闭环干燥系统和方法

文档序号:4688573阅读:247来源:国知局
专利名称:闭环干燥系统和方法
闭环干燥系统和方法
背景技术
世界上大部分电力是由燃烧诸如煤等化石燃料所生成。四种主要类型的煤是(从高至低排列)无烟煤、烟煤、次烟煤和褐煤。更高级别的煤典型地包括比低等级的煤更少的水分和更少的污染物。煤通常被干燥以提高其等级和加热值(kj,BTU/磅)。除去提高等级和加热值之外,干燥煤还提供额外的益处。例如,一旦在干燥之后移除了水分,煤会更轻和可以被更容易地和以更低的成本运输。因此,煤干燥是发电中的重要步骤。各种煤干燥方法和系统在过去几十年中已经被应用,包括旋转干燥炉、级联回转床干燥器、细长槽干燥器、斗式干燥器、行进式干燥器和振动流化床干燥器。这些方法和系统中许多需要高温和高压。因为大量的能量需要用于实现高温和高压,采用这些方法干燥低等级的煤可能在经济上不合算。因此已经研发了使用低温和低压的煤干燥方法。许多低温方法利用流化床技术,但是仅仅能够在有限的程度上干燥煤。后续的高温步骤有时用于进一步干燥在低温下进行处理的煤。煤的流化床干燥所遇到的一个问题是产生夹杂在流化介质中的粉末。在氧气环境中,且在一些情况下,已经将获得点燃能量,这些粉末会自燃。因此,这些干燥方法通常使用惰性流化气体,例如氮气、二氧化碳和蒸汽,用于提供具有有限的氧气的环境以防止燃烧。还致力于通过使用废热流作为热源来提高煤干燥系统的效率。废热流包括焦炭冷却气体、烟气、烟道气和来自发电涡轮中的蒸汽凝结物。一种或更多种废热流可以单独用于提供热量至煤干燥系统或与主要热源结合使用,所述主要热源通常由化石燃料的燃烧来提 {共。尽管已有的革新已经提供了先进的煤干燥技术,但是仍旧期望进一步改进煤干燥效率和成本。对于煤干燥效率的甚至很小的改进可能会取得巨大的有益效果。效率百分之五的提高可能意味着对于一个中等规模的发电厂每年节省上千万美元。

发明内容
一种用于干燥颗粒物的方法,所述方法包括将颗粒物输送至干燥器;使流化气体循环通过所述干燥器;加热在所述干燥器中的所述颗粒物以从所述颗粒物中移除水;和从所述干燥器中移除经过干燥的颗粒物。所述方法还包括从所述干燥器中移除水蒸汽和流化气体;从所述流化气体中移除细颗粒和水蒸汽;和在从所述流化气体中移除水蒸汽之后将所述流化气体再次引导至所述干燥器。一种煤干燥系统,包括流化床干燥器以及与所述流化床干燥器流体连通的流化气体回路。所述流化床干燥器具有用于将煤输送至所述流化床干燥器的煤入口、用于接收流化气体的气体入口、用于加热煤和流化气体的热交换器、用于移除水蒸汽和流化气体的气体出口和用于从所述流化床干燥器中移除干燥了的煤的煤出口。所述煤入口和所述煤出口分别在煤输送和煤移除过程中接收惰性气体以防止氧气进入所述流化床干燥器。所述流化气体回路包括热交换器,用于加热所述流化气体;旁路,用于将流化气体引导至所述流化床干燥器的上部;灰尘收集器,用于从所述流化气体中移除细颗粒物;冷凝器,用于从所述流化气体中移除水分;风扇,用于使流化气体通过所述流化气体回路循环;通风出口,用于从所述流化气体回路中移除气体;和补充气体入口,用于将流化气体添加到所述流化气体回路。所述风扇具有密封件,惰性气体被引导向所述密封件以防止氧气进入所述流化气体回路中。 —种模块化流化床干燥器,包括第一干燥器模块和第二干燥器模块。每个干燥器模块具有带有气体入口的气室部;气体分配板部;带有热交换器的中间容纳部;和带有颗粒物入口和气体出口的上容纳部。所述第一干燥器模块和所述第二干燥器模块被焊接在一起,以使得所述第一和第二干燥器模块的气室部、所述第一和第二干燥器模块的中间容纳部、所述第一和第二干燥器模块的上容纳部以及所述第一和第二干燥器模块的气体分配板部连接以形成所述模块化流化床干燥器。


图1是示出闭环煤干燥系统的示意图。
图2是示出设置有防止氧气进入系统的闭环煤干燥系统的示意图。
图3是使用闭环煤干燥系统来干燥煤的方法的流程图。
图4是在闭环煤干燥系统中控制氧气含量的方法的流程图。
图5A示出流化床模块。
图5B示出图5A的模块的上部的一部分。
图5C示出图5A的模块的下部。
图5D示出具有热交换器的图5C的模块的下部。
图5E示出图5A的模块的焊点。
图6示出模块化的流化床干燥器。
具体实施例方式本发明提供了用于干燥包括煤等特定物质的改进的方法和系统。尽管各种类型的颗粒物可以使用本发明来干燥,但是在此所述的实施例涉及具体的煤的干燥。干燥煤存在一定的挑战(即自燃)。然而,用于干燥煤所述的方法和系统还可以用于干燥其它类型的颗粒物。虽然以下实施例明确地涉及煤干燥,但是应当理解,本发明的方法和系统不仅限于煤干燥,而是还包括其它类型的颗粒物(例如生物质、泥炭、固体废物等)。在一实施例中,用于干燥煤的方法使用采用废热源和惰性流化气体的闭环系统。 通过使用具有惰性流化气体的流化床来干躁颗粒物,在干燥系统中存在的氧气水平可以被严控以防止系统内的燃烧。在闭环布置中,仅仅惰性流化气体被输送到所述系统以干燥颗粒物。氧气通常被保持在所述系统之外。当煤被加入或从所述系统移除时以及在干燥过程中煤物理破损而释放在其中夹杂的氧气时,有时可以使少量氧气进入该系统。对于所述系统内的氧气水平的附加控制由一系列防止氧气进入所述系统的结构来维持。少量惰性气体被施加于氧气可能进入的装置和系统的密封表面(例如,风扇轴密封件、旋转气间等)。通过使用这些结构,在所述系统内的氧气水平可以比之前的系统控制得更严格。在一些情况下,将少量惰性气体引入到所述系统中的各个位置处可以提供和保持所述系统内的惰性流化气体的合适水平,以允许稳定状态的操作。在其它的情况下,仅仅少量的“补充”气体需要加入到所述系统中。在一实施例中,惰性流化气体被回收和再次用于流化颗粒物。为了回收所述惰性流化气体,从煤释放出和由流化气体携带出的水分必须在其被重新引入到煤之前从流化气体中移除。从流化气体中移除水分的一种方式是将由流化气体所携带的水蒸汽凝结,以使得所述水蒸汽和所述气体可以分离。该凝结步骤允许所述系统回收流化气体用于附加应用和以更高的效率和更低的成本来操作。在流化气体不被回收的系统中,大量流化气体需要被采购或生成。采购或生成大量惰性气体是很贵的。回收流化气体允许所述系统以更低成本操作。另外,被回收的流化气体就在其回到流化干燥床之前仍然具有提高的温度。由于其温度高于周围温度,重新加热流化气体至必需的干燥温度需要更少的能量。因此,回收流化气体降低涉及流化气体的采购或生成的成本和加热流化气体所需的能量。在一实施例中,干燥方法和系统采用在流化床干燥器内的相对低干燥温度。通过使用相对低的干燥温度,根据本发明,可以使用更宽范围的热源来干燥煤,而不仅仅是提供高热能水平的那些热源。当本发明的方法和系统组合时,提供低床温,用于降低在干燥过程中的床内燃烧的可能性和降低汽化水平。低温干燥床还提供更有效的干燥过程。除干燥煤所需要的更低的热能之外,本发明的干燥方法和系统允许使用更小和更有效的装备用于后续的处理步骤。例如,在一实施例中,所述干燥方法和系统显著地减小了易碎的煤(例如褐煤)的颗粒尺寸。该颗粒尺寸降低可以在后续处理步骤过程中转换成动力和成本的节省。因为煤的颗粒尺寸已经被减小,可以使用更小的辅助的研磨和碾压装备。 