一种立式降膜式闭式冷却塔的制作方法

文档序号:22449038发布日期:2020-10-09 18:22阅读:222来源:国知局
一种立式降膜式闭式冷却塔的制作方法

本实用新型涉及冷却塔技术领域,特指一种立式降膜式闭式冷却塔。



背景技术:

冷却塔是一种高效冷却设备,主要利用水的蒸发潜热带走工艺流体(通常为循环水)的热量,完成对工艺流体的冷却,同时实现了喷淋水的循环利用。对于闭式冷却塔,工艺流体在盘管内流动,通过管壁将热量传导到管外;与此同时,管外有喷淋水进行喷淋,在管的外壁形成水膜,在空气的作用下,通过喷淋蒸发,在管外发生传热、传质的热交换过程,从而实现热量传递。

管式蒸发冷却盘管与淋水填料作为闭式冷却塔的核心部件,其性能直接影响闭式冷却塔的冷却效果。冷却塔中淋水填料的作用是通过增大水和空气的接触表面积,延长接触时间,将与盘管内流体换热而升温的喷淋水进一步冷却,提高冷却塔的效率。现有的冷却塔,大多采用水平盘管式换热器作为换热设备,盘管大多采用光滑金属圆管,但其换热效率相对较低且材料消耗较多,造价较高,这些因素使得它的使用和推广在一定程度上受到限制。

在现有的水平盘管冷却塔中,喷淋水与光滑圆管碰撞换热,当喷淋水流量较大时,盘管容易震动,并且碰撞噪声较大;喷淋水自上而下流动,管内冷却水水平流动,两者呈交错流动;另外,由于盘管大多采用正三角形叉排方式布置,空气流道较小,阻力较大,并且迎风侧容易结垢,影响换热效果。

可见,现有技术中的冷却塔存在以下不足:

1、现有的盘管大多采用正三角形叉排方式布置,空气流道较小,阻力较大,并且迎风侧容易结垢,而且喷淋水自上而下流动,管内冷却水水平流动,两者呈交错流动,影响换热效果。

2、现有的盘管一般为光滑圆管,当喷淋水流量较大时,盘管容易震动,并且碰撞噪声较大。



技术实现要素:

本实用新型的发明目的在于:为了解决现有技术中所存在的问题,本实用新型提供了一种立式降膜式闭式冷却塔。

为了解决现有技术中所存在的问题,本实用新型采用以下技术方案:

一种立式降膜式闭式冷却塔,包括有冷却塔主体,所述冷却塔主体内设置有换热器和喷淋系统,所述喷淋系统用于向所述换热器喷淋水,所述喷淋系统包括有喷淋装置,所述喷淋装置置于所述换热器上方;所述换热器包括有立式设置的进口集管和出口集管,所述进口集管和所述出口集管之间竖向设置有若干片立式蛇形盘管,每片所述立式蛇形盘管的进口和出口分别与所述进口集管和所述出口集管相连接。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,每片所述立式蛇形盘管由多根扭曲管盘状组成,相邻的两根扭曲管之间的中心距与所述扭曲管管外长轴距离相等时,所述两根扭曲管之间存在若干个接触点。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述换热器包括有第一进口集管、第二进口集管和出口集管,所述第一进口集管和所述第二进口集管置于所述换热器的下部,所述出口集管置于所述换热器的上部,所述第一进口集管和所述出口集管之间设置有第一立式蛇形盘管,所述第二进口集管和所述出口集管之间设置有第二立式蛇形盘管,所述第一立式蛇形盘管和所述第二立式蛇形盘管对称设置,并分别连接在所述出口集管的左右两侧。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述换热器包括有第三进口集管、第四进口集管和出口集管,所述出口集管置于所述换热器的下部,所述第三进口集管和所述第四进口集管置于所述换热器的上部,所述第三进口集管和所述出口集管之间设置有第三立式蛇形盘管,所述第四进口集管和所述出口集管支架设置有第四立式蛇形盘管,所述第三立式蛇形盘管和所述第四立式蛇形盘管对称设置,并分别连接在所述出口集管的左右两侧。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述第三进口集管和所述第四进口集管的出口均与所述出口集管的上端相连接。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述喷淋系统还包括有置于所述冷却塔主体底部的集水盘和分别连接所述集水盘和所述喷淋装置的水管,所述喷淋装置和所述集水盘之间还连接有水泵。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述冷却塔主体分为上层和下层,所述上层和所述下层之间设置有可漏水的隔板,所述隔板的上面设置有所述换热器,所述隔板的下面和所述集水盘之间设置有第四淋水填料。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述隔板的下面还设置有下层挡水填料,所述下层挡水填料置于所述第四淋水填料的一侧上,且所述下层挡水填料设置在所述隔板的下面。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述冷却塔主体还包括有上层挡水填料,所述上层挡水填料置于所述隔板的上面,且所述所述挡水填料置于所述换热器的一侧上。

