基于距离实现空调节能控制的方法、装置及空调的制作方法
【专利摘要】本发明公开了一种基于距离实现空调节能控制的方法、装置及空调,所述方法包括:空调运行,获取实时室内环境温度和设定目标温度,计算所述实时室内环境温度与所述设定目标温度之间的温差,作为实时温差,根据所述实时温差进行室温PID运算,获得第一频率;实时检测空调所在室内的热源并确定所述热源与空调之间的实时距离,根据已知的距离与风速的对应关系确定与所述实时距离对应的风速并作为实时风速,根据已知的风速与频率的对应关系获取与所述实时风速对应的频率,作为第二频率;选择所述第一频率与所述第二频率中的较小值作为目标频率,根据所述目标频率控制空调的压缩机运行。应用本发明,可以实现空调的节能控制。
【专利说明】
基于距离实现空调节能控制的方法、装置及空调
技术领域
[0001]本发明属于空气调节技术领域,具体地说,是涉及调节室内空气的空调设备,更具体地说,是涉及基于距离实现空调节能控制的方法、装置及空调。
【背景技术】
[0002]空调夏天可以制冷、冬天可以制热,能够调节室内温度达到冬暖夏凉,为用户提供舒适的环境。在空调为用户提供舒适性的同时,伴随而来的是与高能耗的矛盾。能量消耗不仅增加了用户经济负担,也与节能环保的趋势相背。因此,如何在利用空调为用户提供舒适环境的同时降低空调的能耗,是目前空调器厂家一直在努力解决的问题。
[0003]现有变频空调能够根据室内环境温度和设定目标温度来控制压缩机运行频率,达到节能降耗的目的。但是,单纯根据温度控制压缩机运行频率的控制方式并不能实现更优的节能控制,尤其是在相同温度、不同风速运行的情况下,难以达到理想的节能控制。
【发明内容】
[0004]本发明的目的是提供一种基于距离实现空调节能控制的方法、装置及空调,实现空调的节能控制。
[0005]为实现上述发明目的,本发明提供的基于距离实现空调节能控制的方法采用下述技术方案予以实现:
一种基于距离实现空调节能控制的方法,所述方法包括:空调运行,获取实时室内环境温度和设定目标温度,计算所述实时室内环境温度与所述设定目标温度之间的温差,作为实时温差,根据所述实时温差进行室温PID运算,获得第一频率;实时检测空调所在室内的热源并确定所述热源与空调之间的实时距离,根据已知的距离与风速的对应关系确定与所述实时距离对应的风速并作为实时风速,根据已知的风速与频率的对应关系获取与所述实时风速对应的频率,作为第二频率;选择所述第一频率与所述第二频率中的较小值作为目标频率,根据所述目标频率控制空调的压缩机运行。
[0006]如上所述的方法,所述检测空调所在室内的热源并确定所述热源与空调之间的实时距离,具体包括:
控制空调中的红外传感器进行转动扫描,获得扫描范围内的温度信息,根据所述温度信息获得热源温度曲线;
根据所述热源温度曲线确定空调所在室内的热源及所述热源与空调之间的实时距离。
[0007]优选的,所述风速与频率的对应关系中,一个风速对应着多个频率,所述第二频率为所述实时风速对应的最大频率。
[0008]如上所述的方法,若所述第一频率与所述第二频率中的较小值大于设定最高频率,则将所述设定最高频率作为所述目标频率,根据所述目标频率控制空调的压缩机运行。
[0009]为实现前述发明目的,本发明提供的基于距离实现空调节能控制的装置采用下述技术方案予以实现: 一种基于距离实现空调节能控制的装置,所述装置包括:
室内环境温度获取单元,用于获取实时室内环境温度;
设定目标温度获取单元,用于获取设定目标温度;
实时温差获取单元,用于计算所述实时室内环境温度和所述设定目标温度之间的温差,作为实时温差;
室温PID运算单元,用于根据所述实时温差进行PID运算,获得并输出第一频率;
热源确定及距离获取单元,用于实时检测空调所在室内的热源并确定所述热源与空调之间的实时距离;
实时风速获取单元,用于根据已知的距离与风速的对应关系获取与所述实时距离对应的风速,并作为实时风速;
