专利名称:碳氢化合物气体处理的制作方法
技术领域:
本发明涉及含碳氢化合物的气体的分离方法和设备。乙烯、乙烷、丙烯、丙烷和/或重碳氢化合物可从各种气体回收,例如天然气、炼油气和获自其它碳氢化合物材料(例如煤炭、原油、石油脑、油页岩、浙青砂和褐煤)的合成气流。天然气通常具有较大比例含量的甲烷和乙烷,即甲烷和乙烷共占气体的至少50摩尔百分比。所述气体也含有相对较少量的重碳氢化合物(例如丙烷、丁烷、戊烷等等),和氢、氮、 二氧化碳和其它气体。本发明一般来说涉及从这些气流回收乙烯、乙烷、丙烯、丙烷和重碳氢化合物。根据本发明处理的气流的典型分析,以摩尔百分比计将为大约90. 5%甲烷、4. 乙烷和其它 C2成分、1. 3%丙烷和其它C3成分、0. 4%异丁烷、0. 3%正丁烷和0. 5%戊烷+、加上构成剩余部分的氮和二氧化碳。有时也存在含硫气体。
背景技术:
就天然气和其液态天然气(NGL)组分两者价格的历史周期性波动来说,已不时地在降低乙烷、乙烯、丙烷、丙烯和作为液态产物的较重成分的增加价格。这样就产生了对提供更有效回收这些产物的方法,能提供以低投资成本而有效回收的方法,和能容易采用或调整以在广泛范围中改变特定成分回收的方法的需要。分离这些物质可用的方法包括根据气体的冷却和冷冻、油的吸收和冷冻油的吸收的那些方法。此外,由于可使用经济的设备, 从被处理的气体同时膨胀和提取热时制造能量,因此低温方法已变得普遍。可取决于气体源的压力、气体的丰富性(乙烷、乙烯和重碳氢化合物含量)和所需的终产物,使用这些处理方法的各个方法或其组合。通常低温膨胀(cryogenic expansion)方法优选用于液态天然气的回收,因为其提供最简单的起动容易性、操作灵活性、效率佳、安全和可信赖度佳。美国专利号
3,292,3804,061,4814,140,5044,157,9044,171,9644,185,9784,251,2494,278,4574,519,8244,617,0394,687,4994,689,0634,690,7024,854,9554,869,7404,889,5455,275,0055,555,7485,566,5545,568,7375,771,7125,799,5075,881,5695,890,3785,983,6646,182,4696,578,3796,712,880
6,915,662 ;7, 191,617 ;7, 219,513 ;在公告的美国专利号33,408 ;和共同申请案号:11/430,412 ;11/839,693 ; 11/971,491 ;12/206,230 ;12/689,616 ; 12/717,394 ; 12/750, 862 ;12/772, 472 ;和12/781,259叙述相关的方法(然而与引用的美国专利中描述的相比,本发明的说明在某些情况下是根据不同的处理条件)。 在典型的低温膨胀回收方法中,进料气流在压力下通过与所述方法的其它气流和 /或外源性冷冻作用(例如丙烷压缩冷冻系统)热交换而冷却。随着气体冷却,可冷凝出液体并以含有某些所需C2+成分的高压液体收集在一个或多个的分离器中。取决于气体的丰富性和形成的液体量,可将高压液体膨胀到较低压和分馏。液体膨胀期间产生蒸发,造成气流的进一步冷却。在某些情况下,较理想的是膨胀前预冷却高压液体,以进一步降低膨胀产生的温度。在蒸馏(去甲烷塔或去乙烷塔)塔中分馏含有液体与蒸汽的混合物的膨胀气流。在塔中蒸馏膨胀冷却的气流,以从所需C2成分、C3成分和重碳氢化合物成分的底部液体产物分离出顶部蒸汽的残余的甲烷、氮和其它挥发性气体;或从所需C3成分和重碳氢化合物成分的底部液体产物,分离出顶部蒸汽的残余的甲烷、C2成分、氮和其它挥发性气体。如果进料气体未完全冷凝(通常未完全),那么来自部分冷凝作用剩余的蒸汽可被分为两个气流。一部分的蒸汽通过功膨胀机器(work expansion machine)或引擎,或膨胀阀,达到较低压力,在此压力下,由于气流的进一步冷却而冷凝额外的液体。膨胀后的压力实质上与蒸馏塔操作时的压力相同。将膨胀作用所得的合并的蒸汽-液体相作为进料供应给塔。通过与其它处理气流(例如冷分馏塔顶端气流)的热交换,将蒸汽的剩余部分冷却至实质冷凝。冷却之前,部分或全部的高压液体可与这种蒸汽馏分合并。然后所得的冷却气流由适宜的膨胀装置(例如,膨胀阀)膨胀到操作去甲烷塔的压力。膨胀作用期间,馏分液体将会蒸发造成全部的气流冷却。然后所述快速膨胀的气流作为顶部进料供应给去甲烷塔。典型为快速膨胀的气流的蒸汽馏分与去甲烷塔顶部蒸汽合并于分馏塔的上方分离器区段,作为残余的甲烷产物气体。另外,冷却和膨胀的气流可供应给分离器,提供蒸汽和液体流。所述蒸汽与塔顶端蒸汽合并,并且所述液体作为顶部塔进料供应给塔。在此类分离处理的理想操作中,离开所述处理的残余气体,大体上应包含实质上不含重碳氢化合物成分的进料气体中的所有甲烷;而离开去甲烷塔的底馏分馏,大体上应包含所有重碳氢化合物成分其实质上不含甲烷或较挥发性成分。然而实际上无法得到这种理想情况,因为惯用的去甲烷塔大部分作为汽提塔(stripping column)操作。因此所述处理的甲烷产物通常含有离开塔的顶馏分馏阶段的蒸汽,和不进行任何精馏步骤的蒸汽。由于顶部液体进料包含大量的这些成分和重碳氢化合物成分,因而发生相当多的C2、C3和C4+ 成分损失,导致对应平衡量的C2成分、C3成分、C4成分、和重碳氢化合物成分在离开去甲烷塔的顶馏分馏阶段的蒸汽中。如果上升的蒸汽可与大量的液体(回流)接触,而能从蒸汽吸收C2成分、C3成分、C4成分和重碳氢化合物成分,则可显著减少这些所需成分的流失。近年来,碳氢化合物分离的优选方法利用吸收塔上部区段来提供上升的蒸汽的额外精馏。用于上部精馏区段的回流气流源,通常是在压力下供应的残余气体的再循环流。再循环的残余气流通常通过与其它处理气流(例如冷分馏塔顶)热交换而被冷却至实质上冷凝。然后由适当的膨胀装置,例如膨胀阀,将所得的实质上冷凝的气流膨胀到去甲烷塔操作的压力。膨胀作用期间,通常一部分的液体会蒸发,导致全部的气流冷却。然后供应所述快速膨胀气流给去甲烷塔作为顶部进料。通常,在分馏塔的分离器上部区段,膨胀气流的蒸汽馏分和去甲烷塔顶的蒸汽合并作为残余的甲烷产物气体。另外,可供应冷却和膨胀的气流给分离器以提供蒸汽和液体流,以致之后的蒸汽与塔顶蒸汽合并,并供应液体给塔作为顶部塔进料。此类型的典型流程公开于美国专利案号第4,889,545,5, 568,737和5,881,569 号,受让人共同申请案号 12/717,394,和 Mowrey,E.Ross,“ Efficient, High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber",气体力口工者协会(Gas Processors Association)第 81 年周年大会公 艮(Dallas, Texas, March 11—13, 2002)。这些方法需要使用压缩机提供原动力将回流的流再循环到去甲烷塔,因而增添使用这些方法的设备的资本成本和操作成本。
发明内容
本发明也运用上部精馏区段(或分离精馏塔,如果工厂大小或其它因素有利于使用分离精馏和汽提塔)。但用于这种精馏区段的回流的流的提供,是使用侧抽取上升于塔中较低馏分的蒸汽,合并一部分的塔顶蒸汽。由于相当高浓度的C2成分在塔较低处的蒸汽中, 因此只以适度提高的压力,使用离开塔的上部精馏区段的冷顶部蒸汽的剩余部分中可利用的冷藏作用提供大部分的冷却,即能从此合并蒸汽流冷凝显著量的液体。然后可使用这种冷凝的液体,绝大多数是液态甲烷,从上升通过上部精馏区段的蒸汽吸收C2成分、C3成分、 C4成分和重碳氢化合物成分,借此从去甲烷塔捕获底部液态产物中这些有价值的成分。至今,压缩一部分的冷顶部蒸汽流或压缩侧抽取蒸汽流来提供回流给塔的上精馏区段,已分别被运用于C2+回收系统,例如举例说明于本发明受让人的美国专利第 4,889,545号和本发明受让人的共同申请案号11/839,693中。令人讶异的是本发明申请人发现,合并一部分的冷顶部蒸汽与侧抽取蒸汽流,然后压缩所述合并流,可在降低操作成本时提高系统效率。根据本发明已知能达到C2回收率超过84%,C3与C4+回收率超过99%。此外,与现有技术维持回收量相比,本发明可在较低能量需求下,达到从C2成分和较重成分实质上 100%分离甲烷和较轻成分。虽然本发明可应用在低压和较热温度,但在需要NGL回收塔顶温度为-50 0F [-460C ]或更冷的条件下,处理进料气体在400至1500psia的范围[2,758 至10,342kPa(a)]或更高时,本发明特别有优势。
为更了解本发明,可参考下列实施例和附图。图1是根据本发明受让人的共同申请案号11/839,693的天然气处理厂的现有技术流程图;图2是根据本发明的天然气处理厂的流程图;和图3至图6举例说明将本发明应用于天然气流的其它方法。
具体实施例方式在以下
中,提供表概述代表性方法条件所计算的流速。在本文所列的表中,为方便起见,流速(摩尔/小时)的数值已修整为最接近的整数。表中展示的总流的速率包括所有非碳氢化合物成分,因而通常大于碳氢化合物成分的流的总流速。所指示的温度是四舍五入到最接近程度的近似值。还应注意,出于比较附图所描绘的方法的目的而进行的所述方法设计的计算,是基于周围环境没有热泄漏到此方法或此方法没有热泄漏到周围环境的假设下。市售隔热材料的品质使此成为非常合理的假设,且本领域的技术人员通常会作这种假设。为方便起见,方法参数以传统英制单位和国际单位制度(Si)的单位两者记述。表所提供的摩尔流速可解读为磅摩尔/小时或千克摩尔/小时。能量消耗以马力(HP)和/ 或千英热单位/小时(MBTU/Hr)记述,对应于以磅摩尔/小时叙述的摩尔流速。能量消耗以千瓦(kW)记述,对应于以千克摩尔/小时叙述的摩尔流速。