作为本实用新型立式降膜式闭式冷却塔的技术方案的一种改进,所述冷却塔主体包括有进风口和出风口,所述进风口置于所述冷却塔主体的侧面上和所述喷淋装置的上方;所述冷却塔主体还包括有风机,风机置于冷却塔主体的上部,且置于出风口处。

与现有技术相比,本实用新型的有益效果:

1、在本实用新型中,由于进口集管和出口集管立式设置,且进口集管和出口集管之间竖向设置有若干片立式蛇形盘管,在喷淋的时候,喷淋水的方向和立式蛇形盘管的方向相一致,减少因为风水逆向在换热管迎风面形成干点而结垢的可能性,以及实现依靠循环空气的驱动,水膜的流动速度加快,在换热管表面容易形成湍流状态,使得喷淋水与管内冷却介质的换热效果较佳,解决了现有技术中所存在的由于盘管大多采用正三角形叉排方式布置,空气流道较小,阻力较大,并且迎风侧容易结垢,影响换热效果的问题的问题。

2、由于立式蛇形盘管由多根扭曲管盘状组成,当相邻扭曲管之间的中心距与其管外长轴相等时,相邻扭曲管之间会存在若干个接触点,通过这些接触点起到相互支撑的作用,可以有效防止换热管由于喷淋水和高速气流略过而产生的振动,从而可以提高管外空气的流速。

附图说明

图1为本实用新型的第一个实施例的结构示意图;

图2为图1的换热器的结构示意图;

图3为本实用新型的第一个实施例的结构示意图;

图4为图1的换热器的结构示意图;

图5为本实用新型的第一个实施例的结构示意图;

图6为图1的换热器的结构示意图;

图7为本实用新型的第一个实施例的结构示意图;

图8为图1的换热器的结构示意图;

图9为现有技术中换热器设置盘管的示意图。

附图标记说明:1-冷却塔主体;2-换热器;3-喷淋装置;4-进口集管;5-出口集管;6-立式蛇形盘管;7-第一进口集管;8-第二进口集管;9-第一立式蛇形盘管;10-第二立式蛇形盘管;11-第三进口集管;12-第四进口集管;13-第三立式蛇形盘管;14-第四立式蛇形盘管;15-第一淋水填料;16-第二淋水填料;17-第三淋水填料;18-第四淋水填料;19-集水盘;20-水管;21-水泵;22-隔板;23-上层;24-下层;25-上层挡水填料;26-下层挡水填料;27-风机。

具体实施方式

为使本实用新型的发明目的、技术方案和有益效果更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。

如图1所示,一种立式降膜式闭式冷却塔,包括有冷却塔主体1,冷却塔主体1内设置有换热器2和喷淋系统,喷淋系统用于向换热器2喷淋水。喷淋系统包括有喷淋装置3,喷淋装置3置于换热器2的上方。

换热器2包括有立式设置的进口集管4和出口集管5,进口集管4和出口集管5之间竖向设置有若干片立式蛇形盘管6,每片立式蛇形盘管6的进口和出口分别与进口集管4和出口集管5相连接。

由于若干片相互平行的立式蛇形盘管6立式设置在进口集管4和出口集管5之间,且由于喷淋系统置于换热器2上方,当喷淋系统向换热器2喷淋水时,水顺着换热器2外表面从上往下流动,在换热器2外表面形成水膜。当水膜的方向和空气流动的方向一致时,同向流动减少因为风水逆向在换热管迎风面形成干点而结垢的可能性。还由于水膜与循环空气流动方向一致,依靠循环空气的驱动,水膜的流动速度加快,在换热器2外表面容易形成湍流状态,因而喷淋水在换热管表面的边界层较薄,使得喷淋水与管内冷却介质的换热效果较佳,可以节约喷淋水使用量,因此喷淋水泵21功率可以降低,使得闭式冷却塔整体经济、换热效果更好,节省换热器2体积、重量和耗材。同时,由于若干片立式蛇形盘管6立式设置,解决了现有技术中所存在的由于盘管大多采用正三角形叉排方式布置,空气流道较小,阻力较大,并且迎风侧容易结垢,影响换热效果的问题。喷淋装置3的结构如常规结构,故在此不再赘述。