第二频率获取单元,用于根据已知的风速与频率的对应关系获取与所述实时风速对应的频率,作为第二频率;
压缩机频率获取与控制单元,用于选择所述第一频率与所述第二频率中的较小值作为目标频率,根据所述目标频率控制空调的压缩机运行。
[0010]如上所述的装置,所述热源确定及距离获取单元包括:
红外传感器,设置在空调中;
转动机构,用于驱动所述红外传感器转动;
热源确定及距离获取子单元,用于获取所述红外传感器扫描范围内的温度信息,根据所述温度信息获得热源温度曲线,根据所述热源温度曲线确定空调所在室内的热源及所述热源与空调之间的实时距离。
[0011]优选的,所述风速与频率的对应关系中,一个风速对应着多个频率,所述第二频率获取单元获取的所述第二频率为所述实时风速对应的最大频率。
[0012]如上所述的装置,若所述第一频率与所述第二频率中的较小值大于设定最高频率,所述压缩机频率获取与控制单元选择将所述设定最高频率作为所述目标频率,根据所述目标频率控制空调的压缩机运行。
[0013]此外,本发明还提供了一种具有上述空调节能控制装置的空调。
[0014]与现有技术相比,本发明的优点和积极效果是:
本发明中,不仅根据室内环境温度与设定目标温度之间的温差进行室温PID运算,得到第一频率;同时,还根据热源与空调间的距离控制风速,并根据风速确定所对应的频率,作为第二频率;然后,选择第一频率和第二频率中的较小值作为目标频率,控制空调压缩机运行。也即,在对压缩机进行频率控制时,综合考虑了温差因素和风速因素间的配合,使得压缩机运行时驱动冷媒所产生的换热量与该过程中风机运转驱动的气流所形成的热交换量相匹配,避免了压机频率过高或风机转速过高所产生的无谓能耗,实现空调的节能运行。而且,风速根据热源与空调间的距离来控制,提高了用户的舒适度,且能够在低风速时降低噪
■~>V.曰O
[0015]结合附图阅读本发明的【具体实施方式】后,本发明的其他特点和优点将变得更加清
/H- ο
【附图说明】
[0016]图1是本发明基于距离实现空调节能控制的方法一个实施例的流程图;
图2是本发明基于距离实现空调节能控制的装置一个实施例的结构框图。
【具体实施方式】
[0017]为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
[0018]请参见图1,该图所示为本发明基于距离实现空调节能控制的方法一个实施例的流程图。
[0019]如图1所示,该实施例基于距离实现空调节能控制的方法采用具有下述步骤的流程来实现:
步骤11:空调运行,获取实时室内环境温度、设定目标温度,同时,实时检测空调所在室内的热源并确定热源与空调间的实时距离。
[0020]具体来说,在空调开机运行时,实时检测空调所处房间的室内环境温度,实时检测的温度作为实时室内环境温度。所谓的实时室内环境温度,是指在空调开机运行后,根据设定温度采样频率不断获取并更新的室内环境温度。实时室内环境温度的获取可以采用现有技术来实现。例如,通过设置在空调进风口或靠近空调进风口处的温度传感器检测进风温度,空调的主控板通过采集温度传感器的输出信号并进行处理,从而获取到进风温度,并将该温度作为实时室内环境温度。
[0021 ]设定目标温度是指希望室内环境所能达到的目标温度,该设定目标温度可以是用户通过遥控器或空调控制终端或空调面板所输入的一个温度值,也可以是空调主控板自动调用的一个设定值。不管该温度值采用哪种方式设定,均可被空调主控板获取到。
[0022]空调开机运行后,除了实时检测空调所处房间的实时室内环境温度,还要实时检测空调所在室内的热源,并确定热源与空调间的实时距离。所谓的实时距离,是在在空调开机运行后,根据设定采样频率不断获取并更新的室内热源与空调之间的距离。热源的检测及热源与空调间的距离的确定可以采用现有技术来实现。例如,通过在空调上设置红外阵列传感器或普通的红外传感器,结合一定的算法来计算。
