使用共沸流体预冷却的工业气体液化的制作方法

文档序号:4778598阅读:199来源:国知局
专利名称:使用共沸流体预冷却的工业气体液化的制作方法
技术领域
本发明总体上涉及工业气体的液化,尤其涉及使用多回路液化器的工业气体的液化。
背景技术
工业气体的液化是消耗功率大的过程。典型的工业气体通过使用制冷剂进行间接热交换来液化。这种系统尽管在环境温度的较小的温度范围内良好地运行以提供制冷效果,但是当需要制冷效果在较大的范围内变化(例如从环境温度变化到深冷温度)时,该系统效率变低。可通过使用一个以上的制冷回路以获得所需的深冷的冷凝温度来解决低效率问题。然而,这种系统需要大量的能量输入,以便实现所需的效果和/或在回路中需要复杂的并且昂贵的热交换器结构和相分离器。
因此,本发明的一个目的是提供一种多回路结构,由此将工业气体从环境温度降低到更冷的温度,特别是降到深冷的液化温度,该结构比现今采用的多回路系统简单,而且运行需要较低的能量输入。

发明内容
通过对本公开物的阅读,本领域的普通技术人员可理解,通过本发明可实现以上和其它的目的,本发明的一个方面是一种用于冷却工业气体的方法,其包括(A)压缩气态共沸混合物,并使该压缩后的共沸混合物冷凝;(B)使该冷凝后的共沸混合物的第一部分膨胀,以产生制冷效果,并且使得带有该制冷效果的共沸混合物第一部分通过与该压缩后的共沸混合物进行间接热交换从而蒸发,以便实现该压缩后的共沸混合物的所述冷凝;(C)使得该冷凝后的共沸混合物的第二部分过冷却并使得该过冷却的共沸混合物第二部分膨胀,以产生高等级的制冷效果;(D)使得带有该高等级的制冷效果的共沸混合物第二部分通过与该冷却的压缩后的制冷剂流体进行间接热交换从而蒸发,以提供冷却的且压缩后的制冷剂流体;
(E)使得该冷却的且压缩后的制冷剂流体膨胀,以产生低等级的制冷效果;和(F)使得带有该低等级的制冷效果的制冷剂流体通过与工业气体进行间接热交换从而加温,以便冷却该工业气体。
本发明的另一方面是一种用于冷却工业气体的方法,其包括(A)压缩气态共沸混合物,使该压缩后的共沸混合物冷凝,并使该压缩冷凝后的共沸混合物膨胀,以产生高等级的制冷效果;(B)使得带有该制冷效果的共沸混合物通过与该压缩后的制冷剂流体进行间接热交换从而蒸发,以便提供冷却且压缩后的制冷剂流体;(C)使得该冷却且压缩后的制冷剂流体膨胀,以产生低等级的制冷效果;和(D)使得带有该低等级的制冷效果的制冷剂流体通过与工业气体进行间接热交换从而加温,以便冷却该工业气体。
本文使用的术语“膨胀”意味着实现压力降低。
本文使用的术语“工业气体”指的是氮、氧、氩、氢、氦、二氧化碳、一氧化碳、氪、氙、氖、甲烷和具有达到4个碳原子的其它碳氢化合物,以及以上的一种或多种的流体混合物。
本文使用的术语“深冷温度”意味着150K或更低的温度。
本文使用的术语“制冷”意味着从低于环境温度的系统中向周围大气排出热量的能力。
本文使用的术语“高等级制冷效果”意味着用于低于260K的预冷却回路的制冷温度。
本文使用的术语“低等级制冷效果”意味着用于低于240K的主回路的制冷温度。
本文使用的术语“过冷”意味着将液体冷却到低于现存压力下的该液体的饱和温度。
本文使用的术语“加温”意味着升高流体温度和/或至少部分地使流体蒸发。
本文使用的术语“冷却”意味着降低流体温度和/或至少部分地使流体冷凝。
本文使用的术语“间接热交换”意味着两种流体以没有任何物理接触或不相互混合的方式成热交换关系。
本文使用的术语“膨胀装置”意味着用于实现流体膨胀的装置。
本文使用的术语“压缩机”意味着用于实现流体的压缩的装置。
本文使用的术语“多成分的制冷剂流体”意味着包括两种或多种物质并能产生制冷效果的流体。
本文使用的术语“制冷剂流体”意味着在制冷过程中用于工作流体的纯成分或混合物,其经历温度变化、压力变化、和可能相变化,以便在低温吸收热量,在高温下排出热量。