更小的辅助装备可以以更低成本制造,且需要更少的动力以操作和研磨或碾压所述被干燥的煤。当易碎的煤根据本发明在研磨或碾压之前被干燥时,功率量可以减小60%至90%。图1示出闭环煤干燥系统10的一实施例。煤干燥系统10包括流化床干燥器12和流化气体回路14。流化床干燥器12可以具有任何多种不同配置。例如,流化床干燥器12 可以配置成提供静态流化床或振动流化床。流化床干燥器可以具有大致矩形的占地区域或圆形或椭圆设计和占地区域。流化床干燥器12可以大致被分成三个独立部。气室(plenum)部16通常位于流化床干燥器12的底部。流化气体在气室部16处进入流化床干燥器12。气室部16典型地在干燥过程中不包括煤。分配板18将气室部16与中间容纳部20分离。一旦被建立,流化床占据中间容纳部20的相当部分。中间容纳部20还可以包含热交换器或加热线圈,所述热交换器或加热线圈在干燥过程中将热传递至流化煤。上容纳部22大致位于流化床干燥器12的顶部。流化床还占据上容纳部22的相等部分。流化气体典型地从上容纳部22流出流化床干燥器12。各种类型的煤可以使用本发明的方法和系统来干燥。低等级的煤(例如褐煤)和高等级煤(例如烟煤和次烟煤)以及其它的含水分的煤可以被有效地干燥。被引入到流化床干燥器12中的“湿”煤的表面水分可以依赖于煤的类型而变化。可以使用本发明的方法和系统来干燥的湿煤通常具有在约0.5%和约10%之间的进入表面湿度。具有大于10%的表面湿度的湿煤仍可以根据本发明被干燥。除去表面水分之外,湿煤也可以包含内部水分。 除去表面水分的变化之外,湿煤的颗粒尺寸可以显著地变化。依赖于进入湿煤的颗粒尺寸, 在流化床干燥器12内的温度和流过流化床干燥器12的流化气体的流动可以被调整以形成和维持煤的流化床。颗粒尺寸(直径)范围从5微米至大于1英寸的煤可以使用本发明的方法和系统来干燥。可以根据本发明来进行干燥的煤的最大颗粒尺寸由整个系统的在流化床干燥器12内运输大的煤颗粒的能力来确定。湿煤在煤入口 24处引入到流化床干燥器中。煤的流化床形成在流化床干燥器12 内,如下所述。流化煤释放水分。干燥的煤在煤出口 26处排出流化床干燥器12。出口 26 可以是溢流阻件、下溢装置(例如位于床端处的旋转气间或水平螺旋输送器)或这些装置的组合。从流化床干燥器12在煤出口 26移除的干燥的煤,在煤被燃烧以产生能量之前,可以通过施加附加的过程,例如碾压或研磨步骤或矿油涂覆步骤。流化气体在气体入口 28处进入流化床干燥器12。气体入口 28大致位于流化床干燥器12的底部处或其附近,以使得流化气体在干燥过程中可以流过干燥器12和形成煤的流化床。根据本发明,可以使用各种流化气体。典型地,选择惰性气体。适合的惰性流化气体包括氮气、二氧化碳和低氧气烟气。在如图1所示的煤干燥系统10中,流化气体在气室部16处经由气体入口 28进入流化床干燥器12。气体在气体出口 30处排出流化床干燥器12。气体出口 30大致位于流化床上方的上容纳部22中。流化气体通常从气体入口 28经过气室部16、中间容纳部20和上容纳部 22流至气体出口 30。当流化气体流过中间容纳部20和上容纳部22时,在这些部中的气体与煤混合以形成流化煤床。来自于煤的外表面和内核的水分在流化床中蒸发。当流化气体通过流化床时,所述气体提取和吸收从所述煤释放的水分。所述流化气体也可以携带细小的煤颗粒(粉末),所述细小的煤颗粒(粉末)当煤流进入干燥器时就存在于湿的煤流中或者在干燥过程中从煤释放出来。当所述气体在气体出口 30处排出流化床干燥器12时,所述气体包含比气体进入流化床干燥器12时所包含的水分和粉末更多的水分和粉末。在气体出口 30处排出流化床干燥器12的气体流入流化气体回路14中。一个或更多个床热交换器32可以位于流化床干燥器12的中间容纳部20。床热交换器32可以具有管状配置,所述管状配置有在水平或垂直方向上(相对于流化煤颗粒的床)的管,或者由板状线圈构成。在两种情况下,所述管或线圈通常连接至公共的入口和出口供给头。其它的合适热交换器配置也是可能的。床热交换器32经由以与加热表面直接接触的煤颗粒的传导性热传递或经由用于热传递至流化气体的对流装置将热量在中间容纳部20中提供至流化煤。加热流化煤增加了在所述煤内所包含的水分蒸发的速率。典型的流化床温度通常位于约15°C (60 T )和约120°C (250 T )之间。然而,根据本发明,可以使用高至约200°C (400 T )的床温。床热交换器是可选的。在一些实施例中,流化气体包含足够的热能,以加热流化煤,且床热交换器32可以被省略。由一个或更多个热源34将热能提供给床热交换器32。热源34可以是任何主要的或辅助的热源。热源34通常提供在约38°C (100 T )和约315°C (600 T )之间的热量。 由主热源所提供的热量包括通过燃烧化石燃料(例如石油、天然气或煤)来生成的热。辅助热源包括来自于发电厂中其它位置的废热流。废热流包括被加热的冷却水、凝结物、饱和和/或过热的蒸汽以及由其它的发电厂行为(例如冷却焦炭等)所加热的热传递流体。热能由热源34提供至床热交换器32,所述床热交换器32加热流化煤。排出床热交换器32的被冷却的残留热流从流化床干燥器12移除并丢弃或在发电厂中以其它目的而重新使用。流化气体回路14包括灰尘收集器36、冷凝器38、通气阀40、气体入口阀42和一个或更多个风扇44。流化气体回路14号还可以可选地包括气体回路热交换器46,其可以从与床热交换器32相同的热源或另一热源来加热。气体在气体出口 30处排出流化床干燥器12后进入流化气体回路14。排出流化床干燥器12的气体含有粉末和水分。如图1所示的煤干燥系统10使用闭环回路,且流化气体被重新调整和回收,以使得其可以用于流化另外的煤。为了使排出气体出口 30的气体适合于返回流化床干燥器12和另外的流化,气体必须被重新调整。重新调整气体需要从气体中去细颗粒物(粉末)和从所述气体中移除水分。依赖于被干燥的煤的特性和干燥过程所处的阶段(例如流化床干燥器12中的几乎所有的煤已经被干燥),可以需要重新调整步骤中的一者或两者。灰尘收集器36在气体已经排出流化床干燥器12之后从所述气体中移除粉末。从所述气体移除的粉末可以被沿路线发送至干燥煤和与所述干燥煤汇合,所述干燥煤经过煤出口 26排出流化床干燥器12,所述粉末还可以返回至干燥器12用于重新处理或作为用于其它用途或处理的单独流。因为粉末量与经由煤出口 26移除的干燥的煤的量相比更小,所以由所述粉末所携带的任何水分在所述粉末与经过干燥的煤汇合时很不明显。部分地经过重新调整的气体(没有粉末)继续经过流化气体回路14。灰尘收集器36可以采取各种形式。合适的灰尘收集器36包括但不限于气旋、多管式旋流除尘器、袋式除尘器、静电除尘器和湿洗涤单元。袋式除尘器包括机械筛袋式除尘器、反向鼓风袋式除尘器和反吹式袋式除尘器。湿洗涤单元包括文氏管洗涤器、逆流喷射塔、共流充填塔和逆流充填塔。灰尘收集器36可以是单个单元或协同地操作以从所述气体移除粉末从而重新调整气体的单元的组合。冷凝器38在粉末已经被移除之后从所述气体移除水分。冷凝器38典型地是表面冷凝器,但是还可以使用将水蒸汽转换成水的其它的冷凝器以及壳和管热交换器。