图1是方法流程图,显示使用现有技术根据本发明受让人的共同申请案号 11/839,693,从天然气回收C2+成分的处理厂的设计。在此方法的模拟中,在120下[49°C ] 和1025pSia[7,067kPa(a)]将进入气体(inlet gas)输入工厂作为流31。如果进入气体含有会阻碍符合规定的硫化合物浓度时,则通过进料气体的适当预处理除去所述硫化合物 (未示出)。此外,通常将进料流脱水以防止在低温条件下形成水合物(冰)。通常会使用固体除湿剂达到此目的。与冷却的残余气体(流41b)、51 T [irC ]的去甲烷塔再沸器液体(流44)、 10 T [-12°C ]的去甲烷塔下侧再沸器液体(流43)和-65 T [-54°C ]的去甲烷塔上侧再沸器液体(流42),在热交换器10通过热交换将进料流31冷却。需注意,在所有情况下,交换器10代表许多个别热交换器或单一多程热交换器,或其任何组合。(至于是否在所指示的冷却操作中使用一个以上热交换器,将取决于许多因子而定,包括但不限于进入气流速、 热交换器大小、流温度等等)。在-38 0F [-390C ]和1015psia[6, 998kPa(a)]将所冷却的流 31a输入分离器11,在此处从冷凝的液体(流3 分离出蒸汽(流32)。通过膨胀阀17将分离器液体(流33)膨胀到分馏塔18的操作压力(大约465pSia[3,208kPa(a)]),流33a 供应给分馏塔18的中间塔下部进料点之前将其冷却至-67 T [-550C ]。来自分离器11的蒸汽(流3 被分成36和39两个流。占总蒸汽约23%的流36 通过热交换器12与冷的残余气体(流41a)热交换,在此处其被冷却到实质上冷凝。然后由膨胀阀14在-102 T [-740C ]将所得实质上冷凝的流36a快速膨胀到稍微高于分馏塔 18的操作压力。膨胀期间一部分的流被蒸发,造成总流的冷却。在图1举例说明的方法中, 膨胀流36b离开膨胀阀14,在供应给分馏塔18中吸收段18a的中间塔上部进料点之前达到温度-127 0F [-88 0C ]。将来自分离器11 (流39)剩下的77%蒸汽输入功膨胀机器15,在其中,从此馏分的高压进料提取机械能。机器15将蒸汽实质上等熵膨胀到塔操作压力,以功膨胀冷却膨胀流39a至温度大约-101 T [_74°C ]。典型的市售膨胀机能回收理想等熵膨胀中理论上可获得的功达80-85%等级。回收的功通常用于驱动离心式压缩机(例如项目16),举例来说, 其能用于再压缩残余气体(流41c)。之后,部分冷凝的膨胀流39a被供应给分馏塔18的中间塔进料点作为进料。塔18中的去甲烷塔是惯用的蒸馏塔,含有多个垂直间隔盘、一个或多个填料床、 或盘和填料的某些组合。去甲烷塔由两段构成上部吸收(精馏)段18a,其含有盘和/或填料用以提供向上升的膨胀流36b和39a的蒸汽馏分与往下落下的冷液体间的必要接触, 以冷凝和吸收C2成分、C3成分和较重成分;和下部汽提段18b,其含有盘和/或填料用以提供往下落下的液体与上升的蒸汽间的接触。去甲烷段18b也包括一个或多个再沸器(例如再沸器和先前叙述的侧再沸器),其加热和蒸发塔中向下流的液体馏分以提供塔中向上流的汽提蒸汽来汽提甲烷和较轻成分的液体产物流45。将流39a输入去甲烷塔18的中间进料位置,位于去甲烷塔18的吸收段18a的下部区域。膨胀流39a的液体馏分掺和从吸收段 18a往下落下的液体,且此合并的液体继续往下到去甲烷塔18的汽提段18b。膨胀流39a 的蒸汽馏分往上升通过吸收段18a并与落下的冷液体接触而冷凝和吸收C2成分、C3成分和较重成分。从分馏塔18的吸收段18a的高于膨胀流39a进料位置和低于膨胀流36b进料位置的中间区域抽出一部分蒸馏蒸汽(流48)。在-113下[-8rC ]通过回流压缩机21 将蒸馏蒸汽流48压缩至604psia[4,165kPa(a)](流48a),然后从-84 0F [-65 °C ]冷却至-IM T [-870C ],并在热交换器22中退出去甲烷塔18顶部的顶部流,即冷残余气流41 通过热交换而大体上地冷凝(流48b)。然后由合适的膨胀装置,例如膨胀阀23将实质上冷凝的流48b膨胀到去甲烷塔操作压力,造成总流冷却至-131下[-91°C]。然后将膨胀流 48c供应给分馏塔18作为顶部塔进料。将流48c的蒸汽馏分与从塔的顶馏分馏阶段上升的蒸汽合并,在-1 °F [-89°C ]形成去甲烷塔顶流41。根据底部产物中甲烷与乙烷比例以摩尔计为0.025 1的典型规格,在 70 T [21°C ]液体产物(流45)退出塔18的底部。冷的残余气流41逆流通过热交换器22 中压缩的蒸馏蒸汽流,在此处其被加热至-106 T [-770C ](流41a),逆流通过热交换器22 中输入的进料气体,在此处其被加热至-66下[_55°C](流41b),和在热交换器10中其被加热至110下[43°C](流41c)。然后在两阶段中再压缩残余气体。第一阶段是由膨胀机器 15驱动的压缩机16。第二阶段是通过辅助电源驱动的压缩机M,其将残余气体(流41e) 压缩至销售管压。在排气冷却器25中冷却至120 0F [490C ]后,在1025psia[7,067kPa(a)] 残余气体产物(流41f)流到销售气体管足以符合管线要求(通常为进入压力的等级)。下表阐述图1说明的方法中流的流速概述和能量消耗表 I(图 1)流的流速概述-磅摩尔/小时[千克摩尔/小时]流甲烷乙烷丙坑丁烷+总计3125,3821,16136233228,0553225,0501,09631118027,431333326551152624365,63624770406,1723919,41484924114021,259483,962100304,2004125,3581972026,05645249643603321,999
回收,
乙烷86.06%
丙烷99.50%
丁烷 +99.98% 功率
残余气体压缩10,783
再循环压缩260
总压缩11,043
根据没有四舍五入的流速)
HP[17,727kW]
HP[427kWl
HP[18,154kW]
图2说明根据本发明的方法的流程图。图2代表的方法所考虑的进料气体组成物和条件与图1所示的相同。因此,图2的方法可与图1的方法互相比较来举例说明本发明的优点。在图2的方法的模拟中,在120 0F [49 V ]和1025psia[7,067kPa(a)]进入气体以流31输入工厂,并在热交换器10中与冷却的残余气体(流46b)、50 T [10 °C ] 的去甲烷塔再沸器液体(流44)、8°F [-13 °C ]的去甲烷塔下侧再沸器液体(流43) 和-67下[_55°C]的去甲烷塔上侧再沸器液体(流42)通过热交换冷却。在-38下[_39°C ] 和1015psia [6,998kPa (a)]将所冷却的流31a输入分离器11,在此处从冷凝的液体(流33) 分离出蒸汽(流32)。通过膨胀阀17将分离器液体(流33/40)膨胀到分馏塔18的操作压力(大约469pSia[3,234kPa(a)]),流4(^供应给分馏塔18的中间塔下部进料点(位于稍后段落中所述的流39a的进料点下方)之前将其冷却至-67 T [-55°C ]。来自分离器11的蒸汽(流3 被分成34和39两个流。占总蒸汽约的流 34通过热交换器12与冷的残余气体(流46a)热交换,在此处其被冷却到实质上冷凝。然后在-106 T [-760C ]将所得实质上冷凝的流36a分成流37和流38两部分。含有全部
3的实质上冷凝的流约50. 5%的流38,由膨胀阀14快速膨胀到分馏塔18的操作压力。膨胀期间一部分的流被蒸发,造成总流冷却。图2举例说明的方法中,在膨胀流38a供应给分馏塔18的吸收段18a中的中间塔上部进料点之前,膨胀流38a离开膨胀阀14达到温度-127°F [_88°C]。剩下49. 5%的实质上冷凝的流(流37)由膨胀阀13快速膨胀到稍微高于分馏塔18的操作压力。在热交换器22中将快速膨胀流37a稍为从[-88 °C ] 回温到-125 T [-870C ],然后将所得流37b供应给分馏塔18的吸收段18a中另一中间塔上部进料点。将来自分离器11 (流39)剩下的74%蒸汽输入功膨胀机器15,其中从此馏分的高压进料提取机械能。机器15将蒸汽实质上等熵膨胀到塔操作压力,以功膨胀冷却膨胀流 39a至温度大约-100下[-730C J0之后,部分冷凝的膨胀流39a被供应给分馏塔18的中间塔进料点(位于流38a和37b的进料点下方)作为进料。塔18中的去甲烷塔是惯用的蒸馏塔,含有多个垂直间隔盘、一个或多个填料床、 或盘和填料的某些组合。去甲烷塔由两段构成上部吸收(精馏)段18a,其含有盘和/或填料用以提供向上升的膨胀流38a和39a与已加热膨胀流37b的蒸汽馏分与往下落下的冷液体间的必要接触,以从向上升的蒸汽冷凝并吸收C2成分、C3成分和较重成分;和下部汽提段18b,其含有盘和/或填料用以提供往下落下的液体与上升的蒸汽间的接触。去甲烷段 18b也包括一个或多个再沸器(例如再沸器和先前叙述的侧再沸器),其加热和蒸发塔中向下流的液体馏分以提供塔中向上流的汽提蒸汽来汽提甲烷和较轻成分的液体产物流45。 流39a输入去甲烷塔18的中间进料位置,位于去甲烷塔18的吸收段18a的下部区域。膨胀流的液体馏分掺和从吸收段18a往下落下的液体,且此合并的液体继续往下到去甲烷塔 18的汽提段18b。膨胀流的蒸汽馏分掺和从汽提段18b上升的蒸汽,和此合并的蒸汽向上升通过吸收段18a并与落下的冷液体接触而冷凝和吸收C2成分、C3成分和较重成分。从分馏塔18中吸收段18a的中间区域抽出馏分蒸馏蒸汽(流48),所述区域在吸收段18a的下部区域中膨胀流39a的进料位置之上,和低于膨胀流38a和已加热膨胀流 37b的进料位置。将-116°F [-82°C ]的蒸馏蒸汽流48与-1 下[-89°C ]的顶部蒸汽流41的一部分(流47)合并,形成-118下[-830C ]的合并蒸汽流49。通过回流压缩机 21将合并蒸汽流49压缩至592psia[4, 080kPa(a)](流49a),然后从-92 0F [-69°C ]冷却至[-87°C ]并在热交换器22中与残余气流46(冷去甲烷塔顶流41退出去甲烷塔 18顶部的剩余部分)和如前所述的快速膨胀流37a通过热交换大体上地冷凝(流49b)。