专利名称:操作低温设备的方法
技术领域:
本发明通常涉及比如低温空气分离设备之类的低温设备的操作。
背景技术:
比如低温精馏设备这样的低温设备常常经历比如工作功率太高或非最优的问题,并且没有一种方式能够实时/在线地指示问题已经出现并且引起该设备以非最优方式工作,也没有一种方式能够实时/在线地确定一种解决方案。此外,会比期望的更频繁地出现非计划停机,并且几乎不能做什么来识别无效从而避免非计划停机。另外,可能出现由仪器装备或主要控制或先期控制故障或异常引起的非最优生产流程、回收或纯度,并且没有人任何方式来确定生产流程、回收或目标纯度实际上是否是最佳的,以及难以确定偏差的原因。
因此,本发明的目的是提供一种用于操作低温设备(比如低温空气分离设备)的方法,该能够对设备进行在线实时监控,并且提供对问题的在线实时诊断以及建议的校正动作以快速解决和校正这种问题。
发明内容
在阅读本公开内容之后对于本领域的普通技术人员变得显而易见的上述和其它目的是通过以下的本发明所达到的一种用于操作低温设备的方法,包括(A)利用过程模型为包括设备功率消耗、产品回收、PID回路性能、MPC稳态最优化、MPC模型预测和MPC动态性能的组中至少一个关键性能指标确定在给定时间的期望最优值范围;(B)监控已经为其确定了期望最优值范围的每一个关键性能指标的值;(C)当受监控的关键性能指标的值处于为该关键性能指标确定的期望最优值的范围之外时,警告设备操作者;以及(D)向该设备操作者建议用于调节该低温设备的运转的至少一个动作,使得处于该关键性能指标的期望最优值范围之外的受监控的关键性能指标的值被改变,从而使得该值处于该关键性能指标的期望最优值范围之内。
此处使用的术语“塔”表示蒸馏或分馏塔或区,也就是接触塔或区,其中液相和汽相逆流接触,例如通过在装配于塔中的一系列垂直间隔的盘或板上和/或在诸如有组织的或随机填充的填充物上使汽相和液相接触,来实现流体混合物的分离。对于蒸馏塔的进一步讨论,见R.H.Perry and C.H.Chilton编辑的Chemical Engineer’s Handbook,fifth edition,McGraw-Hill Book Company,NewYork Section 13,The Continuous Distillation Process。
术语“双塔”用于表示较高压力塔的上部和较低压力塔的下部有热交换关系。在Ruheman的“The Separation of Gases”,Oxford UniversityPress,1949,Chapter VII,Commercial Air Separation中出现关于双塔的进一步论述。
蒸汽和液体接触分离的方法取决于各组分的蒸汽气压的差别。高蒸汽气压(或高挥发或低沸腾)组分将趋向于在汽相中提浓,而低蒸汽气压(或低挥发或高沸腾)组分将趋向于在液相中提浓。蒸馏是分离过程,因而可以利用加热液体混合物在汽相中提浓易挥发组分并且从而在液相中提浓不易挥发组分。部分冷凝是分离过程,因而可以利用冷却蒸汽混合物在汽相中提浓易挥发组分并且从而在液相中提浓不易挥发组分。精馏或连续蒸镏是如通过汽相和液相的逆流处理获得的组合连续部分汽化和冷凝的分离过程。汽相和液相的逆流接触可以是绝热的或非绝热的,并可以包括相之间的整体的(分阶段的)或差动的(连续的)接触。利用精馏原理分离混合物的分离处理设置常常被可替换地称为精馏塔、蒸馏塔或分馏塔。低温精馏是至少部分在150开氏(Kelvin)温度(K)或低于该温度实施的精馏过程。
这里使用的术语“间接热交换”意味着两种流体流在流体彼此之间没有任何物理接触相互之间也没有混合的情况下进入热交换关系。
这里使用的术语“膨胀”意味着要实现压力减小。
这里使用的术语“气态氧产品”意味着具有至少90摩尔百分比的氧浓度的气体。
这里使用的术语“供给空气”意味着主要包括氧、氮和氩的混合物,比如周围空气。
这里使用的术语“上部”和“下部”意味着分别在塔的中点之上和之下的塔的那些部分。
这里使用的术语“MPC”意味着模型生产控制器(model productivecontroller)。
这里使用的术语“PID”意味着比例积分微分控制器(proportional integralderivative controller)。
这里使用的术语“关键性能指标”意味着为确定低温设备或模型预示控制器的性能而计算的参数。
这里使用的术语“稳态最优化”意味着模型预示控制器控制低温设备并保持受控变量在稳态时处于给定范围之内的能力。
这里使用的术语“负载变化”意味着模型预示控制器控制低温设备并在负载变化时保持受控变量处于给定范围之内的能力。
这里使用的术语“设备操作者”意味着负责监控和操作低温设备的人员。