冷凝器 38从所述气体移除水蒸汽的至少相当部分。在正常情况下,凝结的水分量与从在干燥器12 中的煤蒸发的水分量相当。经过干燥的气体排出冷凝器38并继续经过流化气体回路14。 经过凝结的水蒸汽作为与气体分离的液态水排出冷凝器38。在一些情况下,液态水可以出于另外的目的(例如水冷)而被重新使用,或提供补充物或从发电厂移除。冷凝器38的可选的布置允许冷却介质与回路14中的气体隔离,并采用用在冷凝器自身内的水和冷却源之间的交叉冷却热交换器。在这种情况下,冷却源可以包括激冷水、制冷剂和其它介质以及冷却水。后一种配置防止或消除冷却介质自身被灰尘或在凝结步骤中可以被捕获的其它不期望的成分所污染的可能。在排出冷凝器38之后,气体继续经过流化气体回路14。流化气体回路14包括通气阀40和气体入口阀42,用于控制煤干燥系统10的压力。通气阀40允许气体排出煤干燥系统10。煤干燥系统10通常操作为在干燥器12的上容纳部22中的压力位于大气压力 (760mmHg)或其附近,通常在约755mmHg和约775mmHg之间。通气阀40允许气体排出流化气体回路14和煤干燥系统10,以便保持必要的或优选的操作压力。当在流化床干燥器12 中或煤干燥系统10的其它区域中的压力太高时,气体被通过通气阀40排放出所述系统。气体入口阀42允许流化气体进入煤干燥系统10。当流化床干燥器12中或煤干燥系统10的其它区域中的压力太低时,“补充”气体通过气体入口阀42加入到所述系统。通气阀40和气体入口阀42可以彼此独立地操作,但也可以以协调方式和与维持煤干燥系统10中的降低的氧气水平的目标配合地正常地操作。
流化气体回路14包括一个或更多个风扇44,用于循环经过流化气体回路14的气体。风扇44典型地位于流化气体回路14的区域中,在该区域中,需要另外的气体速度和压力来维持整个系统的流动(例如在热交换器之前)。如图1所示,风扇44a位于冷凝器38 之前,风扇44b位于气体回路热交换器46之前。依赖于冷凝器38的设计操作压力范围,该位置可以是优选的或有益的。风扇44a还可以与风扇44b串联定位在气体回路热交换器46 附近,以充分地利用在出现于风扇44a和44b中的流化气体的机械压缩过程中所散发的热量。所需要的气体压力和流量还可以在风扇44b的位置处设置有单个风扇。气体回路热交换器46用于在气体进入流化床干燥器12之前加热或预加热新的或回收的流化气体。气体回路热交换器46由一个或更多个主要的或辅助的热源来加热。热源34可以刚好在其将热量提供至床热交换器32时,提供热量至气体回路热交换器46。可选地,气体回路热交换器46可以接收来自于不同的热源的热能。用于热交换器46的其他的热源可以包括之前所述的主要的或辅助的热源以及在介质在床热交换器使用之后从热源34回流的介质。气体回路热交换器46,依赖于所选择的流化气体的类型和流化床干燥器 12的操作温度,是可选的。例如,当流化气体是烟气时,烟气可以以足够高的温度进入所述系统,该温度不需要在气体在流化床干燥器12中对煤进行流化之前进一步升高。另外,在流化床干燥器12内的温度低的情况下,床热交换器32有时可以提供足够的热能,以使得流化气体不需要在其到达流化床干燥器12之前被预加热。煤干燥系统10的操作可以包括由床热交换器32、气体回路热交换器46或床热交换器32与气体回路热交换器46两者将热量添加到所述系统。图1示出闭环煤干燥系统10的基本概念。图2示出具有附加的特征的煤干燥系统10的另一实施例。这些附加的特征改善了煤干燥系统10的整体性能和限制氧气进入煤干燥系统10。如上所述,当氧气存在于普通的大气水平下( 21% ν/ν)时,细煤颗粒可以在较低的温度下自燃。为了防止在干燥过程中这种燃烧的危害,存在于流化床干燥器12 中的氧气量必须进行控制。典型地,在流化床干燥器12中的气体包含仅仅约9%或10%氧气(ν/ν),其正常地远低于来自于颗粒物(例如任何不同类型的煤)的粉末的下爆炸极限 (LEL)。当氧气被保持在该水平处或该水平以下时,自燃的危险显著地降低。可以将氧气水平控制到所述的范围以下。如图2所示的煤干燥系统10允许由其闭环配置和附加的特征对氧气水平进行严格控制,所述附加的特征防止氧气进入煤干燥系统10。如图2所示,煤干燥系统10包括多个流化气体入口 28和气室部16a、16b和16c。 气室部16可以包含隔板或被划分以便对流过流化床干燥器12的不同区域的流化气体的流动进行作用,因此形成在干燥器内的不同的区段或级。图2示出具有被划分的气室部16a、 16b和16c的流化床干燥器12,每一气室部16a、16b和16c包含一个气体入口 28。被划分的气室部16允许在隔室16a、16b和16c中和穿过这些隔室具有更高的或更低的流化气流。 在流化气体在气体入口 28处进入气室部16之前,流化气体通过阻尼器48。阻尼器48控制和调节流化气体进入每个气室部(16a、16b和16c)的流动。阻尼器48提供对流化气体的速度控制,以使得流化床干燥器12可以更有效地操作或具有不同的干燥级以增加系统效率。 例如,为了保持优化的流化床,在湿煤被引入所在的区域中的流化气体的速度典型地更高, 以便对于湿煤被流化。在这些情况下,流过气室部16a的流化气体的流量将比流过气室部 16c的流化气体的流量更高,因为在气室部16a上方的煤与在气室部16c上方的较轻的、典型地较小和较干燥的煤相比,较高,较湿和较重。需要更高的流化气体速度来流化更大的、 更湿的煤颗粒。除去阻尼器48之外,分配板18也可以用于修正流化床干燥器12中的流化气体的流动。分配板18可以使用定向流来促使尺寸过大的颗粒或大颗粒的移除,以使得它们不影响流化或干燥过程。将气体引导入颗粒的流化层的下边界的各种板设计是可以的。具有喷嘴、角孔或狭槽的板和被组装的上零件可以有效地形成引入流化气体的定向流动部件。所述定向气体流动部件可以布置用于将较大尺寸的煤颗粒朝向煤出口 26内的排放区域引导或朝向煤出口 26 (干燥器12的排放端)引导。所述定向流动配置还可以降低流化煤颗粒被滤回到流化床干燥器12的气室部16的部件中的可能性。该定向板设计还可以用于在流动模式布置成将流动引导到独立的尺寸过大的材料排放机构(例如,内螺旋或旋转气闸排放装置)的情况下将尺寸过大的材料分离。流化床干燥器12可选地包含隔板50,用于增强干燥过程。隔板50用于降低流化床干燥器12中的颗粒的窄的驻留时间分布和后混合效应。隔板50确保在碳颗粒被排放之前对它们进行均勻的处理。隔板50用于最小化颗粒在干燥器12中的各个区段之间来来回回的交叉流动,总体上允许所述颗粒的大多数在干燥器中根据需要来从供给点(煤入口 24)到排放区域(煤出口 26)迁移。在一实施例中,隔板50在隔板50的底部附近布置有最小开口区域,以允许尺寸过大的煤颗粒的期望的定向迁移而不受阻挡。隔板可以设计成在流化层上方延伸,以使得颗粒喷发(在从颗粒的流化层的顶部出现大量气泡时出现)被包含在颗粒所产生的床的相同区段或区域中。隔板的延伸部甚至可以布置成与干燥器12 的上容纳部22的顶部会合,允许独立收集和处理从气体出口 30排出流化床干燥器12的气体,这在一些情况下是有益的。