当冷残余气流提供冷却给压缩的合并蒸汽流49a时,将其回温到-110 T [-79°C ](流46a)。将由膨胀阀23将实质上冷凝的流49b快速膨胀到去甲烷塔18的操作压力。蒸发一部分气流,在其供应给去甲烷塔18作为冷顶部塔进料(回流)之前进一步将气流49c冷却至-132 T [-91°C ]。这种冷的液体回流吸收和冷凝上升在去甲烷塔18的吸收段18a的上部精馏区域的C2成分、C3成分和较重成分。在去甲烷塔18的汽提段18b中,进料流的甲烷和较轻成分被汽提。在68 T [20°C ] 所得液体产物(流妨)退出塔18的底部(根据底部产物以体积计,甲烷与乙烷比例为 0.025 1的典型规格)。在热交换器12中馏分回温的残余气流46a逆流通过输入的进料气体,在此处其被加热至-61 T [-520C ](流46b),和如前所述当其提供冷却时,在热交换器10中被加热至112 T [440C ](流46c)。然后在两阶段中再压缩残余气体,由膨胀机器15驱动的压缩机16和通过辅助电源驱动的压缩机24。在排气冷却器25中将流46e冷却至120 0F [490C ]后,在1025pSia[7,067kPa(a)]残余气体产物(流46f)流到销售气体管线,足以符合管线要求(通常为进入压力等级)。下表阐述图2说明的方法中流的流速概述和能量消耗表II(图 2)流的流速概述-磅摩尔/小时[千克摩尔/小时]流甲烷乙烷丙烷3125,3821,1613623225,0501,096310333326552346,5632878135000366,56328781373,24914240383,314145413918,4878092294033265524125,87417814751740
483,80179494,318834625,3571744525987
回收* 乙烷丙烷丁烷+ 功率
残余气体压缩回流压缩总压缩
84.98% 99.67% 99.99%
10,801 241
361
HP HP
丁烷+ 332 180 152 47 0
47
23
24 133 152 0
0 0 0 0
332
总计
28,055
27,431
624
7,187
0
7,187
3,558
3,629
20,244
624
26,534
531
4,000
4,531
26,003
2,052
HP
P96kWl
11,042
根据没有四舍五入的流速) 表I和II的比较显示,与现有技术相比,本发明将乙烷回收从83. 06%提高为 84. 98%,丙烷回收从99. 50%提高为99. 67%,和丁烷+回收从99. 98%提高为99. 99%。表 I和II的进一步比较显示,本发明使用与现有技术实质相同的能量就达到产量的提高。就回收效率来说(以每单位能量的乙烷回收量定义),本发明比现有技术图1的方法呈现超过 2%的提高。
33
通过检验本发明对于吸收段18a的上部区域提供精馏的改进,能理解本发明在回收效率上的提高优于现有技术的方法。与现有技术图1的方法相比,本发明产生优选的含有更多甲烷和较少C2+成分的顶部回流的流。比较现有技术图1的方法中表I中回流的流 48与本发明表II中回流的流49,可得知本发明提供较大量(差不多8%)的具显著低浓度C2+成分(本发明为1. 9% ;现有技术图1的方法为2. 5% )的回流的流。此外,由于本发明使用一部分实质上冷凝的进料流36a(膨胀流37a)来补充残余气体(流46)所提供的冷却,在较低压力时这种压缩的回流的流49a大体上能被冷凝,因此与现有技术图1的方法相比,即使本发明的回流的流速较高,仍降低由回流压缩机21所需的能量。不同于本发明受让人的美国专利第4,889,545号现有技术的方法,本发明只使用一部分的实质上冷凝的进料流36a(膨胀流37a)来提供冷却给压缩的回流的流49a。这使得剩下的实质上冷凝的进料流36a (膨胀流38a)能提供含在膨胀的进料39a和从汽提段18b 上升的蒸汽中的(2成分、C3成分和重碳氢化合物成分的大量回收。本发明中,使用冷残余气体(流46)来提供压缩的回流的流49a的大部分冷却,因此与现有技术相比,降低流37a 的加热以至于所得流37b能补充膨胀流38a提供的大量回收。然后回流的流49c所提供的补充精馏能降低含在被浪费成为残余气体的进入进料气体中的C2成分、C3成分和C4+成分的量。本发明受让人的美国专利第4,889,545号现有技术的方法相比,本发明通过冷凝回流的流49c与塔进料(流37b、38a和39a)至吸收段18a的较少回温,也降低吸收段18a 中从回流的流49c所需的精馏。假设如美国专利第4,889,545号的教导,将全部的实质上冷凝的流36a膨胀和回温来提供冷凝,则不只是所得流中可得到较少的冷液体用于上升到吸收段18a的蒸汽的精馏,且有更多蒸汽在吸收段18a的上部区域中,其必须由回流的流精馏。净结果为现有技术美国专利第4,889,545号的方法中回流的流比本发明,使更多C2 成分漏出到残余气流,因此与本发明相比减少其回收效率。本发明与现有技术美国专利第 4,889,545号的方法相比的关键改进是使用冷残余气流46来提供热交换器22中压缩的回流的流49a的冷却,和蒸馏蒸汽流48含有C2成分的显著分馏物未出现在塔顶流41中,使得足够甲烷待冷凝用于作为回流,而不会如现有技术美国专利第4,889,545号的方法的教导,当固有流36a膨胀和加热时因过度蒸发而在吸收段18a增加显著的精馏载入量。其它实施方案根据本发明通常有利于设计去甲烷塔的吸收(精馏)段包含多个理论分离阶段。 然而,本发明的益处可由少至两个理论阶段即可达成。举例来说,可将离开膨胀阀23的膨胀的回流的流(流49c)的全部或一部分、来自膨胀阀14的膨胀的实质上冷凝的流38a的全部或一部分、与离开热交换器22的已加热膨胀流37b的全部或一部分合并(例如将膨胀阀和热交换器结合于去甲烷塔的管路中),且若彻底混合,蒸汽和液体将混合在一起并依据全部合并流的各种成分的相对挥发性分离。这三个流的如下混合以接触至少一部分的膨胀流39a来合并,就本发明的目的来说,将会视为构成吸收段。图3至图6显示本发明的其它实施方案。图2至图4描绘分馏塔建构在单一容器中。图5和图6描绘分馏塔建构在两个容器吸收(精馏)塔18 (接触和分离装置)和汽提(蒸馏)塔20中。在这些情况下,来自汽提塔20的顶部蒸汽流M流至吸收塔18的下部段(由流阳)以接触回流的流49c、膨胀的实质上冷凝的流38a和所加热膨胀的流37b。使用泵19将来自吸收塔18底部的液体(流5 递送至汽提塔20的顶部,以至两个塔有效运行作为蒸馏系统。决定是否将分馏塔建构为单一容器(例如图2至图4中的去甲烷塔18) 或多容器,将取决于诸多因子而异,例如工厂大小、制造设备的距离等等。某些情况可能有助于从高于膨胀的实质上冷凝的流38a的进料点的吸收段18a的上部区域(流50)抽回图3和图4的蒸馏蒸汽流48,而不是从低于膨胀的实质上冷凝的流 38a的进料点的吸收段18a的中间区域抽回。同样地,在图5和图6中,可从吸收塔18在膨胀的实质上冷凝的流38a(流51)的进料点上方或膨胀流38a(流50)的进料点下方抽出蒸汽蒸馏流48。在其它案例,在图3和图4中可能有利于从去甲烷塔18中汽提段18b的上部区域(流5 抽回蒸馏蒸汽流48。同样地,图5和图6中来自汽提塔20的顶部蒸汽流M 的一部分(流5 可与流47合并形成流49,而任何剩余部分(流5 流到吸收塔18的下部段。如先前所述,压缩的合并蒸汽流49a被部分冷凝,和所得冷凝物用于从上升通过去甲烷塔18的吸收段18a或通过吸收塔18的蒸汽吸收有价值的C2成分、C3成分和较重成分。但本发明不限于此实施方案。举例来说,可能有利的是用此方法只处理这些蒸汽的一部分,或只使用一部分的冷凝物作为吸收剂,在一些案例中其它的设计考虑指示部分蒸汽或冷凝物应绕过去甲烷塔18的吸收段18a或吸收塔18。某些情况可能倾向在热交换器 22中压缩的合并蒸汽流49a的部分冷凝作用,而非全体冷凝作用。其它情况可能倾向蒸馏蒸汽流48是来自分馏塔18或吸收塔18的全体蒸汽侧抽取,而非部分蒸汽侧抽取。还应注意,随进料气流的组成物,可能有利的是使用外部的冷冻作用以提供热交换器22中压缩的合并蒸汽流49a的部分冷却。进料气体条件、工厂大小、可取得的设备、或其它因素可能暗示功膨胀机器15的淘汰,或可以另外的膨胀装置(例如膨胀阀)置换。虽然已在特殊的膨胀装置中描述个别的流膨胀,然当适宜时可运用其它的膨胀部件。例如,条件可保证进料流(流37和38)实质上冷凝的部分或离开热交换器22的实质上冷凝的回流的流(流49b)的功膨胀。取决于进料气体中重碳氢化合物的量和进料气体压力,图2至图6中离开热交换器10的所冷却的进料流31a,可能不包含任何液体(因为其在其露点之上,或因为其在其临界凝固压之上)。这种情况不需要图2至图6所示的分离器11。根据本发明,蒸汽进料的分开可以数种方法完成。在图2、3和5的方法中,蒸汽的分开发生在冷却后并分离可能已形成的任何液体。高压气体可被分开,但如图4和6所示, 是在进入气体的任何冷却之前。在某些实施方案中,蒸汽分开可在分离器中进行。高压液体(图2至图6中流33)不需被膨胀和进料蒸馏塔的中间塔进料点。反而是其全部或一部分可与分离器蒸汽的部分(图2、3和5的流34)或冷却的进料气体的部分 (图4和图6的流34a)合并,流到热交换器12 (其在图2至图6中以虚线的流35表示)。 任何剩下的液体馏分可由适宜的膨胀装置,例如膨胀阀或膨胀机器而膨胀,并进料蒸馏塔的中间塔进料点(图2至图6的流40a)。流40在流到去甲烷塔之前,在膨胀步骤之前或之后也可用于进入气体的冷却或其它热交换器操作。根据本发明,可运用使用外部的冷冻作用来补充来自其它处理流的进入气体可得到的冷却,特别是在有很多进入气体的情况下运用。用于处理热交换器的分离器液体和去甲烷塔侧抽取液体的使用与分布,以及用于进入气体冷却的热交换器的特别配置,必须对于每一特别应用和用于特定热交换器操作的处理流的选择来评估。还应认识到,在分开的蒸汽进料的每一分流中所见的进料的相对量,将取决于若干因子,包括气体压力、进料气体组成物、从进料可节约萃取的热含量,和可得的马力量。当减少从膨胀机回收的功借此增加再压缩马力需求时,对塔的顶部的更多进料可增加回收。 在塔的低部增加进料会降低马力消耗,但还可降低产物回收。中间塔进料的相对位置可因进入组成物或其它因子变化,例如所需的回收程度和进入气体冷却期间所形成的液体的量。此外,两个或两个以上的进料流或其馏分,可取决于相对温度和个别流的量而合并,然后合并的流进料中间塔进料位置。例如,环境条件可能有助于合并膨胀的实质上冷凝的流 38a与已加热膨胀流37b,并供应所述合并流到分馏塔18(图2至图4)或吸收塔18(图5 和图6)上的单一中间塔上部进料点。按照操作此方法所需的每一量的效能消耗来说,本发明提供C2成分、C3成分和重碳氢化合物成分,或C3成分和重碳氢化合物成分的回收改进。操作去甲烷塔或去乙烷塔处理所需的效能消耗的减少,可以减少压缩或再压缩作用所需的功、降低外部的冷冻作用所需的功、降低塔再沸器所需的能量、或其组合的形式表现。已说明的内容将视为本发明的优选实施方案,然而本领域的技术人员应认识到可对所述优选实施方案做其它和进一步的修改,例如使本发明适于各种条件、进料的种类,或其它需求而不悖离如上界定的本发明的权利要求书的精神。
