焊接金属,(ⅱ)热影响区(HAZ),以及(ⅲ)HAZ“邻近区域”的基体金属。被认为处于HAZ“邻近区域”内的基体金属部分(因而是焊接件的一部分)决定于本领域技术人员所知的因素,例如(并不限于这些因素)焊接件宽度、被焊接物品的尺寸、制造该物品所需的焊接件数量以及焊接件之间的距离。
权利要求
1.一种适于容纳加压低温流体的热交换器系统,该热交换器系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
2.根据权利要求1的热交换器系统,其特征在于该热交换器系统包括热交换器主体、第一和第二管盖、管板、孔口和数个隔板。
3.根据权利要求2的热交换器系统,其特征在于该热交换器主体、所述第一和第二管盖、所述管板、所述孔口以及数个隔板由包括超高强度、低合金钢的材料制成,该钢的镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)。
4.根据权利要求1的热交换器系统,其特征在于该加压、低温流体是压力为约1035kPa(150psia)~7590kPa(1100psia)、温度为约-123℃(-190°F)~-62℃(-80°F)的加压液化天然气。
5.适于容纳压力为约1725kPa(250psia)~4830kPa(700psia)、温度为约-112℃(-170°F)~-79℃(-110°F)的加压液化天然气的热交换器系统,其特征在于该热交换器系统(ⅰ)由包括镍含量低于9wt%的超高强度、低合金钢材料制成,并(ⅱ)具有足够的强度和断裂韧性来容纳上述加压液化天然气。
6.一种适于容纳加压、低温流体的冷凝器系统,其特征在于该冷凝器系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
7.一种适于容纳加压、低温流体的汽化器系统,其特征在于该汽化器系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
8.一种适于容纳加压、低温流体的分离器系统,其特征在于该分离器系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
9.根据权利要求8的分离器系统,其特征在于该分离器系统包括容器、入口、液体出口、支撑裙座、数个湿气提取器支架和至少一个隔离档板。
10.根据权利要求9的分离器系统,其特征在于所述的容器、入口、液体出口、支撑裙座、数个湿气提取器支架和至少一个隔离档板由包括超高强度、低合金钢的材料制成,该钢的镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)。
11.根据权利要求8的分离器系统,其特征在于该加压、低温流体是压力为约1035kPa(150psia)~7590kPa(1100psia)、温度为约-123℃(-190°F)~-62℃(-80°F)的加压液化天然气。
12.一种适于容纳加压、低温流体的处理塔系统,其特征在于该处理塔系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
13.根据权利要求12的处理塔系统,其特征在于该处理塔系统包括塔体、分离器盖和填充材料。
14.根据权利要求13的处理塔系统,其特征在于该塔体、分离器盖和填充材料由包括超高强度、低合金钢的材料制成,该钢的镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)。
15.根据权利要求12的处理塔系统,其特征在于该加压、低温流体是压力为约1035kPa(150psia)~7590kPa(1100psia)、温度为约-123℃(-190°F)~-62℃(-80°F)的加压液化天然气。
16.一种适于泵送加压、低温流体的泵系统,其特征在于该泵系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
17.根据权利要求16的泵系统,其特征在于该泵系统包括泵壳、进口法兰、驱动连轴器外壳、驱动安装法兰、安装法兰、泵底板以及泵和轴承支撑外壳。
18.根据权利要求17的泵系统,其特征在于该泵壳、进口法兰、驱动连轴器外壳、驱动安装法兰、安装法兰、泵底板以及泵和轴承支撑外壳由包括超高强度、低合金钢的材料制成,该钢的镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)。
19.根据权利要求16的泵系统,其特征在于该加压、低温流体是压力为约1035kPa(150psia)~7590kPa(1100psia)、温度为约-123℃(-190°F)~-62℃(-80°F)的加压液化天然气。
20.适于泵送压力为约1725kPa(250psia)~4830kPa(700psia)、温度为约-112℃(-170°F)~-79℃(-110°F)加压液化天然气的泵系统,其特征在于该泵系统(ⅰ)由包括镍含量低于9wt%的超高强度、低合金钢材料制成,(ⅱ)具有足够的强度和断裂韧性来容纳上述加压液化天然气。
21.一种适于容纳加压、低温流体的火炬系统,其特征在于该火炬系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
22.根据权利要求21的火炬系统,其特征在于该火炬系统包括火炬管线、汇集主线、侧线和火炬涤气器。
23.根据权利要求22的火炬系统,其特征在于该火炬管线、汇集主线、侧线和火炬涤气器由包括超高强度、低合金钢的材料制成,该钢的镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)。
24.根据权利要求21的火炬系统,其特征在于该加压、低温流体是压力为约1035kPa(150psia)~7590kPa(1100psia)、温度为约-123℃(-190°F)~-62℃(-80°F)的加压液化天然气。
25.适于容纳压力为约1725kPa(250psia)~4830kPa(700psia)、温度为约-112℃(-170°F)~-79℃(-110°F)加压液化天然气的火炬系统,其特征在于该火炬系统(ⅰ)由包括镍含量低于9wt%的超高强度、低合金钢材料制成,(ⅱ)具有足够的强度和断裂韧性来容纳上述加压液化天然气。
26.一种用于分配加压、低温流体的流送管式分配网络系统,其特征在于该流送管式分配网络系统由包括超高强度、低合金钢的材料制成,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTT低于约-73℃(-100°F)。
27.根据权利要求26的流送管式分配网络系统,其特征在于该流送管式分配网络系统包括至少一个主储存容器、至少一条主分配管路和至少一个最终用途储存容器。
28.根据权利要求27的流送管式分配网络系统,其特征在于该至少一个主储存容器、至少一条主分配管路和至少一个最终用途储存容器由包括超高强度、低合金钢的材料制成,该钢的镍含量低于约3wt%、拉伸强度超过约1000MPa(145ksi),且DBTT低于约-73℃(-100°F)。
29.根据权利要求26的流送管式分配网络系统,其特征在于该加压、低温流体是压力为约1035kPa(150psia)~7590kPa(1100psia)、温度为约-123℃(-190°F)~-62℃(-80°F)的加压液化天然气。
30.适于容纳压力为约1725kPa(250psia)~4830kPa(700psia)、温度为约-112℃(-170°F)~-79℃(-110°F)加压液化天然气的流送管式分配网络系统,其特征在于该流送管式分配网络系统(ⅰ)由包括镍含量低于9wt%的超高强度、低合金钢材料制成,(ⅱ)具有足够的强度和断裂韧性来容纳上述加压液化天然气。
全文摘要
提供由超高强度、低合金钢制成的工艺部件(12)、容器(15,11)和管路,该钢的镍含量低于9wt%、拉伸强度超过830MPa(120ksi),且DBTTs低于约-73℃(-100°F)。
文档编号F28F9/22GK1301335SQ98812422
公开日2001年6月27日 申请日期1998年6月18日 优先权日1997年12月19日
发明者M·明塔, L·R·凯利, B·T·凯利, E·L·金布尔, J·R·里格比, R·E·斯蒂尔 申请人:埃克森美孚上游研究公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1