流化床干燥器12也可以布置成分单元或级。级式处理允许流化床的不同区域集中于特殊处理。例如,一级可以加速煤的分类,第二级加速减小煤的颗粒尺寸,第三级在煤从流化床干燥器12中移除之前冷却煤。级和分单元可以改进过程控制。由于流化气体的流动方向和在干燥过程中从煤释放出的水分,流化床干燥器12 的上容纳部22可以在操作过程中包含高等级的水蒸汽。如果不经检查,该水蒸汽可以凝结在上容纳部22内的比较冷的表面上并造成在流化床干燥器12的上表面上的粉末的不期望的积累,或者甚至在流化气体回路14或灰尘收集器36 (例如袋表面,于是,如果使用,则会在袋式除尘器中造成积垢或结垢效应)内的不期望的位置上的粉末的不期望的积累。为了防止这种情况出现,受热的惰性气体的额外供给被运送给上容纳部22。所述受热的惰性气体可以是与流化气体相同的气体或任何其他受热惰性气体。该气体用于抑制通过气体出口 30排出流化床干燥器12的气体的绝对和相对湿度,并因此防止或至少最小化凝结效应。旁路气体回路52是流化气体回路14的附加单元。一些流化气体通过气体入口 28 进入流化床干燥器12,而一些流化气体绕过气体入口 28继续行进至旁路气体回路52。典型地,在大约百分之零和大约百分之二十(ν/ν)之间的流化气体绕过气体入口 28并行进至旁路气体回路52。可选地,旁路气体回路52可以包括旁路热交换器54,所述旁路热交换器54 将流化气体加热到甚至比由气体回路热交换器46所提供的温度更高的温度。交换器54的添加可能是有益的,这是由于旁路气体的体积可以被减小,就降低气体运送装备的尺寸和整体操作成本而言实现了节约。旁路流化气体在上容纳部22中进入流化床干燥器12。因为该气体通常比存在与流化床干燥器12中已有的流化气体温度更高,所以上容纳部22中的相对湿度得以降低。相对湿度的这种降低防止了水蒸汽在上容纳部22中以及在下游装备(例如灰尘收集器36)中的表面上凝结,允许更多的水蒸汽在气体出口 30排出流化床干燥器12。通过消除或减少流化床干燥器12中和诸如灰尘收集器36等下游区域中的凝结, 即使不能完全消除由凝结水暴露所造成的积垢或结垢等结果,也可以减少这种现象。如图2所示的煤干燥系统10还包括多个氧气控制特征。在煤干燥系统10内的氧气控制对于确保所述系统的安全操作是十分重要的。煤干燥系统10以闭环形式操作。所述系统被设计成最大程度上尽可能气密的。闭环设计防止氧气经由大多数系统部件进入所述系统。氧气不通过热交换器32和46、流化气体入口 28或出口 30或冷凝器38进入所述系统。然而,在没有附加特征的情况下,少量的环境空气(因此是氧气)可以在煤被引入到流化床干燥器12或夹杂在煤内时进入所述系统,且也可能穿透各种机械密封。氧气控制特征56 —起操作,以消除或减少环境空气进入煤干燥系统10。如图2所示,氧气控制特征 56与煤入口 24(56a)、煤出口 26 (56b)、灰尘收集器36 (56c和56d)、风扇44a(56e)和风扇 44b(56f)相关联。本领域技术人员应当理解,对于引入煤或颗粒物或包含机械密封的其它系统部件,可以使用附加的氧气控制特征56。氧气控制特征56a与煤入口 24相关联。设置有氧气控制特征56a的煤入口 24的一个示例是如图2所示的旋转气闸。旋转气闸允许煤进入流化床干燥器12,同时限制与煤一起进入流化床干燥器12的大气中的氧气量。煤与环境空气一起在第一位置处进入旋转气闸的型腔。具有煤和空气的型腔旋转至第二位置,在所述第二位置处,其与另外的煤和环境空气以及流化床干燥器12隔离。在第二位置上,所述型腔以惰性气体(清扫气体)来清扫以从所述环境移除已经与煤一起进入型腔的空气并用惰性气体来代替所述空气。所述环境空气中的大多数在有机会进入流化床干燥器12之前就被从气间中清除掉了。具有煤和惰性气体的型腔旋转至第三位置,在所述第三位置处,煤从所述型腔落到流化床干燥器12 或辅助储料器中。在所述型腔中存在的惰性气体进入流化床干燥器12,而不增加干燥器的氧气含量。用于清扫的惰性气体可以具有与用于流化煤的惰性气体或任何其它惰性气体相同的类型。合适地设计的关闭的螺旋输送器或螺旋输送器组可以替代具有合适设计的56a 以最小化空气的进入。氧气控制特征56b与煤出口 56相关联。煤出口 26的示例包括但不限于旋转气闸、螺旋输送器和溢流阻件。图2示出旋转气闸种类的煤出口 26。旋转气闸允许煤排出流化床干燥器12,同时限制当煤排出时进入流化床干燥器12的大气中的氧气量。所述结构以与上述方式相同的方式工作。然而,在煤出口 26处,一旦气间型腔倾倒从流化床干燥器12 所移除的煤,则环境空气进入所述型腔并旋转至第二位置。环境空气从所述型腔以惰性气体在第二位置处被清扫,以使得当它旋转至第三位置以提取另外的被干燥的煤时,环境空气不进入流化床干燥器12。经过干燥的煤的新的供给在进入型腔时替代的是惰性气体而不是环境空气。该操作略有不同,但是原理与上述关于煤入口 24的操作相同。螺旋输送器也可以类似地操作。螺旋输送器型腔可以在它们旋转以允许替代环境空气之前被以惰性气体清扫。可以为排放经过干燥的煤而布置多个排放点。在大多数情况下,依赖于所期望的目的,将经过干燥的煤在到达56b旋转气闸装置之前与流化煤分离开是有益的。通常,采用下溢装置(例如,经过致动的下溢间或活门、旋转螺旋输送器、下溢旋转气间)和溢出结构的组合。所述溢出结构可以由简单的阻件(weir)构成,在阻件上方,位于干燥器的排放区域处的流化固体期望流过(flow over)。所述阻件可以以可调整的方式来布置(以类似于细长的水平球阀的方式来操作),螺栓板设置有预开的螺栓孔,用于将所述板重新定位于更高或更低的位置,或类似。下溢布置可以仅以间歇方式操作以清除尺寸过大的颗粒,或在更连续的基础上进行,以获得更多的正常干燥器的生产量。在后一种情况下,所述装置可以利用速度控制器来操作,以基于流化层的所测量的差压(层理论高度的指示)来维持恒定的流化床水平。在这种情况下,溢流布置更多地用于防止干燥器的过溢。来自溢出阻件的排放固体可以独立于下溢布置操作(例如,在期望以不同的方式在下游处理尺寸过大的材料,例如再处理、再破碎等的情况下),或可以组合成一个流和从共用装置(例如旋转气闸煤出口 26)排放。氧气控制特征56c和56d与灰尘收集器36相关联。在灰尘收集器36是袋式除尘器的情况下,氧气控制特征56c可以是袋式除尘器脉冲射流系统。袋式除尘器脉冲射流系统在流化气体流动的相反方向上将惰性气体的脉冲射流输送通过袋式除尘器过滤器。脉冲射流防止袋式除尘器过滤器被粉末阻塞。使用惰性气体而不是环境空气,以使得氧气没有由流化气体吹回到系统中。逆流袋式除尘器可以仅仅使用已经存在于气体回路中的惰性气体(在它已经从袋式除尘器排出之后),用于袋上的结块控制。氧气控制特征56d可以以类似于氧气控制特征56b和煤出口 26类似的方式与灰尘收集器36的出口相关联。来自于灰尘收集器36的粉末通过旋转气间排出。袋清扫防止环境空气进入灰尘收集器36和进入流化气体回路14。氧气控制特征56e和56f通常与机械密封相关联。用于风扇44a和44b的风扇轴密封件可以允许少量的环境空气进入煤干燥系统10。