权利要求
1.一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于冷却后将所述冷却流分开为第一流和第二流;和(1)冷却所述第一流以将其全部实质上冷凝;(2)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(3)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后供应至所述蒸馏塔的中间塔上部进料位置;(4)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后供应至所述蒸馏塔的所述中间塔上部进料位置;(5)将所述第二流膨胀到所述较低压力,并供应至所述蒸馏塔的低于所述中间塔上部进料位置的中间塔进料位置;(6)从所述蒸馏塔的上部区域抽出顶部蒸汽流,并分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(7)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(8)从低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域中抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并以形成合并蒸汽流;(9)将所述合并蒸汽流压缩至较高压力;(10)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(4)和 (7)的加热至少一部分时形成冷凝流;(11)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应至所述蒸馏塔的顶部进料位置;和(12)所述进料流至所述蒸馏塔的量和温度有效维持所述蒸馏塔的顶部温度在一温度, 借以回收所述相对较少挥发性分馏物中的大部分成分。
2.一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于冷却之前将所述气流分开为第一流和第二流;和(1)冷却所述第一流以将其全部实质上冷凝;(2)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(3)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后供应至所述蒸馏塔的中间塔上部进料位置;(4)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后供应至所述蒸馏塔的所述中间塔上部进料位置;(5)将所述第二流冷却且之后膨胀到所述较低压力,并供应至所述蒸馏塔的低于所述中间塔上部进料位置的中间塔进料位置;(6)从所述蒸馏塔的上部区域抽出顶部蒸汽流,并分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(7)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(8)从低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(9)将所述合并蒸汽流压缩至较高压力;(10)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(4)和 (7)的加热至少一部分时形成冷凝流;(11)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应至所述蒸馏塔的顶部进料位置;和(12)所述进料流至所述蒸馏塔的量和温度有效维持所述蒸馏塔的顶部温度在一温度, 借以回收所述相对较少挥发性分馏物中的大部分成分。
3. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于充分冷却所述气流以将其部分冷凝;和(1)将所述部分冷凝的气流分离,从而提供蒸汽流和至少一个液体流;(2)之后将所述蒸汽流分开为第一流和第二流;(3)冷却所述第一流以将其全部实质上冷凝;(4)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(5)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,之后供应至所述蒸馏塔的中间塔上部进料位置;(6)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后供应至所述蒸馏塔的所述中间塔上部进料位置;(7)将所述第二流膨胀到所述较低压力,并供应至所述蒸馏塔的低于所述中间塔上部进料位置的中间塔进料位置;(8)将所述至少一个液体流的至少一部分膨胀到所述较低压力,并供应至所述蒸馏塔的低于所述中间塔进料位置的中间塔下部进料位置;(9)从所述蒸馏塔的上部区域抽出顶部蒸汽流,并分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(10)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(11)从低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(12)将所述合并蒸汽流压缩至较高压力;(13)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(6)和 (10)的加热至少一部分时形成冷凝流;(14)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应至所述蒸馏塔的顶部进料位置;和(15)所述进料流至所述蒸馏塔的量和温度有效维持所述蒸馏塔的顶部温度在一温度, 借以回收所述相对较少挥发性分馏物中的大部分成分。
4. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于冷却之前将所述气流分开为第一流和第二流;和(1)冷却所述第一流以将其全部实质上冷凝;(2)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(3)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后供应至所述蒸馏塔的中间塔上部进料位置;(4)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后供应至所述蒸馏塔的所述中间塔上部进料位置;(5)在压力下充分冷却所述第二流以将其部分冷凝;(6)将所述部分冷凝的第二流分离,从而提供蒸汽流和至少一个液体流;(7)将所述蒸汽流膨胀到所述较低压力,并供应至所述蒸馏塔的低于所述中间塔上部进料位置的中间塔进料位置;(8)将所述至少一个液体流的至少一部分膨胀到所述较低压力,并供应至所述蒸馏塔的低于所述中间塔进料位置的中间塔下部进料位置;(9)从所述蒸馏塔的上部区域抽出顶部蒸汽流,并分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(10)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(11)从低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(12)将所述合并蒸汽流压缩至较高压力;(13)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(4)和 (10)的加热至少一部分时形成冷凝流;(14)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应至所述蒸馏塔的顶部进料位置;和(15)所述进料流至所述蒸馏塔的量和温度有效维持所述蒸馏塔的顶部温度在一温度, 借以回收所述相对较少挥发性分馏物中的大部分成分。