这里使用的术语“屏幕显示器”意味着位于设备控制系统计算机上充当人机界面以实时显示在线数据的计算机屏幕。
这里使用的术语“自上而下的诊断树方法”意味着一种用于通过起始于概括的合成关键性能指标,向下将其分解成子关键性能指标,并到达作为问题的根本原因的特定分支,来确定设备和MPC性能问题的方法。
附图1是通过使用本发明的操作方法能够受益的多个低温设备之一的示意性表示。在图1中所示的低温精馏设备是低温空气分离设备。
附图2是通过使用本发明的操作方法能够受益的的另一种低温空气分离设备的示意性表示。
附图3是说明在本发明的实施中有用的自上而下诊断树的一个示例的流程图。
具体实施例方式
参照附图详细描述本发明。现在说明在图1中所示的低温空气分离设备的操作。
现在参照图1,供给空气60通过基本载重压缩器30被压缩至通常属于从60至200绝对压强(pounds per square inch absolute psia)的范围之内的压强。所得到的压缩供给空气61在后冷却器6中被冷却由压缩产生的热量,并且,然后所得到的供给空气流62经过净化器31以净化掉比如水蒸汽、二氧化碳和碳氢化合物的高沸点杂质。将净化后的供给空气流63分成流64和65。通过增压压缩器32把流64的压强增加到通常范围在100至1000绝对压强(psia)的范围之内的压强,以形成增压的供给空气流67。通过主要热交换器1利用与返回流之间的间接热交换来冷却供给空气流65和67,然后将它们分别作为流66和68传递到通常在从60至200绝对压强(psia)的范围之内的压强下工作的较高压力塔(higher pressure column)10中。流68的一部分70也可以被传递到较低压力塔(lower pressure column)11中。
在较高压力塔10中,通过低温精馏将供给空气分离成富氮流体和富氧流体。富氮流体从较高压力塔10的上部作为蒸汽被抽走形成流75,并利用与较低沸点压力塔底部液体之间的间接热交换在主冷凝器4将其冷凝。得到的富氮液体76作为回流返回至塔10,如流77所示。富氮液体76的一部分80从塔10流到再冷却器3,在再冷却器中被再冷却,以形成作为回流输送到塔11的上部的再冷却流81。如果需要,流77的一部分79可以作为液态氮产品回收。此外,如果需要,富氮蒸汽流75的一部分(未示出)可以作为高压氮气产品回收。
从较高压力塔10的下部抽取作为液体的富氧流体形成流71,并送到再冷却器2,在其中将其再冷却。得到的再冷却富氧液体72接着进入较低压力塔11。
较低压力塔11在小于较高压力塔10的压强下工作,并且其压强通常在从15至150绝对压强(psia)的范围之内。在较低压力塔11中,通过低温精馏将进入该塔的各种供给空气分离成富氮蒸汽和富氧液体。从塔11的上部抽取富氮蒸汽形成流87,通过热交换器3、2和1将其加热,并且在流90中将其回收为气态氮产品,该产品具有至少99摩尔百分比的氮浓度,优选为至少99.9摩尔百分比,最优选为至少99.999摩尔百分比的氮浓度。为了控制产品纯度,从塔11在低于流87的抽取点的水平抽取废流91,经过热交换器3、2和1将其加热,并在流94中将其从系统去除。
从较低压力塔11的下部抽取富氧液体形成流82。如果需要,可以将流82的一部分83作为液态氧产品回收,该产品具有通常属于90至99.9摩尔百分比的范围之内的氧浓度。然后流82到达液泵34,在其中被泵送成通常属于35至500绝对压强(psia)范围之内的升高压强。汽化得到的升高压强富氧液体85,然后将其作为升高压强气态氧产品86回收。在图1所示的本发明的实施例中,升高压强富氧液体的汽化示为发生在主热交换器1中。所述汽化也可以发生在分离热交换器中,比如独立的产品锅炉中。通常通过诸如供给气流之类的过程流的涡轮膨胀来提供对该设备的操作的制冷。没有在附图中示出这种涡轮膨胀。
图2说明了用于本发明的实施的另一种低温精馏设备。对于共有部件,图2中的标号和图1中的那些相同,并且将不再详细说明这些共有部件。
在图2所述的实施例中,不分离供给气流63,而是令它直接通过热交换器1,并作为流66进入较高压力塔10。将再冷却的富氧液体72分成部分73和部分74。部分73进入较低压力塔11,并且部分74进入氩塔冷凝器5,在其中被至少部分汽化。从冷凝器5抽吸得到的蒸汽形成流91,并进入较低压力塔11。从冷凝器5抽吸任何剩余的富氧液体,然后进入较低压力塔11。
包括氧和氩的流体形成流89,从较低压力柱11进入氩塔12,在该氩塔中,通过低温精馏将其分离成富氩流体和富氧流体。富氧流体形成流90,从塔12的下部进入较低压力塔11。富氩流体作为蒸汽从塔12的上部进入氩塔冷凝器5,在其中通过利用与上述的再冷却富氧液体之间的间接热交换而被冷凝。从冷凝器5抽吸得到富氩液体。富氩液体的一部分作为回流进入氩塔12,并且另一部分如流92所示作为氩产品被回收,该产品通常具有属于95至99.9摩尔百分比范围之内的氩浓度。