为了防止这些密封件使环境空气逃逸,惰性气体的微小的脉冲射流或轻流被用于密封区域。惰性气体的脉冲射流可以适合于不连续地操作的部件(例如在干燥过程中接通和关断)。惰性气体的持续的轻流可以适合于连续地运行的部件。如上述的净化(清扫)气体,用于氧气控制特征56e和56f的惰性气体也可以具有与流化气体相同的类型。惰性气体的脉冲射流和惰性气体流从空气可能进入煤干燥系统10所经的区域移除环境空气。各种氧气控制特征56防止氧气进入煤干燥系统10和/或将附加的惰性气体引入到所述系统中。氧气控制特征56的另外的益处是附加的惰性气体可以在处理过程中替代从所述系统10失去的气体。一些惰性流化气体在煤出口 26处被流失到环境中。惰性气体与煤一起排出流化床干燥器12,并不容易回收。在其它系统中,该流失的气体典型地将由经过气体入口阀42输送至所述系统的“补充”气体来替代。然而,因为惰性气体已经作为氧气控制要素的一部分被加入到煤干燥系统10,所以通过气体入口阀42进入的补充气体的量可以被减少或甚至被消除。实质上,煤干燥系统10使用一些补充气体也来防止氧气进入所述系统。在一每小时处理7300kg的湿供给物的示范工厂中,补充气体的量在约45kg/ h和约200kg/h之间(依赖于在流化气体回路14中的目标的氧气水平以及其它条件)。如图2所示,流化气体回路14还包括氧气传感器系统58。氧气传感器系统58监测流经流化气体回路14的氧气和一氧化碳的含量。当氧气传感器系统58检测到太多的氧气时,气体入口阀42开放以允许附加的入口流化气体进入流化床干燥器12。一氧化碳(CO)在干燥过程中表征床内燃烧。在二氧化碳(CO2)、氧气或水与煤反应时,可以形成一氧化碳。 当氧气传感器系统58检测到太多的一氧化碳时,流化气体(经由气体回路热交换器46)或流化床(经由床热交换器32)的温度可以被降低到减少或防止床内燃烧。其它测量可以结合这些步骤进行,以加速氧气从煤干燥系统10(例如阀40的开口)的移除。阀42也可以打开以将附加的入口流化气体引入和促使流化床干燥器12内的潜在的燃烧减少(由CO形成表示)。当与闭环设计结合时,氧气控制特征56允许煤干燥系统10内的氧气含量的严密控制。当所述系统需要小于约9%或10%的氧气(ν/ν)以便安全地操作时,煤干燥系统10 可以将在系统中存在的氧气的水平控制到实际上任何期望的值。6%的氧气水平(ν/ν)、3% 的氧气水平(v/V)和更低的氧气水平对于如图2所示的煤干燥系统10是可能的。在煤干燥系统10中的附加特征包括压力传感器60、水分传感器62和窥镜64。压力传感器60测量流化床干燥器12内的压力。压力传感器60与操作通气阀40和气体入口阀42的控制器(未示出)通信。通气阀40在压力太高时将气体排出煤干燥系统10,气体入口阀42在压力太低时允许新的流化气体进入煤干燥系统10。水分传感器62测量排出流化床干燥器12的气体的水蒸汽含量。水分传感器62与操作用于控制进入或绕过气体入口 28的流化气体的量的阀的控制器(未示出)通信。当排出流化床干燥器12的气体中的水蒸汽含量太高时,附加的流化气体被输送到旁路气体回路52,以在上容纳部22处进入流化床干燥器12,从而降低干燥器内的相对湿度。当排出流化床干燥器12的气体的水蒸汽含量低时,更少量的流化气体被输送至旁路气体回路52,更多的气体用于流化干燥器中的煤。 这允许煤干燥系统10保持排出所述干燥器并被输送至灰尘收集器36的气体的绝对或相对湿度的期望水平。在一些实施例中,流化床干燥器12的壁包含一个或更多个窥镜64。窥镜64利于监测在流化床干燥器12的不同部中的流化品质。操作者可以观察流化床干燥器12内的各种位置或级,以确定是否需要进行任何温度或气体速度或分布调整。由于在流化床干燥器12内的煤流化,窥镜64的内表面可以涂覆有煤颗粒,尤其是在高水分释放或煤加载区域中,阻挡流化床的操作者的视野。窥镜64的内表面可以装备有擦拭器或惰性气体喷嘴以物理移除导致观察困难的附着的煤颗粒。煤干燥系统10也可以配置成允许就地清洁(CIP)操作。CIP允许在不进行拆卸或其它侵入式清洁工艺的情况下快速清洁煤干燥系统10。流化床干燥器12的中间容纳部20 和上容纳部22可以使用干燥气体(例如流化气体)的脉冲来排空煤,所述干燥气体脉冲朝向煤出口 26引导干燥器容纳物。气室部16也可以使用气体脉冲来清洁,引导试图通过分配板18的任何粉末颗粒到达气室部16内的出口。灰尘收集器36也可以使用经过干燥的气体的脉冲来排空。可以通过让清洁气体循环经过清洁流化床干燥器12和灰尘收集器36 中的每一者而方便地清洁流化床干燥器12和灰尘收集器36。合适的清洁气体包括氮气、二氧化碳和如所述的惰性流化气体自身(在从流化气体回路14内的合适的高压位置获取或被压缩超过正常操作压力的情况下)。如图2所示和以上所述的煤干燥系统10提供一种使用闭环干燥系统来干燥煤的方法。图3示出根据本发明的干燥煤的方法的流程图。煤干燥方法70包括步骤将煤放入干燥器中(步骤72),使得流化气体循环通过干燥器以流化煤(步骤74),加热在干燥器中的煤以将水分从煤转移到流化气体(步骤76),从干燥器中移除水蒸汽和流化气体(步骤 78),从流化气体中移除颗粒材料(步骤80),从流化气体移除水蒸汽(步骤82),在从流化气体中移除水蒸汽和颗粒材料之后将流化气体又引导至干燥器(步骤84),和将经过干燥的煤从干燥器移除(步骤86)。如上所述,煤经由煤入口 24放入流化床干燥器12中。流化气体通过气体入口 28 进入流化床干燥器12。流化气体被输送以流化流化床干燥器12内的煤。所述煤在流化床干燥器12中通过流化气体(通过气体回路热交换器46进行预加热)、床热交换器32或流化气体及床热交换器32两者进行加热。由于热量被施加至流化煤,存在于煤中的水分蒸发。流化气体将水蒸汽在气体出口 30处携带排出流化床干燥器12。颗粒材料(粉末)由灰尘收集器36从流化气体中移除。水蒸汽由冷凝器38从流化气体中移除。一旦颗粒材料和水蒸汽已经从流化气体移除,流化气体被再次引导至干燥器以流化另外的煤。经过干燥的煤经由煤出口 26从流化床干燥器12移除。采用煤干燥系统10结合方法70对添加到所述系统中的煤进行干燥。除去对煤进行干燥之外,煤干燥系统10和方法70减小了添加到流化床干燥器12中的煤的颗粒尺寸。 许多煤,尤其是低等级煤,如褐煤,在干燥过程中破碎。通过根据方法70来对煤进行干燥, 所述煤的平均颗粒尺寸可以被减小达60%。这种颗粒尺寸的减小提供了额外的益处。首先,减小煤的颗粒尺寸可以减少在相邻的煤颗粒之间的死区空间,由此降低存储所需的体积。其次,经过干燥的煤有时在经过方法70处理之后、在燃烧之前被研磨或碾压。减小煤的颗粒尺寸又减少了辅助研磨和碾压步骤所需要的能量。减小煤的颗粒尺寸也减小了研磨和碾压装备的尺寸需要。对于后续的研磨和碾压,可以观察到能量消耗降低高达75%或更尚ο根据本发明的系统和方法,煤可以借助于热能输入来进行干燥,对于每千克水蒸发( 蒸发每磅水需要1180-1400BTU),所述热能输入在约2740千焦(kj)和约3260千焦 (kj)之间。干燥煤所耗费的热能量依赖于各种因素,包括湿煤的初始水分含量、供给至流化床干燥器12的湿碳的温度、周围条件(大气温度和湿度)、可行的使用条件(操作所述系统所能获得的热源和电能)和经过干燥的煤的期望的水分。