在本实用新型中,冷却塔主体1包括有进风口和出风口,进风口置于冷却塔主体1的侧面上和喷淋装置3的上方,出风口置于进风口的旁边,当空气从进风口进入到冷却塔主体1中后,空气顺着换热器2的方向流动,继而流动至出风口排出,完成一次空气循环。优选的,冷却塔主体1还包括有风机27,风机27置于冷却塔主体1的上部,且置于出风口处,可以通过风机27加快立式降膜式闭式冷却塔内的空气流动的速度。

每片立式蛇形盘管6由多根扭曲管盘状组成,相邻的两根扭曲管之间的中心距与扭曲管管外长轴距离相等时,两根扭曲管之间存在若干个接触点。由于扭曲管横截面为椭圆形状,当相邻扭曲管之间的中心距与其管外长轴相等时,相邻扭曲管之间会存在若干个接触点,通过这些接触点起到相互支撑的作用,可以有效防止换热管由于喷淋水和高速气流略过而产生的振动,从而可以提高管外空气的流速。优选的,相邻的两片立式蛇形盘管6之间存在间距,间距的范围为5-100mm,可以更有效地避免相邻的扭曲管之间的振动,当相邻的两片立式蛇形盘管6之间距间距为5-100mm时,风速在正常范围内,空气阻力最小。更优选的,由于若干片立式蛇形盘管6平行布置,可以根据立式降膜式闭式冷却塔的大小合理设置立式蛇形盘管6的数量,根据空气流速进行设计,当上述距离较大时,可以在两者之间插入少量填料,防止喷淋水直接滴落接水盘中,同时还可以增大喷淋水与循环空气的接触面积,有效冷却其温度。

作为本实用新型的第一个实施例,如图1和图2所示,换热器2包括有一条进口集管4和一条出口集管5,一条进口集管4置于换热器2的上部,一条出口集管5置于换热器2的下部,若干片立式蛇形盘管6竖向且相互平行地设置在进口集管4和出口集管5之间,由于若干片立式蛇形盘管6竖向且相互平行地设置在进口集管4和出口集管5之间,即若干片立式蛇形盘管6与喷淋水流动的方向相一致,不仅解决了现有技术中所存在的由于盘管大多采用正三角形叉排方式布置,空气流道较小,阻力较大,并且迎风侧容易结垢,影响换热效果的问题,还通过空气流动加快了喷淋水流动的速度,依靠空气的驱动,加快了水膜的流动速度,水膜的流动速度较快,在换热器2的表面容易形成湍流状态,因而喷淋水在换热管表面的边界层较薄,使得喷淋水与管内冷却介质的换热效果较佳,可以节约喷淋水使用量,因此喷淋水泵21功率可以降低,使得立式降膜式闭式冷却塔整体经济、换热效果更好。

作为本实用新型的第二个实施例,如图3和图4所示,换热器2包括有第一进口集管7、第二进口集管8和出口集管5,第一进口集管7和第二进口集管8置于换热器2的下部,出口集管5置于换热器2的上部,第一进口集管7和出口集管5之间设置有第一立式蛇形盘管9,第二进口集管8和出口集管5之间设置有第二立式蛇形盘管10,第一立式蛇形盘管9和第二立式蛇形盘管10对称设置,并分别连接在出口集管5的左右两侧,可以适用于工艺流体流量较大的场合,通过两立式蛇形盘管6的进口分别与两进口集管4相连接,有利于降低单片立式蛇形盘管6的工艺流体的流速,从而减小摩擦阻力。同时,通过左右对称的方式布置第一立式蛇形盘管9和第二立式蛇形盘管10,有利于减少整个换热器2的长度,从而减少立式降膜式闭式冷却塔外形尺寸,减少占地面积。第一立式蛇形盘管9和第二立式蛇形盘管10之间存在间距,间距中放置有第一淋水填料15,可以增大水和空气的接触表面积,延长接触时间,将与第一立式蛇形盘管9和第二立式蛇形盘管10内工艺流体换热而升温的喷淋水进一步冷却,提高冷却塔的效率。