[0023]作为优选的实施方式,检测空调所在室内的热源并确定热源与空调之间的实时距离,采用下述技术手段来获取,具体包括:
控制空调中的红外传感器进行转动扫描,获得扫描范围内的温度信息,根据温度信息获得热源温度曲线。
[0024]具体而言,可以在空调上设置红外传感器及转动机构,空调的控制器控制转动机构驱动红外传感器在较大的角度范围内转动。转动的红外传感器对扫描角度范围内的区域进行扫描,实时采集扫描区域的温度信息。该温度信息反映的是红外传感器当前采集的扫描范围内物体的辐射强度,辐射强度越强,则表示红外传感器采集的温度值越高。因此,,在红外传感器的扫描过程中,扫描到热源前到热源中心再到扫描到热源后的过程,红外传感器采样的温度值是从低到高再到低的一个过程,此为扫描到一个热源的过程。空调接收红外传感器采样的温度信息,通过对红外传感器采集的温度信息即辐射强度的分析生成室内热源的温度曲线。
[0025]通过转动结构驱动红外传感器转动,所以只需要单点红外传感器即可实现整个空间范围的温度扫描,不需要阵列红外传感器,数据处理相对比较简单,耗费时间短。
[0026]然后,根据热源温度曲线确定空调所在室内的热源及热源与空调之间的实时距离。
[0027]具体地,空调器通过分析温度曲线中的波峰值,波峰值对应热源的辐射强度,根据波峰值可以判断当前环境中热源的个数,其中,波峰值的坐标值即为热源的坐标值即位置。而且,红外传感器采样的温度值与物体的距离远近有关系,物体距离空调越远时,红外传感器采集的温度值越低,反之,越接近物体真实温度值。具体地,可以根据温度曲线中温度最高值与最低值之间的差值确定热源与空调器之间的距离,根据扫描周期中红外传感器采集的温度值的最大值和最小值的差值能够判断当前扫描的热源与背景的相对距离,差值越小,说明热源与背景接近,即热源与空调较远。
[0028]步骤12:计算实时室内环境温度与设定目标温度之间的温差,作为实时温差,根据实时温差进行室温PID运算,获得第一频率;根据已知的距离与风速的对应关系确定与实时距离对应的风速并作为实时风速,根据已知的风速与频率的对应关系获取与实时风速对应的频率,作为第二频率。
[0029]主控板在获取到实时室内环境温度和设定目标温度之后,计算两者之间的温差,作为实时温差。然后,根据实时温差进行室温PID运算,获得对压缩机进行控制的一个频率,并将该频率定义为第一频率。其中,根据温差进行室温PID运算、获得对压缩机进行控制的目标频率的具体方法可以采用现有技术来实现,在此不作详细阐述和限定。
[0030]同时,还根据已知的距离与风速的对应关系获取与实时距离对应的风速,作为实时风速。具体来说,在空调主控板的存储器中预先存储有距离与风速的对应关系,其中,距离是指室内热源与空调之间的距离,风速是指空调室内机风扇运转的速度。对于不同的距离,对应有不完全相同或完全不相同的风速,且距离越大,风速越低。而且,优选的,距离与风速的对应关系是由研发人员在理论指导下、经过大量的空调运转模拟实验所得到的,能够尽可能兼顾空调送风舒适性与节能性。因此,在获得实时距离之后,从距离与风速的对应关系中先查找到实时距离,然后获取该实时距离所对应的风速,并将该风速作为实时风速。然后,根据已知的风速与频率的对应关系获取与实时风速对应的频率,作为第二频率。
[0031]具体而言,在空调主控板的存储器中还预先存储有风速与频率的对应关系,其中,风速是指空调室内机风扇运转的速度,频率是指压缩机的运行频率。对于不同的风速,对应有不同的频率。而且,优选的,风速与频率的对应关系是由研发人员在理论指导下、经过大量的空调运转模拟实验所得到的,能够尽可能兼顾空调送风舒适性与节能性。建立风速与频率的对应关系的出发点为:对于空调系统而言,如果室内机风扇转速一定,风机运转所驱动的气流一定,也即,风量一定;风量一定,其经过室内机换热器时与换热器形成的热交换能力一定。如果压缩机运行频率过小,冷媒循环量过少,会降低室内换热器的换热能力,使得室内送风温度不适宜。而若压缩机运行频率过大,冷媒循环量大,室内换热器换热能力大,但由于一定内机转速下产生的风量过小,会导致热交换器换热能效下降,且压缩机大功率运行浪费能耗。因此,有必要对风速与频率作对应和限定。