对于出口水分在约15% (w/w) 以下(包括内部水分)观察到更高的热能输入。由煤干燥系统10所消耗的大量能量是用于操作凝结步骤82。从流化气体取出水蒸汽会需要由流化床干燥器12和/或气体回路热交换器46所使用的组合热能量的约80 % 和约110%之间。凝结步骤82所需的能量依赖于各种因素,包括供给至干燥器的湿碳的温度、进入和排出干燥器的水分水平、可行的使用条件、从系统部件(风扇等)引入到所述系统的热量、热量损失和排出所述系统的流化气体的量和条件。尽管凝结步骤82消耗了相对大量的能量,但是在闭环回路中循环流化气体提供在其它区域中的巨大的成本节省。用在煤干燥系统10中的流化气体可以流经系统一次, 部分循环或接近全部循环(假定仅仅对于与经过干燥的煤一起排出所述系统的气体有损失)。生成或购买用于煤干燥系统10的流化气体可能是昂贵的。通过在流化气体排出流化床干燥器12之后移除水蒸汽(凝结步骤82)来回收流化气体减少了生成或采购额外气体的需要,这是因为经过调整和回收的流化气体可以用于干燥另外的煤。总体而言,使用具有回收的流化气体的闭环系统可以提供超越已有的煤干燥系统和方法的、5%至10%量级的效率增长。这种效率增长对于平均规模的发电厂可以转化成每年上千万美元的节省。图4示出控制在闭环煤干燥系统中的氧气含量的方法的流程图。方法90包括步骤将煤经由煤入口气间放入干燥器中和在煤放入过程中利用惰性气体清扫煤入口以防止氧气进入(步骤92)。步骤94包括使得流化气体循环通过干燥器以从煤移除水分。步骤 96包括从干燥器中移除水蒸汽和流化气体。步骤98包括借助灰尘收集器从流化气体中移除颗粒材料(粉末),其中惰性气体被施加于灰尘收集器以防止氧气进入。步骤100包括从流化气体中移除水蒸汽。步骤102包括在从流化气体移除水蒸汽之后以具有至少一个密封件的风扇使流化气体再次引导至干燥器,其中惰性气体被引导至所述至少一个密封件以防止氧气进入。步骤104包括经由煤出口气闸从干燥器移除经过干燥的煤和借助于惰性气体在煤移除过程中清扫煤出口以防止氧气进入。如上所述,煤经由煤入口 24(旋转气闸)放入流化床干燥器12中。氧气控制特征 56a借助于惰性气体清扫煤入口 24以防止氧气进入流化床干燥器12。流化气体经过气体入口 28进入流化床干燥器12,并循环以从流化床干燥器12内部的煤移除水分。由于热量施加至流化煤,存在于煤中的水分蒸发。流化气体在气体出口 30处携带水蒸汽排出流化床干燥器12。颗粒材料(粉末)由灰尘收集器36从流化气体中移除。惰性气体被施加于灰尘收集器36以从灰尘收集器过滤器移除粉末(氧气控制特征56c)和/或防止氧气在移除颗粒材料过程中进入灰尘收集器36 (氧气控制特征56d)。水蒸汽由冷凝器38从流化气体中移除。一旦颗粒材料和水蒸汽已经从流化气体移除,则流化气体被再次引导至干燥器以流化另外的煤。风扇44使经过重新调整的流化气体再次引导回流化床干燥器12。风扇包含密封件和氧气控制特征56。氧气控制特征56e或56f将惰性气体朝向风扇轴密封件引导,以防止氧气进入煤干燥系统10。经过干燥的煤经由煤出口 26 (旋转气闸)从流化床干燥器12移除。氧气控制特征56b利用惰性气体清扫煤出口 26以防止氧气进入流化床干燥器12。闭环设计和氧气控制特征56允许对在煤干燥系统10内的氧气含量的严密控制。在许多实施例中,流化床干燥器12具有很大规模,尺寸很大,占地面积很大。在一种所构思的安装设备中,为每小时处理约100公吨的湿碳,需要确定大约8. 2米X 17. 7米的占地面积。由于流化床干燥器12的规模很大,所以它们通常在发电厂或其它其会在那里运行的制造地点来构建或装配。经常,大量的本领域的建构工程师中的一个或更多个需要在干燥器12已经设计完成后将其进行装配。除去这些工程师之外,所有各种建构材料、工具和其它装备必须被送至发电厂地点,而占据空间。煤干燥系统10的另一个特征是流化床干燥器12的模块化能力。流化床干燥器12可以被制造为位于制造工作地点处的独立的模块,所述模块被运送至安装地点并然后更容易地在安装地点装配成模块化的流化床干燥器 12。干燥器模块可以由熟练的工匠借助专用工具和装备在永久性的制造地点建立,这可以更好地保证高品质和一致性的产品。干燥器模块可以被独立地装配或由以规则的运输工具以相对小数量的“部件”而被航运至最终装配的安装地点。这一模块化方面减少了在安装地点处的的装配时间,并允许制造相同或基本相同的模块,所述模块可以被焊接在一起以形成流化床干燥器12。图5A示出一个干燥器模块106的实施例。干燥器模块包括上容纳部22a和22b, 每个上容纳部具有孔27和旁路气体入口 53 ;设置有床热交换器32的中间容纳部20、分配板18和具有气体入口 28的气室部16。图5A示出具有床热交换器32的干燥器模块106。如上所述,床热交换器32,在流化气体自身携带足够的热能以干燥流化床干燥器12中的流化煤的这些配置中是可选的而不是必须的。在这些情况下,床热交换器32可以从干燥器模块106中省略掉。干燥器模块106被设计成并排地放置和焊接在一起以形成流化床干燥器 12 (如图6所示)。相邻的干燥器模块106布置成使得第一模块106的上容纳部22的右边缘与第二模块106的上容纳部22的左边缘邻接。相同的布置应用于中间容纳部20和气室部16的右边缘和左边缘。一旦被布置,干燥器模块106被螺栓联接和焊接在一起。相邻的模块被螺栓联接在一起以确保正确的对准,然后密封件被焊接到一起以形成在相邻的干燥器模块106之间的气密密封。经过焊接的模块106形成了从第一模块延伸到最后一个模块的连续的流化床干燥器12。为了完成流化床干燥器12,将端帽模块(未示出)焊接到第一和最后一个模块的外端部。一个端帽模块典型地包括一个或更多个煤出口 26,用于从流化床干燥器12移除煤。干燥器模块106可以是相同的,具有尺寸相同的气室部16、中间容纳部20和上容纳部22,且具有分配板18、孔27、气体入口 28和旁路气体入口 53的相同的布置。上容纳部22可以包括在部22a和22b之间的间隙108。由于流化床干燥器12和干燥器模块106的尺寸和在它们的结构中使用的建构材料的重量,可能需要附加的支撑结构。在这些情况下,间隙108分离将上容纳部22a和22b分离,以使得支撑杆110(如图6 所示)可以被焊接至部22a和22b,以提供对于流化床干燥器12的附加的支撑。如图5A所示的每个上容纳部(22a和22b)也包括两个孔27。孔27配置成依赖于需要而用作煤入口 24或气体出口 30。孔27基本上都具有相同尺寸,并可以被容易地修改成包含煤入口 24结构(气闸等)或气体出口 30结构(喷嘴等)。典型地,依赖于干燥器12的总体尺寸,煤被从大约一至四个煤入口 24引入到流化床干燥器12中。因此,仅仅一至四个干燥器模块106 需要用作煤入口 24的开口孔27。当一个或两个孔27不用作煤入口 24以将煤放入流化床干燥器12中时,孔27被封闭或用作排气出口(气体出口 30)。在每个干燥器模块106中设置孔27允许在装配流化床干燥器12是具有柔性的(即如果需要,可以在装配的最终阶段来进行设计改变)。