作为本实用新型的第三个实施例,如图5和图6所示,换热器2包括有第三进口集管11、第四进口集管12和出口集管5,出口集管5置于换热器2的下部,第三进口集管11和第四进口集管12置于换热器2的上部,第三进口集管11和出口集管5之间设置有第三立式蛇形盘管13,第四进口集管12和出口集管5支架设置有第四立式蛇形盘管14,第三立式蛇形盘管13和第四立式蛇形盘管14对称设置,并分别连接在出口集管5的左右两侧。本实施例与第二个实施例相比,区别在于该立式降膜式闭式冷却塔用换热器2的进出口方向相反,且左右两立式蛇形盘管6中间具有一定的空隙,此空隙大小可调,通过在此空隙中安置填料,可以增大喷淋水与循环空气的接触面积,有效冷却其温度。第三立式蛇形盘管13和第四立式蛇形盘管14之间存在间距,间距中放置有第二淋水填料16,可以增大水和空气的接触表面积,延长接触时间,将与第三立式蛇形盘管13和第四立式蛇形盘管14内工艺流体换热而升温的喷淋水进一步冷却,提高冷却塔的效率。同时,喷淋水不会被出口集管5阻挡,直接喷淋在淋水填料中,可以增大喷淋水与循环空气的接触面积,有效冷却其温度。

作为本实用新型的第四个实施例,如图7和图8所示,第三立式蛇形盘管13和第四立式蛇形盘管14的出口均与出口集管5的上端相连接。在上述的第三个实施例的基础上,第三立式蛇形盘管13和第四立式蛇形盘管14相靠近,且第三立式蛇形盘管13和第四蛇形盘均与出口集管5的上端连接。详细地说,第三立式蛇形盘管13的一侧与第四立式蛇形盘管14的一侧相接触,第三立式蛇形盘管13的出口和第四立式蛇形盘管14的出口均与出口集管5的上端相连接。本实施例与第三个实施例相比,区别在于左右立式蛇形盘管6的出口全部位于出口集管53的最高处,实施例三中存在的缝隙没有了,使换热器2宽度更小。由于第三立式蛇形盘管13的一侧和第四立式蛇形盘管14的一侧相接触,第三立式蛇形盘管13的另一侧和第四立式蛇形盘管14的另一侧放置有第三淋水填料17,可以增大水和空气的接触表面积,延长接触时间,提高冷却塔的效率。

喷淋系统还包括有集水盘19、水管20和水泵21。集水盘19置于冷却塔主体1底部,水管20分别连接集水盘19和喷淋装置3,喷淋装置3和集水盘19之间还连接有水泵21。在使用的时候,通过喷水装置向换热器2喷淋水,集水盘19在底部把经过换热器2的水收集起来,并通过水管20和水泵21把水输送到喷淋装置3中,集水盘19中的冷却水在水泵21的驱动下,流经水管20和喷淋装置3均匀地喷淋到换热器2表面,吸收管内工艺流体的热量而升温,从换热器2流出的喷淋的水在淋水填料表面与空气进行热质交换,部分水蒸气被空气带走,喷淋的水温度降低,最后返回集水盘19中,完成一次水循环。同时,空气中夹带的液滴被挡水填料阻挡重新返回集水盘19中。

冷却塔主体1分为上层23和下层24,上层23和下层24之间设置有可漏水的隔板22,隔板22的上面设置有上述的换热器2,隔板22的下面和集水盘19之间设置有第四淋水填料18,第四淋水填料18可用于通过热湿交换把喷淋水的热量带走,使喷淋水恢复到原来状态。

隔板22的下面还设置有下层挡水填料26,下层挡水填料26置于第四淋水填料18的一侧上,且下层挡水填料26设置在隔板22的下面。冷却塔主体1还包括有上层挡水填料25,上层挡水填料25置于隔板22的上面,且挡水填料置于换热器2的一侧上。上层挡水填料25和下层挡水填料26均用于阻挡空气带走的水滴,减少耗水量。

基于本实用新型的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1