[0032]因此,在获得实时风速之后,从风速与频率的对应关系中先查找到实时风速,然后获取该实时风速所对应的频率,并将该频率作为第二频率。
[0033]而且,一个风速可能对应一个频率,也可能对应多个频率。如果一个风速对应着多个频率,也即一个实时风速对应有多个频率,此情况下,选择多个频率中的最大频率作为第二频率。
[0034]步骤13:选择第一频率与第二频率中的较小值作为目标频率,根据目标频率控制空调的压缩机运行。
[0035]具体来说,比较步骤12得到的第一频率和第二频率,选择两者中的较小值,作为目标频率,根据目标频率控制空调的压缩机运行。
[0036]采用上述方法对空调压缩机频率进行控制,综合考虑了温差因素和风速因素间的配合,使得压缩机运行时驱动冷媒所产生的换热量与该过程中风机运转驱动的气流所形成的热交换量相匹配,避免了压机频率过高或风机转速过高所产生的无谓能耗,实现空调的节能运行。而且,风速根据热源与空调间的距离来控制,也提高了送风的舒适性和用户的舒适度。
[0037]作为更优选的实施方式,空调主控板的存储器中预先存储有一个设定最高频率,如果步骤13判定第一频率和第二频率中的较小值大于设定最高频率,则将设定最高频率作为目标频率。也就是说,不管是根据哪个频率控制压缩机,均保证压缩机的运行频率不超过设定最高频率。
[0038]请参见图2,该图示出了本发明基于距离实现空调节能控制的装置一个实施例的结构框图。
[0039]如图2所示,该实施例的空调节能控制装置所包含的结构单元及其功能如下:
室内环境温度获取单元21,用于获取实时室内环境温度。
[0040]设定目标温度获取单元22,用于获取设定目标温度。
[0041]实时温差获取单元23,用于计算室内环境温度获取单元21输出的实时室内环境温度和设定目标温度获取单元22获取的设定目标温度之间的温差,并作为实时温差。
[0042]室温PID运算单元24,用于根据实时温差获取单元23输出的实时温差进行PID运算,获得并输出第一频率。
[0043]热源确定及距离获取单元25,用于实时检测空调所在室内的热源并确定热源与空调之间的实时距离。
[0044]实时风速获取单元26,用于根据已知的距离与风速的对应关系获取与热源确定及距离获取单元25输出的实时距离对应的风速,并作为实时风速。
[0045]第二频率获取单元27,用于根据已知的风速与频率的对应关系获取与实时风速获取单元26输出的实时风速对应的频率,并作为第二频率。
[0046]压缩机频率获取与控制单元28,用于选择室温PID运算单元24输出的第一频率与第二频率获取单元27输出的第二频率中的较小值作为目标频率,并根据目标频率控制空调的压缩机运行。
[0047]热源确定及距离获取单元25可以采用现有技术中能够检测热源并确定距离的结构来实现。作为优选的实施方式,热源确定及距离获取单元25采用下述结构来实现:
包括:
红外传感器,设置在空调中;
转动机构,用于驱动红外传感器转动;
热源确定及距离获取子单元,用于获取红外传感器扫描范围内的温度信息,根据温度信息获得热源温度曲线,根据热源温度曲线确定空调所在室内的热源及热源与空调之间的实时距离。
[0048]作为优选的实施方式,风速与频率的对应关系中,一个风速可对应着多个频率。此情况下,第二频率获取单元27获取的第二频率为实时风速对应的最大频率。
[0049]作为更优选的实施方式,若第一频率与第二频率中的较小值大于设定最高频率,则压缩机频率获取与控制单元28选择将设定最高频率作为目标频率,并根据目标频率控制空调的压缩机运行。