来自于旁路气体回路52的旁路气体通过旁路气体入口 53进入流化床干燥器12。每个干燥器模块106典型地具有两个旁路气体入口 53,分别设置在干燥器模块 106的两侧上(在图5A中仅一个可见)。旁路气体入口 53可以在不需要旁路气体来降低流化床干燥器12的湿度的位置中被封闭。图5B示出图5A的上容纳部22a。上容纳部22a可以如图所示构造,并被航运至安装地点用于最终装配。由于容纳部22的L形构造,多个上容纳部22可以相互嵌套在一起并一次航运。嵌套所述部和将它们一起航运有助于降低运输成本。上容纳部22a包括左边缘112、右边缘114、底边缘116和中心边缘118。由于在安装地点进行装配,所以沿着边缘112、114、116和118进行焊接。图5E示出在干燥器模块106上进行焊接的区域(被标以剖面线的表面)。例如,上容纳部22a的左边缘112被焊接于端盖模块,而右边缘114被焊接于相邻的模块的上容纳部22的左边缘。底边缘116被焊接至中间容纳部20。中心边缘118被焊接至支撑杆110。图5C示出如图5A所示的干燥器模块106的气室部16、分配板18和中间容纳部 20。气室部16被隔开。一个或更多个壁120将气室部16分成两个或更多个隔间。每个隔间包括气体入口 28。图5C中示出的气室部16具有四个隔间和四个气体入口 28(分配板
1718挡住了两个隔间和两个气体入口 )。分配板18可以是一个单板或如图5C所示装配在一起的较小的板的网络。中间容纳部20包括孔122,所述孔122允许床热交换器32被容易地安装和移除。 床热交换器32被容易地安装和移除是有用的,这是因为流化床干燥器12可以与或不与中间容纳部20中的床热交换器32 —起操作。床热交换器32在图5C中没有示出在干燥器模块106中,但是在图5D中示出。在一实施例中,中间容纳部20包括一个或更多个轨道和滚子,以使得床热交换器32可以滚入或滚出它们在于燥器模块106和流化床干燥器12中的位置。轨道系统124(如图5D所示)可以包括支撑在分配板18上方的多个轨道。用于轨道系统124的支撑件可以由中间容纳部20和从轨道延伸至气室部16中的壁120的顶部的支撑件来提供。床热交换器32装备有或连接至与所述轨道接合的滚子,以使得床热交换器 32可以沿着所述轨道滚入和滚出流化床干燥器12内的位置。例如,轨道系统124可以具有两个轨道,床热交换器32可以具有四个滚子。更多的轨道和/或滚子也可以被使用。所述滚子可以是床热交换器32的一部分或轨道系统124的一部分(并允许床热交换器32滚到轨道系统124上)。床热交换器32和轨道系统124可以配置成使得床热交换器32像抽屉一样滚入和滚出流化床干燥器12。床热交换器32也可以与轨道系统124接合,以使得其从轨道系统124的轨道悬挂。轨道系统124可以包括附加的支撑机构,以使得在床热交换器32在流化床干燥器12中处于合适位置时,滚子不与轨道系统124或床热交换器32接合。这将减小轨道和滚子上的应力和磨损。轨道系统124允许床热交换器32更容易地从流化床干燥器上移除,以用于维修或更换。这允许对于床热交换器32的更容易和更安全的检修。气室部16和中间容纳部20包括左边缘126和右边缘128。中间容纳部20还包括顶边缘130。正如涉及上容纳部22的情况,在安装地点装配流化床干燥器12的过程中焊接沿着边缘126、128和130进行。例如,气室部16的左边缘126被焊接至端盖模块,而右边缘128被焊接至相邻的模块的气室部16的左边缘。中间容纳部20的左边缘126被焊接至端盖模块,而右边缘128被焊接至相邻的模块的中间容纳部20的左边缘。中间容纳部 20的顶边缘116被焊接至上容纳部22a和22b的底边缘116。图5D示出干燥器模块106的气室部16和中间容纳部20,其中床热交换器32处于中间容纳部20中的轨道系统124中的合适位置处。床热交换器32包括流体入口 132和流体出口 134,所述流体入口 132和流体出口 134分别允许热传递流体进入和排出床热交换器 32。床热交换器32被从煤入口 24下方的中间容纳部20移除以防止对于床热交换器32的加热管、板或线圈的损害。中间容纳部20的左下部示出煤入口 24可以位于其上方的示例。图6示出近乎于完整的流化床干燥器12。省去了端盖以示出流化床干燥器12的内部。流化床干燥器12包含五个干燥器模块106a-106e,它们被并排对齐并焊接在一起以密封干燥器12,以使得形成气密性密封。流化床干燥器12可以包含五个、十个、二十个或更多的模块,这依赖于煤干燥系统10的需要。支撑杆110延伸过流化床干燥器12的长度。 垂直的支撑件从支撑杆110向下延伸至气室部16的壁120,以提供附加的支撑。所有五个模块106是相同的。由于模块106包含比煤入口 24和气体出口操作所需要的孔更多的孔, 不使用的孔被密封。模块106提供用于配置煤入口 24和气体出口 30的所在位置的柔性。 如果必须的话,可以实现对于煤运输线或气体引导线的位置的最后的微小的改变。模块106可以适应于这些类型的修改方案。本发明提供一种颗粒物干燥系统和一种用于干燥颗粒物的方法。所述干燥系统和方法采用了闭环干燥设计来安全地和有效地干燥颗粒物,例如煤。湿颗粒物在干燥器中借助于流化气体被流化以将水分从颗粒物输送至流化气体。细颗粒和水蒸汽被从流化气体移除,因此其可以被回收和重新用于流化和干燥另外的颗粒物。氧气控制特征防止氧气进入干燥系统以减小当如煤等颗粒物被干燥时自燃的可能性。根据本发明,颗粒物可以在严格控制系统中存在的氧气的量的同时使用闭环系统进行有效地干燥。本发明还提供一种模块化干燥系统。干燥器模块可以构造成位于不同于安装地点的另一地点处,并被航运至安装地点和装配成完整的干燥系统。所述系统模块允许熟练的制造商在制造地点以其自己的装备来生产模块,而不一定将其运输到安装地点。这允许更高品质的产品和一致性系统的建立。更简便的干燥系统不具有所有这些能力。尽管本发明已经参照示例性实施例进行了描述,但是本领域普通技术人员应当理解,在不背离本发明的范围的情况下可以进行各种改变以及可以将其元件替代成等价物。 另外,在不背离本发明的基本范围的情况下,可以进行多种修改以适应于本发明的教导的特定的情形或材料。因此,本发明并不限于所公开的特定的实施例,而是包括落入到所附权利要求的保护范围内的所有实施例。
权利要求
1.一种干燥颗粒物的方法,所述方法包括如下步骤 将颗粒物输送至干燥器;使流化气体循环通过所述干燥器;加热在所述干燥器中的所述颗粒物以从所述颗粒物中移除水; 从所述干燥器中移除水蒸汽和流化气体; 从所述流化气体中移除细颗粒; 从所述流化气体中移除水蒸汽;在从所述流化气体中移除水蒸汽之后将所述流化气体再次引导至所述干燥器;和从所述干燥器中移除经过干燥的颗粒物。
2.根据权利要求1所述的方法,其中,从所述流化气体中移除的细颗粒物与从所述干燥器中移除的经过干燥的颗粒物汇合。
3.根据权利要求1所述的方法,其中,从所述颗粒物中移除1千克的水需要在约 2740kJ和约3260kJ之间的热能。
4.根据权利要求1所述的方法,其中,所述颗粒物是煤。