本文使用的术语“负荷可变的制冷剂”意味着两种或多种成分成比例的混合物,以便这些成分的液相在混合物的起沸点和露点之间经历连续增加的温度变化。该混合物的起沸点是这样的一温度,即,在给定压力下,混合物全部成液相,但是加入热量将起动气相与液相之间平衡的形成。该混合物的露点是这样的一温度,即,在给定压力下,混合物全部成气相,但是加入热量将起动气相与液相之间平衡的形成。因此,在混合物的起沸点和露点之间的温度范围是液相和气相平衡并存的范围。在本发明的优选实施例中,起沸点和露点之间的温度差别对于负荷可变的制冷剂是大致至少10℃,优选为至少20℃,最优选为至少50℃本文使用的术语“共沸混合物”意味着作为单一成分的两种或多种成分的混合物,以便该混合物在单个温度下总体地冷凝或总体地蒸发,并且当该混合物经历冷凝或蒸发时,在液相中的成分的浓度保持与在气相中的该成分的浓度相同。


图1是一个优选结构的示意图,其中实施了本发明的工业气体液化方法。
图2是另一优选结构的示意图,其中实施了本发明的工业气体液化方法。
具体实施例方式
参照附图详细描述本发明。参照图1,气态的共沸混合物15经过压缩机30被压缩到压力大致在50-500磅每平方方英寸绝对压力(psia)的范围内。本发明实施形式中使用的共沸混合物通常由两种成分构成,但也可包括六种成分。优选的是,在实施本发明中有用的共沸混合物包括两种或多种以下成分四氟乙烷(R-134a)、二氟甲烷(R-32)、丙烷(R-290)、三氟乙烷(R-143a)、五氟乙烷(R-125)、三氟甲烷(R-23)、全氟乙烷(R-116)、二氧化碳(R-744)、全氟丙氧基-甲烷(R-347E)、二氯三氟乙烷(R-123)、全氟戊烷(R-4112)、甲醇、乙醇。二元的混合物的示例包括R-134与R-290;R-32与R-143a、R-125、或R-290;R-125与R-143a或R-290;R-23和R-116或R-744;R-116与R-744;R-347E与R-123、R-4112、甲醇、或乙醇。三元混合物示例是R-32与R-125和R-134a。
压缩后的气态共沸混合物16在冷却器31中被冷却以排散压缩热,并且所获得的冷却的气态共沸混合物17提供给热交换器32,在其中气态共沸混合物通过与以下将描述的正在蒸发的共沸混合物进行间接热交换从而被冷凝。
冷凝的共沸混合物18从热交换器32分成第一部分33和第二部分21。第一部分33膨胀以提供制冷效果。在图1所示的本发明的实施例中,第一部分33经膨胀装置34膨胀,该膨胀装置34是焦耳-汤姆森膨胀阀。携带制冷效果的共沸混合物第一部分19经过热交换器32蒸发,以便实现如上所述的流体流17的冷凝,并且所获得的蒸发后的共沸混合物第一部分20与流体流合并,以形成用于输入到压缩机31中的流体流15。
冷凝的共沸混合物的第二部分21经过热交换器35与以下将描述的正在蒸发的共沸混合物第二部分进行间接热交换从而被过冷却。所获得的过冷却后的共沸混合物第二部分22流经焦耳-汤姆森膨胀阀36以便膨胀,以产生高等级的制冷效果。携带该高等级的制冷效果的共沸混合物第二部分23在热交换器35中蒸发,以实现上述流体流21的过冷却并冷却在以下将描述的主制冷回路中的再循环的制冷剂流体。所获得的蒸发后的共沸混合物第二部分13从热交换器35流到压缩机37,在该压缩机中共沸混合物第二部分13压缩到大致25-200psia压力的范围内。来自压缩机37的所获得的共沸混合物第二部分14与共沸混合物第一部分流体流20合并,以形成以上所述的流体流15,并且共沸混合物流体流15流向压缩机30,以完成预冷却回路,并且开始进行新的共沸混合物的预冷却循环。
如上所述,当制冷剂流体7流经热交换器35时,正在蒸发的共沸混合物通过与在主制冷回路中的再循环制冷剂流体进行间接热交换以用于冷却。在实施本发明中,任何有效的制冷剂流体可使用在主制冷回路中。示例包括氨、R-410A、R-507A、R-134A、丙烷、R-23、以及例如碳氟化合物、氢氟碳化合物、氢氯氟碳化合物、大气源气体和/或碳氢化合物的混合物。
优选的是,在实施本发明中,用于主制冷回路中的制冷剂流体是多成分的制冷剂流体,其可以以部分的温度等级有效地提供制冷效果。当使用这种多成分的制冷剂流体时,其优选包括至少两种从以下一组中选择出的物质,该组中包括碳氟化合物、氢氟碳化合物、氢氯氟碳化合物、氟代醚、大气源气体和碳氢化合物,例如该多成分的制冷剂流体可仅包括两种碳氟化合物。