本发明包括对该设备的一个或多个关键性能指标执行在线实时监控的主处理或计算引擎,以及用于向设备操作者提供警报并且为该设备操作者提供一个或多个建议的补救或校正动作的报告发生器/消息传送系统。优选地,通过屏幕显示器向设备操作者提供警报。更优选地,还通过电子邮件向其它人员提供警报。优选地,通过屏幕显示器向设备操作者建议补救动作或多个补救动作,并且更优选地,将详细的报告采用电子邮件方式发送给其它人员。
下面说明了本发明的一个实施例,其中低温设备是低温空气分离设备,其中一种产品是氧,并且受监控的关键性能指标是为产生给定量的氧所需的最优功率。
在本发明的该实施例的实施中,为了在线确定产生量为“x”的氧所需要的功率的最优值范围,而开发出一种数学过程模型。该模型用于提供期望的或基本的功率范围。确定制造该数量的氧所需的实际功率,并在一定的时间段内跟踪这些值的轨迹。利用数学算法和统计方法评估关键性能指标(keyperformance indicator KPI),也就是算术过程模型,以确定功率是否在期望的范围之内。评估不同的操作项,并确定在实际和期望的KPI之间是否存在显著的不足量。如果存在不足量,识别问题的根本原因。不同的选项可以是(1)旋转设备效率低;如果效率低,是压缩器效率还是涡轮效率;(2)产品排出太高;如果产品排出高,哪个产品;(3)压缩器再循环阀是开着的,如果阀是开着的,原因是什么。
本发明的实施最后交给操作者一个结论和推荐动作。例如,如果问题是产品排出高,所述建议或推荐可以包括减小冷箱气流目标/上限;减小氧气制造流目标/上限;减小功率目标/上限;和/或对空气压缩器增加释放压强设置点。
本发明的实施把问题警告给操作者,并以容易理解的方式向操作者展示推荐的动作,优选利用屏幕显示器,并也向合适的接受者发送带有表明问题及其诊断信息的详细报告的电子邮件。
总之,本发明是连续比较实际与期望的设备性能的在线实时监控和诊断系统。所述系统把任何显著的性能不足警告给操作人员,辅助所需要的诊断,并建议校正动作。使用自上而下的诊断树方法,采用在逻辑上从设备概述向由设备区域和设备部件所确定的细节分项进行的方式,来向操作者展示计算出的关键性能指标(KPI),在图3中说明了该方法一个例子。
尽管参照确定的优选实施例详细说明了本发明,但是本领域的普通技术人员可以理解在权利要求的精神和范围中还可以具有本发明其它的实施例。例如能够采用本发明的方法的其它设备包括氢-氧化碳设备和二氧化碳设备。
权利要求
1.一种用于操作低温设备的方法,包括(A)利用过程模型为包括设备功率消耗、产品回收、PID回路性能、MPC稳态最优化、MPC模型预测和MPC动态性能的组中的至少一个关键性能指标确定在给定时间的期望最优值范围;(B)监控已经为其确定了期望最优值范围的每一个关键性能指标的值;(C)当受监控的关键性能指标的值处于为该关键性能指标确定的期望最优值范围之外时,警告设备操作者;以及(D)向该设备操作者建议用于调节该低温设备的运转的至少一个动作,使得处于该关键性能指标的期望最优值范围之外的受监控的关键性能指标的值被改变,从而使得该值处于该关键性能指标的期望最优值范围之内。
2.权利要求1所述的方法,其中低温精馏设备是低温空气分离设备。
3.权利要求1所述的方法,其中受监控的关键性能指标包括设备功率消耗。
4.权利要求1所述的方法,其中利用数学过程模型计算预期最优值范围。
5.权利要求1所述的方法,其中通过屏幕显示器警告设备操作者。
6.权利要求5所述的方法,进一步包括通过电子邮件来警告其它人员。
7.权利要求1所述的方法,其中通过屏幕显示器向设备操作者建议动作。
8.权利要求7所述的方法,进一步包括通过电子邮件发送详细的报告给其他人员。
9.权利要求1所述的方法,其中利用自上而下诊断树方法来确定针对动作的建议。
10.权利要求9所述的方法,其中通过屏幕显示器向设备操作者指示针对动作的建议。
全文摘要
一种用于利用在线实时监控和诊断系统操作低温设备的方法,所述在线实时监控和诊断系统不断比较实际的与期望的设备关键性能指标,把任何显著的性能不足警告给操作人员,辅助所需要的诊断,并优选利用自上而下的诊断树方法建议校正动作,这种自上而下的诊断树方法采用在逻辑上从设备概述向由设备区域和设备部件确定的细节分项进行的方式,把计算出的关键性能指标展示给操作者。
文档编号F25J3/04GK1759287SQ200380110177
公开日2006年4月12日 申请日期2003年11月19日 优先权日2003年3月20日
发明者E·卡滕德, A·古普塔, P·F·沙夫 申请人:普莱克斯技术有限公司