5.根据权利要求4所述的方法,其中,所述煤经由气间输送至所述干燥器,且其中所述气闸在煤放入过程中利用惰性气体清扫以防止氧气进入所述干燥器。
6.根据权利要求4所述的方法,其中,所述煤经由气间从所述干燥器移除,且其中所述气闸在煤移除过程中利用惰性气体清扫以防止氧气进入所述干燥器。
7.根据权利要求4所述的方法,其中,加热所述干燥器中的煤的步骤包括使用被加热的流化气体来加热所述煤。
8.根据权利要求4所述的方法,其中,加热所述干燥器中的煤的步骤包括使用位于所述干燥器中的热交换器来加热所述煤。
9.根据权利要求4所述的方法,其中,所述煤使用废热源在干燥器中被加热。
10.根据权利要求4所述的方法,其中,所述煤和所述流化气体在干燥器中被加热到约 15°C与约120°C之间。
11.根据权利要求4所述的方法,其中,经过干燥的煤的平均颗粒直径尺寸小于放入干燥器中的煤的平均颗粒直径尺寸的约50%。
12.—种控制闭环煤干燥系统中的氧气含量的方法,所述方法包括如下步骤将煤经由煤入口气间放入流化床干燥器中,并在煤放入过程中利用惰性气体清扫所述煤入口气间以防止氧气进入所述流化床干燥器;使流化气体循环通过所述流化床干燥器以从所述煤中移除水蒸汽; 从所述流化床干燥器中移除水蒸汽和流化气体;借助于灰尘收集器从所述流化气体中移除颗粒物,其中惰性气体被引导向所述灰尘收集器以防止氧气进入所述灰尘收集器;借助于冷凝器从所述流化气体移除水蒸汽;在从所述流化气体中移除水蒸汽之后借助于具有至少一个密封件的风扇使所述流化气体再次引导至所述流化床干燥器,其中惰性气体被引导至所述至少一个密封件以防止氧气进入;和经由煤出口气间从所述流化床干燥器移除经过干燥的煤,并在煤移除过程中利用惰性气体清扫所述煤入口气间以防止氧气进入所述流化床干燥器。
13.一种煤干燥系统,包括流化床干燥器,所述流化床干燥器包括煤入口,用于将煤输送至所述流化床干燥器,其中所述煤入口将煤输送至所述流化床干燥器中并在输送过程中接收惰性气体以防止氧气进入所述流化床干燥器; 气体入口,用于接收流化气体;热交换器,用于加热在流化床干燥器中的煤和流化气体; 气体出口,用于移除水蒸汽和流化气体;和煤出口,用于从所述流化床干燥器中移除煤,其中所述煤出口将煤输送出流化床干燥器,并在输送过程中接收惰性气体以防止氧气进入所述流化床干燥器;和与所述流化床干燥器流体连通的流化气体回路,所述流化气体回路包括 用于加热所述流化气体的热交换器; 旁路,用于将气体引导至所述流化床干燥器的上部;灰尘收集器,用于在流化气体已经排出所述流化床干燥器之后从所述流化气体中移除细颗粒物;冷凝器,用于从所述流化气体中移除水分;风扇,用于使流化气体循环通过所述流化气体回路,其中所述风扇具有密封件,惰性气体被引导至所述密封件以防止氧气进入所述流化气体回路中; 通风出口,用于从所述流化气体回路中移除气体;和补充气体入口,用于将流化气体添加到所述流化气体回路。
14.根据权利要求13所述的系统,其中所述流化床干燥器还包括位于所述气体入口和所述气体出口之间的挡板。
15.根据权利要求13所述的系统,其中所述流化气体回路的旁路包括用于在所述气体被引导至所述流化床干燥器的所述上部之前加热所述气体的热交换器。
16.根据权利要求13所述的系统,还包括用于监测流化气体中的氧气含量和一氧化碳含量的传感器。
17.根据权利要求13所述的系统,还包括用于监测所述流化床干燥器中的压力的压力传感器。
18.根据权利要求13所述的系统,还包括用于监测所述流化气体的相对湿度的湿度传感器。
19.根据权利要求13所述的系统,还包括 窥镜,用于观察所述流化床干燥器内的容装物。
20.根据权利要求13所述的系统,其中位于所述流化床干燥器中的热交换器与位于所述流化气体回路中的热交换器接收来自废热源的热能。
21.一种模块化流化床干燥器,包括第一干燥器模块,所述第一干燥器模块包括 气室部,所述气室部包括气体入口 ; 气体分配板部;中间容纳部,所述中间容纳部包括热交换器;和上容纳部,所述上容纳部包括 颗粒物入口 ;和气体出口 ;和第二干燥器模块,所述第二干燥器模块包括 气室部,所述气室部包括气体入口 ; 气体分配板部;中间容纳部,所述中间容纳部包括热交换器;和上容纳部,所述上容纳部包括 颗粒物入口 ;和气体出口 ;其中所述第一干燥器模块和所述第二干燥器模块被焊接,以使得所述第一和第二干燥器模块的气室部、所述第一和第二干燥器模块的中间容纳部、所述第一和第二干燥器模块的上容纳部以及所述第一和第二干燥器模块的气体分配板部被连接以形成所述模块化流化床干燥器。
22.根据权利要求21所述的模块化流化床干燥器,还包括 第一端盖,被焊接至所述第一干燥器模块;和第二端盖,被焊接至所述第二干燥器模块并具有颗粒物出口。
23.根据权利要求21所述的模块化流化床干燥器,其中所述第一或第二干燥器模块的颗粒物入口被封闭密封和不使用,且其中所述第一或第二干燥器模块的所述气体出口被封闭密封和不使用。
24.根据权利要求21所述的模块化流化床干燥器,其中所述第一干燥器模块和所述第二干燥器模块是相同的。
25.根据权利要求21所述的模块化流化床干燥器,其中所述第一和第二干燥器模块的中间容纳部中每一个还包括轨道系统,所述轨道系统包括至少两个轨道和至少四个滚子,其中所述热交换器与所述轨道系统接合以使得所述热交换器能够被滚入和滚出所述中间容纳部。
26.根据权利要求21所述的模块化流化床干燥器,还包括支撑杆,所述支撑杆被焊接至所述第一和第二干燥器模块的所述上容纳部以为所述模块化流化床干燥器提供支撑。
27.根据权利要求21所述的模块化流化床干燥器,其中所述模块化流化床干燥器包括在约5个和约20个之间的模块。
28.根据权利要求21所述的模块化流化床干燥器,其中所述第一干燥器模块和所述第二干燥器模块中的每一个在第一地点处独立地装配,并在第二地点处焊接在一起。
29.根据权利要求21所述的模块化流化床干燥器,其中所述第一干燥器模块的所述气室部、所述气体分配板部和所述中间容纳部在第一地点被装配,并在第二地点被焊接至所述上容纳部以形成所述第一干燥器模块。
全文摘要
一种干燥系统,包括流化床干燥器和流化气体回路。所述系统是闭环的,以使得用于干燥颗粒物的流化气体可以被重新调整和回收以流化和干燥另外的颗粒物。所述流化气体通过移除细颗粒物和水蒸汽来进行重新调整。所述干燥系统包括氧气控制特征,用于防止氧气进入所述系统。一种用于干燥颗粒物的方法包括借助于流化气体对干燥器中的颗粒物进行流化;加热所述颗粒物来移除水;从所述干燥器中移除水蒸汽和流化气体;从所述流化气体中移除粉末和水蒸汽,将所述流化气体重新循环至干燥器以流化另外的颗粒物和从所述干燥器移除经过干燥的颗粒物。模块化干燥系统降低在安装地点处所必需的建构量。
文档编号F26B3/10GK102177406SQ200980140412
公开日2011年9月7日 申请日期2009年8月12日 优先权日2008年8月12日
发明者乔纳森·N·奥尔, 托马斯·M·安德森, 查里斯·迈克尔·万斯卓姆 申请人:施维英生物泥公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1