5. —种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于充分冷却所述气流以将其部分冷凝;和(1)将所述部分冷凝的气流分离,从而提供蒸汽流和至少一个液体流;(2)之后将所述蒸汽流分开为第一流和第二流;(3)将所述第一流与所述至少一个液体流的至少一部分合并形成合并流,之后冷却所述合并流以将其全部实质上冷凝;(4)将所述实质上冷凝的合并流分开为至少一种第一冷凝馏分和第二冷凝馏分;(5)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后供应至所述蒸馏塔的中间塔上部进料位置;(6)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后供应至所述蒸馏塔的所述中间塔上部进料位置;(7)将所述第二流膨胀到所述较低压力,并供应至所述蒸馏塔的低于所述中间塔上部进料位置的中间塔进料位置;(8)将所述至少一个液体流的任何剩余部分膨胀到所述较低压力并供应至所述蒸馏塔的低于所述中间塔进料位置的中间塔下部进料位置;(9)从所述蒸馏塔的上部区域抽出顶部蒸汽流,并分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(10)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(11)从低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(12)将所述合并蒸汽流压缩至较高压力;(13)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(6)和 (10)的加热至少一部分时形成冷凝流;(14)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应至所述蒸馏塔的顶部进料位置;和(15)所述进料流至所述蒸馏塔的量和温度有效维持所述蒸馏塔的顶部温度在一温度, 借以回收所述相对较少挥发性分馏物中的大部分成分。
6.一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于冷却后将所述冷却流分开为第一流和第二流;和(1)冷却所述第一流以将其全部实质上冷凝;(2)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(3)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后在中间塔进料位置供应给接触和分离装置,其产生第一顶部蒸汽流和底部液体流,之后将所述底部液体流供应给所述蒸馏塔;(4)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后在所述中间塔进料位置供应给接触和分离装置;(5)将所述第二流膨胀到所述较低压力,并在低于所述中间塔进料位置的塔的第一下部进料位置供应给接触和分离装置;(6)从所述蒸馏塔的上部区域抽出第二顶部蒸汽流,并在低于所述中间塔进料位置的塔的第二下部进料位置供应给接触和分离装置;(7)将所述第一顶部蒸汽流分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(8)加热所述第二蒸汽馏分,之后排出加热的所述第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(9)从低于所述中间塔上部进料位置和高于塔的所述第一和第二下部进料位置的所述接触和分离装置的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(10)将所述合并蒸汽流压缩至较高压力;(11)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(4)和 (8)的加热至少一部分时形成冷凝流;(12)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应至所述接触和分离装置的顶部进料位置;和(13)所述进料流至所述接触和分离装置的量和温度有效维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
7.一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于冷却前将所述气流分开为第一流和第二流;和(1)冷却所述第一流以将其全部实质上冷凝;(2)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(3)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后在中间塔进料位置供应给接触和分离装置,其产生第一顶部蒸汽流和底部液体流,之后将所述底部液体流供应给所述蒸馏塔;(4)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后在所述中间塔进料位置供应给接触和分离装置;(5)冷却所述第二流且之后膨胀到所述较低压力,并在低于所述中间塔进料位置的塔的第一下部进料位置供应给接触和分离装置;(6)从所述蒸馏塔的上部区域抽出第二顶部蒸汽流,并在低于所述中间塔进料位置的塔的第二下部进料位置供应给接触和分离装置;(7)将所述第一顶部蒸汽流分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(8)加热所述第二蒸汽馏分,之后排出加热的所述第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(9)从低于所述中间塔进料位置和高于塔的所述第一和第二下部进料位置的所述接触和分离装置的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(10)将所述合并蒸汽流压缩至较高压力;(11)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(4)和 (8)的加热至少一部分时形成冷凝流;(12)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应至所述接触和分离装置的顶部进料位置;和(13)所述进料流至所述接触和分离装置的量和温度有效维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
8. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于充分冷却所述气流以将其部分冷凝;和(1)将所述部分冷凝的气流分离,借此提供蒸汽流和至少一个液体流;(2)之后将所述蒸汽流分开为第一流和第二流;(3)冷却所述第一流以将其全部实质上冷凝;(4)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(5)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后在中间塔进料位置供应给接触和分离装置,其产生第一顶部蒸汽流和底部液体流,之后将所述底部液体流供应给所述蒸馏塔;(6)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后在所述中间塔进料位置供应给接触和分离装置;(7)将所述第二流膨胀到所述较低压力,并在低于所述中间塔进料位置的塔的第一下部进料位置供应给接触和分离装置;(8)将所述至少一个液体流的至少一部分膨胀到所述较低压力,并供应至所述蒸馏塔的中间塔进料位置;(9)从所述蒸馏塔的上部区域抽出第二顶部蒸汽流,并在低于所述中间塔进料位置的塔的第二下部进料位置供应给接触和分离装置;(10)将所述第一顶部蒸汽流分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(11)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(12)从低于所述中间塔进料位置和高于塔的所述第一和第二下部进料位置的所述接触和分离装置的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(13)将所述合并蒸汽流压缩至较高压力;(14)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(6)和 (11)的加热至少一部分时形成冷凝流;(15)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应给所述接触和分离装置的顶部进料位置;和(16)所述进料流至所述接触和分离装置的量和温度有效维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
9. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于冷却前将所述气流分开为第一流和第二流;和(1)冷却所述第一流以将其全部实质上冷凝;(2)将所述实质上冷凝的第一流分开为至少一种第一冷凝馏分和第二冷凝馏分;(3)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后在中间塔进料位置供应给接触和分离装置,其产生第一顶部蒸汽流和底部液体流,之后将所述底部液体流供应给所述蒸馏塔;(4)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后在所述中间塔进料位置供应给接触和分离装置;(5)在压力下充分冷却所述第二流以将其部分冷凝;(6)将所述部分冷凝的第二流分离,从而提供蒸汽流和至少一个液体流;(7)将所述蒸汽流膨胀到所述较低压力,并在低于所述中间塔进料位置的塔的第一下部进料位置供应给接触和分离装置;(8)将所述至少一个液体流的至少一部分膨胀到所述较低压力,并供应至所述蒸馏塔的中间塔进料位置;(9)从所述蒸馏塔的上部区域抽出第二顶部蒸汽流,并在低于所述中间塔进料位置的塔的第二下部进料位置供应给接触和分离装置;(10)将所述第一顶部蒸汽流分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(11)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(12)从低于所述中间塔进料位置和高于塔的所述第一和第二下部进料位置的所述接触和分离装置的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并以形成合并蒸汽流;(13)将所述合并蒸汽流压缩至较高压力;(14)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(4)和 (11)的加热至少一部分时形成冷凝流;(15)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应给所述接触和分离装置的顶部进料位置;和(16)所述进料流至所述接触和分离装置的量和温度有效维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
10. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的方法,其中所述方法(a)在压力下冷却所述气流以提供冷却流;(b)膨胀所述冷却流到较低压力,借以将其进一步冷却;和(c)弓丨导所述进一步冷却流到蒸馏塔并在所述较低压力下分馏,借以回收所述相对较少挥发性分馏物的成分;其中改进在于充分冷却所述气流以将其部分冷凝;和(1)将所述部分冷凝的气流分离,从而提供蒸汽流和至少一个液体流;(2)之后将所述蒸汽流分开为第一流和第二流;(3)将所述第一流与所述至少一个液体流的至少一部分合并形成合并流,冷却所述合并流以将其全部实质上冷凝;(4)将所述实质上冷凝的合并流分开为至少一种第一冷凝馏分和第二冷凝馏分;(5)将所述第一冷凝馏分膨胀到所述较低压力借以进一步冷却,并且之后在中间塔进料位置供应给接触和分离装置,其产生第一顶部蒸汽流和底部液体流,之后将所述底部液体流供应给所述蒸馏塔;(6)将所述第二冷凝馏分膨胀到所述较低压力借以进一步冷却、加热,并且之后在所述中间塔进料位置供应给接触和分离装置;(7)将所述第二流膨胀到所述较低压力,并在低于所述中间塔进料位置的塔的第一下部进料位置供应给接触和分离装置;(8)将所述至少一个液体流的任何剩余膨胀到所述较低压力,并供应至所述蒸馏塔的中间塔进料位置;(9)从所述蒸馏塔的上部区域抽出第二顶部蒸汽流,并在低于所述中间塔进料位置的塔的第二下部进料位置供应给接触和分离装置;(10)将所述第一顶部蒸汽流分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(11)加热所述第二蒸汽馏分,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(12)从低于所述中间塔进料位置和高于塔的所述第一和第二下部进料位置的所述接触和分离装置的区域抽出蒸馏蒸汽流,并与所述第一蒸汽馏分合并形成合并蒸汽流;(13)将所述合并蒸汽流压缩至较高压力;(14)将所述压缩的合并蒸汽流充分冷却以冷凝其至少一部分,借此在供应步骤(6)和 (11)的加热至少一部分时形成冷凝流;(15)将所述冷凝流的至少一部分膨胀到所述较低压力,并且之后供应给所述接触和分离装置的顶部进料位置;和(16)所述进料流至所述接触和分离装置的量和温度有效维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
11.根据权利要求1、2、3、4或5所述的改进,其中所述蒸馏蒸汽流是从所述蒸馏塔的区域抽出,所述区域低于所述顶部进料位置且高于所述中间塔上部进料位置。
12.根据权利要求1、2、3、4或5所述的改进,其中所述蒸馏蒸汽流是从低于所述中间塔进料位置的所述蒸馏塔的区域抽出。
13.根据权利要求6、7、8、9或10所述的改进,其中所述蒸馏蒸汽流是从所述接触和分离装置的区域抽出,所述区域低于所述顶部进料位置且高于所述中间塔进料位置。
14.根据权利要求6、7、8、9或10所述的改进,其中将所述第二顶部蒸汽流分开为所述蒸馏蒸汽流和第二蒸馏蒸汽流,之后在所述塔第二下部进料位置供应所述第二蒸馏蒸汽流至所述接触和分离装置。
15.根据权利要求1、2、3、4或5所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述蒸馏塔的中间塔的第二上部进料位置。
16.根据权利要求11所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述蒸馏塔的中间塔的第二上部进料位置。
17.根据权利要求12所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述蒸馏塔的中间塔的第二上部进料位置。
18.根据权利要求6、7、8、9或10所述的改进,其中所述加热膨胀的第二冷凝馏分供应给所述接触和分离装置的中间塔第二进料位置。
19.根据权利要求13所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述接触和分离装置的中间塔第二进料位置。
20.根据权利要求14所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述接触和分离装置的中间塔第二进料位置。
21.一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(C)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)第一分开部件,连接所述第一冷却部件以接收所述冷却流并将其分开为第一流和第二流;(2)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(3)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(4)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接所述蒸馏塔以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述蒸馏塔;(5)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(6)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述蒸馏塔以供应所述加热膨胀的第二冷凝馏分至所述蒸馏塔的所述中间塔上部进料位置;(7)所述第一膨胀部件连接所述第一分开部件以接收所述第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述蒸馏塔以在低于所述中间塔上部进料位置的中间塔进料位置供应所述膨胀的第二流至所述蒸馏塔;(8)第三分开部件,连接所述蒸馏塔以接收在其中分离的所述顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(9)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(10)抽回蒸汽部件,连接所述蒸馏塔以接收来自低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域的蒸馏蒸汽流;(11)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(12)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(13)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(6)和(9)的加热至少一部分时形成冷凝流;(14)第四膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述蒸馏塔;和(15)控制部件,适于调节所述进料流至所述蒸馏塔的量和温度以维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
22. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)第一分开部件,在所述第一冷却部件之前将所述气流分开为第一流和第二流;(2)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(3)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(4)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接所述蒸馏塔以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述蒸馏塔;(5)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(6)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述蒸馏塔以供应所述加热膨胀的第二冷凝馏分至所述蒸馏塔的所述中间塔上部进料位置;(7)所述第一冷却部件连接所述第一分开部件以接收所述第二流并冷却;(8)所述第一膨胀部件连接所述第一冷却部件以接收所述冷却的第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述蒸馏塔以在低于所述中间塔上部进料位置的中间塔进料位置供应所述膨胀冷却的第二流至所述蒸馏塔;(9)第三分开部件,连接所述蒸馏塔以接收在其中分离的所述顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(10)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(11)抽回蒸汽部件,连接所述蒸馏塔以接收来自低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域的蒸馏蒸汽流;(12)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(13)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(14)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(6)和(10)的加热至少一部分时形成冷凝流;(15)第四膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述蒸馏塔;和(16)控制部件,适于调节所述进料流至所述蒸馏塔的量和温度以维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
23. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)所述第一冷却部件适于在压力下充分冷却所述气流以将其部分地冷凝;(2)分离部件,连接所述第一冷却部件以接收所述部分冷凝的气流,并将其分离为蒸汽流和至少一个液体流;(3)第一分开部件,连接所述分离部件以接收所述蒸汽流并将其分开为第一流和第二流;(4)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(5)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(6)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接所述蒸馏塔以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述蒸馏塔;(7)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(8)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述蒸馏塔以供应所述加热膨胀的第二冷凝馏分至所述蒸馏塔的所述中间塔上部进料位置;(9)所述第一膨胀部件连接所述第一分开部件以接收所述第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述蒸馏塔以在低于所述中间塔上部进料位置的中间塔进料位置供应所述膨胀的第二流至所述蒸馏塔;(10)第四膨胀部件,连接所述分离部件以接收所述至少一个液体流的至少一部分并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的中间塔下部进料位置供应所述膨胀的液体流到所述蒸馏塔;(11)第三分开部件,连接所述蒸馏塔以接收在其中分离的所述顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(12)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(13)抽回蒸汽部件,连接所述蒸馏塔以接收来自低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域的蒸馏蒸汽流;(14)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(15)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(16)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(8)和(1 的加热至少一部分时形成冷凝流;(17)第五膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第五膨胀部件进一步连接所述蒸馏塔,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述蒸馏塔;和(18)控制部件,适于调节所述进料流至所述蒸馏塔的量和温度以维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
24. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)第一分开部件,在所述第一冷却部件之前将所述气流分开为第一流和第二流;(2)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(3)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(4)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接所述蒸馏塔以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述蒸馏塔;(5)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(6)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述蒸馏塔以供应所加热所述膨胀的第二冷凝馏分至所述蒸馏塔的所述中间塔上部进料位置;(7)所述第一冷却部件连接所述第一分开部件以接收所述第二流,所述第一冷却部件适于在压力下充分冷却所述第二流以将其部分地冷凝;(8)分离部件,连接所述第一冷却部件以接收部分冷凝的所述第二流,并将其分离为蒸汽流和至少一个液体流;(9)所述第一膨胀部件连接所述分离部件以接收所述蒸汽流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述蒸馏塔以在低于所述中间塔上部进料位置的中间塔进料位置供应所述膨胀的蒸汽流至所述蒸馏塔;(10)第四膨胀部件,连接所述分离部件以接收所述至少一个液体流的至少一部分并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的中间塔下部进料位置供应所述膨胀的液体流到所述蒸馏塔;(11)第三分开部件,连接所述蒸馏塔以接收于其中分离的所述顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(12)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(13)抽回蒸汽部件,连接所述蒸馏塔以接收来自低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域的蒸馏蒸汽流;(14)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(15)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(16)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(6)和(1 的加热至少一部分时形成冷凝流;(17)第五膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第五膨胀部件进一步连接所述蒸馏塔,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述蒸馏塔;和(18)控制部件,适于调节所述进料流至所述蒸馏塔的量和温度以维持所述蒸馏塔的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
25. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)所述第一冷却部件适于在压力下充分冷却所述气流以将其部分地冷凝;(2)分离部件,连接所述第一冷却部件以接收部分冷凝的所述气流,并将其分离为蒸汽流和至少一个液体流;(3)第一分开部件,连接所述分离部件以接收所述蒸汽流并将其分开为第一流和第二流;(4)第一合并部件,连接所述第一分开部件和所述分离部件以接收所述第一流和所述至少一个液体流的至少一部分,并形成合并流;(5)第二冷却部件,连接所述第一合并部件以接收所述合并流并将其充分冷却从而将其实质上冷凝;(6)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的合并流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(7)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接所述蒸馏塔以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述蒸馏塔;(8)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(9)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述蒸馏塔以供应所述加热膨胀的第二冷凝馏分至所述蒸馏塔的所述中间塔上部进料位置;(10)所述第一膨胀部件连接所述第一分开部件以接收所述第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述蒸馏塔以在低于所述中间塔上部进料位置的中间塔进料位置供应所述膨胀的第二流至所述蒸馏塔;(11)第四膨胀部件,连接所述分离部件以接收所述至少一个液体流的任何剩余部分并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的中间塔下部进料位置供应所述膨胀的液体流到所述蒸馏塔;(12)第三分开部件,连接所述蒸馏塔以接收于其中分离的所述顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(13)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(14)抽回蒸汽部件,连接所述蒸馏塔以接收来自低于所述中间塔上部进料位置和高于所述中间塔进料位置的所述蒸馏塔的区域的蒸馏蒸汽流;(15)第二合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(16)压缩部件,连接所述第二合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(17)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(9)和(1 