[0050]上述装置中的各结构单元运行相应的软件程序,并按照图1的流程执行空调节能控制,实现空调的节能运行。
[0051]而且,图2的空调控制装置可以应用在空调中,形成具有节能运行功能的空调。
[0052]以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。
【主权项】
1.一种基于距离实现空调节能控制的方法,其特征在于,所述方法包括:空调运行,获取实时室内环境温度和设定目标温度,计算所述实时室内环境温度与所述设定目标温度之间的温差,作为实时温差,根据所述实时温差进行室温PID运算,获得第一频率;实时检测空调所在室内的热源并确定所述热源与空调之间的实时距离,根据已知的距离与风速的对应关系确定与所述实时距离对应的风速并作为实时风速,根据已知的风速与频率的对应关系获取与所述实时风速对应的频率,作为第二频率;选择所述第一频率与所述第二频率中的较小值作为目标频率,根据所述目标频率控制空调的压缩机运行。2.根据权利I所述的方法,其特征在于,所述检测空调所在室内的热源并确定所述热源与空调之间的实时距离,具体包括: 控制空调中的红外传感器进行转动扫描,获得扫描范围内的温度信息,根据所述温度信息获得热源温度曲线; 根据所述热源温度曲线确定空调所在室内的热源及所述热源与空调之间的实时距离。3.根据权利要求1所述的方法,其特征在于,所述风速与频率的对应关系中,一个风速对应着多个频率,所述第二频率为所述实时风速对应的最大频率。4.根据权利要求1至3中任一项所述的方法,其特征在于,若所述第一频率与所述第二频率中的较小值大于设定最高频率,则将所述设定最高频率作为所述目标频率,根据所述目标频率控制空调的压缩机运行。5.一种基于距离实现空调节能控制的装置,其特征在于,所述装置包括: 室内环境温度获取单元,用于获取实时室内环境温度; 设定目标温度获取单元,用于获取设定目标温度; 实时温差获取单元,用于计算所述实时室内环境温度和所述设定目标温度之间的温差,作为实时温差; 室温PID运算单元,用于根据所述实时温差进行PID运算,获得并输出第一频率; 热源确定及距离获取单元,用于实时检测空调所在室内的热源并确定所述热源与空调之间的实时距离; 实时风速获取单元,用于根据已知的距离与风速的对应关系获取与所述实时距离对应的风速,并作为实时风速; 第二频率获取单元,用于根据已知的风速与频率的对应关系获取与所述实时风速对应的频率,作为第二频率; 压缩机频率获取与控制单元,用于选择所述第一频率与所述第二频率中的较小值作为目标频率,根据所述目标频率控制空调的压缩机运行。6.根据权利要求5所述的装置,其特征在于,所述热源确定及距离获取单元包括: 红外传感器,设置在空调中; 转动机构,用于驱动所述红外传感器转动; 热源确定及距离获取子单元,用于获取所述红外传感器扫描范围内的温度信息,根据所述温度信息获得热源温度曲线,根据所述热源温度曲线确定空调所在室内的热源及所述热源与空调之间的实时距离。7.根据权利要求5所述的装置,其特征在于,所述风速与频率的对应关系中,一个风速对应着多个频率,所述第二频率获取单元获取的所述第二频率为所述实时风速对应的最大频率。8.根据权利要求5至7中任一项所述的装置,其特征在于,若所述第一频率与所述第二频率中的较小值大于设定最高频率,所述压缩机频率获取与控制单元选择将所述设定最高频率作为所述目标频率,根据所述目标频率控制空调的压缩机运行。9.一种空调,其特征在于,所述空调包括有上述权利要求5至8中任一项所述的基于距离实现空调节能控制的装置。
【文档编号】F24F11/00GK106052014SQ201610354106
【公开日】2016年10月26日
【申请日】2016年5月25日
【发明人】刘聚科, 许国景, 陈健琪, 矫立涛, 雷永锋, 程永甫
【申请人】青岛海尔空调器有限总公司