一个这种优选的多成分的制冷剂流体最好包括至少一种从一组包括碳氟化合物、氢氟碳化合物、和氟代醚中选择的成分,以及至少一种从一组包括碳氟化合物、氢氟碳化合物、氢氯氟碳化合物、氟代醚、大气源气体和碳氢化合物中选择的成分。
在一个优选实施例中,该多成分的制冷剂仅包括碳氟化合物。在另一个优选实施例中,该多成分的制冷剂仅包括碳氟化合物和氢氟碳化合物。在另一个优选实施例中,该多成分的制冷剂仅包括碳氟化合物、氟代醚、和大气源气体。用于主制冷回路中的多成分的制冷剂的最优选的全部成分或是碳氟化合物、氢氟碳化合物、氟代醚,或是大气源气体。
在实施本发明中,用于主制冷回路中的多成分的制冷剂流体可包括其它成分,例如氢氯氟碳化合物和/或碳氢化合物。优选的是,该多成分的制冷剂流体不包含氢氯氟碳化合物。在本发明的另一优选实施例中,该多成分的制冷剂流体不包含碳氢化合物。最优选的是,该多成分的制冷剂流体不包含氢氯氟碳化合物也不包含碳氢化合物。最优选的是,该多成分的制冷剂流体是无毒的、不易燃并且不消耗臭氧,并且该多成分的制冷剂流体的最优选的全部成分或是碳氟化合物、氢氟碳化合物、氟代醚,或是大气源气体。最优选的该多成分的制冷剂流体是负荷可变的制冷剂。
现再参照图1,压缩后的制冷剂流体7传送到热交换器35,在该热交换器中,该制冷剂流体通过与在上述预冷却回路中再循环的正在蒸发的共沸混合物进行间接热交换从而被冷却。所获得的冷却的制冷剂流体8被部分地冷凝,该制冷剂流体通过流经热交换器38被进一步冷却并大致完全冷凝,并且所获得的制冷剂流体流9经例如焦耳-汤姆森阀39的膨胀装置,以便产生低等级的制冷效果。
携带所获得的低等级的制冷效果的制冷剂流体用于冷却工业气体并且提供该制冷剂流体本身的冷却。携带低等级的制冷效果的制冷剂流体在流体流10通过流经热交换器40与工业气体进行间接热交换从而被加温。所获得的加温后的制冷剂流体11在热交换器38中通过与工业气体和冷却用的制冷剂流体进行间接热交换从而进一步加温,并且来自热交换器38的所获得的进一步加温的制冷剂流体12通过与工业气体和冷却用的制冷剂流体进行间接热交换从而进一步加温。加温后的气态制冷剂流体5从热交换器35进入压缩机41进行压缩,压缩到呆滞在50-500psia的压力范围内,并且所获得的压缩后的制冷剂流体6在冷却器42中被冷却以便排散压缩热。所获得的压缩后的制冷剂流体在流体流7中传送到热交换器35,并且开始新的主制冷回路循环。
工业气体在流体流1中通过流经热交换器35与上述加温用的制冷剂流体进行间接热交换从而被冷却。所获得的冷却后的工业气体2通过流经热交换器38与上述加温用的制冷剂流体进行间接热交换从而进一步被冷却。所获得的进一步冷却后的工业气体3通过流经热交换器40与上述加温用的制冷剂流体进行间接热交换从而再一步被冷却,并且所获得的再一步冷却后的工业气体4从热交换器40中回收。通常工业气体在流体流4中优选处于液态。
在图1所示的本发明的实施例中,在多流路热交换器中使用共沸混合物进行初次节流以便提高热力效率之后,加温端入口过程流可冷却到第一高等级制冷温度。在高等级制冷效果中共沸混合物的优点包括均匀组分的泄漏、在中间冷却器中没有冷凝液,在后冷却器中完全冷凝、仅液体进入热交换器、没有相分离器、并且容易操作和维护。
图2示出了本发明的另一实施例,其中不使用热交换器32。在图2中相同的附图标记表示相同的部件,并且这些相同的部件不再详细描述。
现参照图2,气态的共沸混合物50通过流经压缩机51被压缩到大致50-500psia的压力范围内。压缩后的气态的共沸混合物52在冷却器53中被冷却以便排散压缩热,并且所获得的冷却的气态的共沸混合物54供给到热交换器35,在该热交换器中该气态的共沸混合物通过与正在蒸发的共沸混合物进行间接热交换从而被冷凝。来自热交换器35的冷凝后的共沸混合物55通过流经例如经焦耳-汤姆森阀56的膨胀装置以便膨胀,以产生高等级的制冷效果。携带该高等级的制冷效果的共沸混合物57在热交换器35中蒸发,以实现共沸混合物在流体流54中的上述冷凝并冷却在主制冷回路中再循环的制冷剂流体。来自热交换器35的所获得的蒸发后的共沸混合物50传送到压缩机50以完成该预冷却回路,并且开始进行一个新的共沸混合物的预冷却循环。
依据图1所示的实施例来实施本发明的工业气体液化的方法的一个示例,其结果在表1中示出。在该示例中,使用的共沸混合物包含质量百分比为50的R-125和质量百分比为R-143a,在主制冷回路中的制冷剂流体包含摩尔百分比为55的氮和摩尔百分比为33的R-14以及摩尔百分比为12的R-218,并且工业气体是氮。该示例只是说明性的而非限定性的。表1中的流体流标记对应于图1中的标记。
表1

尽管本发明参照特定的优选实施例进行详细描述,但是本领域的普通技术人员应当理解在本发明的范围内还有其它实施例。例如,除了共沸混合物的预冷却回路和主制冷回路之外,可使用其它的制冷回路。
权利要求
1.一种用于冷却工业气体的方法,其包括(A)压缩(30)气态共沸混合物(15),并使该压缩后的共沸混合物(17)冷凝(32);(B)使该冷凝后的共沸混合物(18)的第一部分(33)膨胀(34),以产生制冷效果,并且使得带有该制冷效果的共沸混合物(19)第一部分通过与该压缩后的共沸混合物进行间接热交换从而蒸发,以便实现该压缩后的共沸混合物的所述冷凝;(C)使得该冷凝后的共沸混合物(18)的第二部分(21)过冷却(35)并使得该过冷却的共沸混合物第二部分(22)膨胀(36),以产生高等级的制冷效果;(D)使得带有该高等级的制冷效果的共沸混合物第二部分(23)通过与该冷却的压缩后的制冷剂流体进行间接热交换从而蒸发,以提供冷却的且压缩后的制冷剂流体;(E)使得该冷却的且压缩后的制冷剂流体膨胀(39),以产生低等级的制冷效果;和(F)使得带有该低等级的制冷效果的制冷剂流体通过与工业气体(1、2、3)进行间接热交换(40、38、35)从而加温,以便冷却该工业气体。
2.如权利要求1所述的方法,其特征在于,该共沸混合物包括R-125和R-143a。
3.如权利要求1所述的方法,其特征在于,该共沸混合物包括从R-134a、R-32、R-290、R-143a、R-125、R-23、R-116、R-744、R-347E、R-123、R-4112、甲醇和乙醇中选择的至少两种成分。
4.如权利要求1所述的方法,其特征在于,该共沸混合物是二元混合物。
5.如权利要求1所述的方法,其特征在于,该高等级制冷温度低于260K,并且低等级制冷温度低于240K。
6.一种用于冷却工业气体的方法,其包括(A)压缩气态共沸混合物(50),使该压缩后的共沸混合物(54)冷凝(35),并使该压缩冷凝后的共沸混合物(55)膨胀(56),以产生高等级的制冷效果;(B)使得带有该制冷效果的共沸混合物通过与该压缩后的制冷剂流体(7)进行间接热交换从而蒸发,以便提供冷却且压缩后的制冷剂流体;(C)使得该冷却且压缩后的制冷剂流体膨胀(39),以产生低等级的制冷效果;和(D)使得带有该低等级的制冷效果的制冷剂流体通过与工业气体(1、2、3)进行间接热交换(40、38、35)从而加温,以便冷却该工业气体。
7.如权利要求6所述的方法,其特征在于,该共沸混合物包括R-125和R-143a。
8.如权利要求6所述的方法,其特征在于,该共沸混合物包括从R-134a、R-32、R-290、R-143a、R-125、R-23、R-116、R-744、R-347E、R-123、R-4112、甲醇和乙醇中选择的至少两种成分。
9.如权利要求6所述的方法,其特征在于,该共沸混合物是二元混合物。
10.如权利要求6所述的方法,其特征在于,该高等级制冷温度低于260K,并且低等级制冷温度低于240K。
全文摘要
一种工业气体液化循环使用了主制冷回路,以便提供向工业气体(1、2、3)低等级的制冷效果,并使用了预冷却回路,其利用共沸混合物(15)以向在主制冷回路中循环的制冷剂流体(7)提供高等级的制冷效果。该共沸混合物在预冷却回路中过冷(35)。
文档编号F25J1/02GK1500195SQ02807221
公开日2004年5月26日 申请日期2002年1月11日 优先权日2001年1月25日
发明者V·小戈布勒, V 小戈布勒, A·阿查亚, 檠, B·阿曼 申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1