的加热至少一部分时形成冷凝流;(18)第五膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第五膨胀部件进一步连接所述蒸馏塔,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述蒸馏塔;和(19)控制部件,适于调节所述进料流至所述蒸馏塔的量和温度以维持所述蒸馏塔的顶部温度在温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
26. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为第一顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)第一分开部件,连接所述第一冷却部件以接收所述冷却流并将其分开为第一流和第二流;(2)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(3)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(4)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接一接触和分离部件以在中间塔进料位置供应所述膨胀的第一冷凝馏分至所述接触和分离部件,所述接触和分离部件适于产生第二顶部蒸汽流和一底部液体流;(5)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(6)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述接触和分离部件以在中间塔进料位置供应所述加热膨胀的第二冷凝馏分至所述接触和分离部件;(7)所述第一膨胀部件连接所述第一分开部件以接收所述第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述接触和分离部件以在低于所述中间塔进料位置的塔的第一下部进料位置供应所述膨胀的第二流至所述接触和分离部件;(8)所述蒸馏塔连接所述接触和分离部件以接收所述底部液体流的至少一部分;(9)所述接触和分离部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的塔的第二下部进料位置接收所述第一顶部蒸汽流的至少一部分;(10)第三分开部件,连接所述接触和分离部件以接收于其中所述分离的第二顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(11)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(12)抽回蒸汽部件,连接所述接触和分离部件以接收来自低于所述中间塔进料位置和高于所述塔的所述第一和第二下部进料位置的所述接触和分离装置的区域的蒸馏蒸汽流;(13)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(14)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(15)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(6)和(11)的加热至少一部分时形成冷凝流;(16)第四膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述接触和分离部件,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述接触和分离部件;和(17)控制部件,适于调节所述进料流至所述接触和分离部件的量和温度以维持所述接触和分离部件的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
27. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为第一顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)第一分开部件,在所述第一冷却部件之前将所述气流分开为第一流和第二流;(2)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(3)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(4)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接一接触和分离部件以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述接触和分离部件,所述接触和分离部件适于产生第二顶部蒸汽流和底部液体流;(5)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(6)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述接触和分离部件以在中间塔进料位置供应所述加热膨胀的第二冷凝馏分至所述接触和分离部件;(7)所述第一冷却部件连接所述第一分开部件以接收所述第二流并使其冷却;(8)所述第一膨胀部件连接所述第一冷却部件以接收所述冷却的第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述接触和分离部件以在低于所述中间塔进料位置的塔的第一下部进料位置供应所述膨胀冷却的第二流至所述接触和分离部件;(9)所述蒸馏塔连接所述接触和分离部件以接收所述底部液体流的至少一部分;(10)所述接触和分离部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的塔的第二下部进料位置接收所述第一顶部蒸汽流的至少一部分;(11)第三分开部件,连接所述接触和分离部件以接收于其中分离的所述第二顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(12)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(13)抽回蒸汽部件,连接所述接触和分离部件以接收来自低于所述中间塔进料位置和高于所述塔的所述第一和第二下部进料位置的所述接触和分离装置的区域的蒸馏蒸汽流;(14)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(15)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(16)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(6)和(1 的加热至少一部分时形成冷凝流;(17)第四膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述接触和分离部件,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述接触和分离部件;和(18)控制部件,适于调节所述进料流至所述接触和分离部件的量和温度以维持所述接触和分离部件的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
28. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为第一顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)所述第一冷却部件适于在压力下充分冷却所述气流以将其部分地冷凝;(2)分离部件,连接所述第一冷却部件以接收所述部分冷凝的气流,并将其分离为蒸汽流和至少一个液体流;(3)第一分开部件,连接所述分离部件以接收所述蒸汽流并将其分开为第一流和第二流;(4)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(5)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(6)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接一接触和分离部件以在中间塔进料位置供应所述膨胀的第一冷凝馏分至所述接触和分离部件,所述接触和分离部件适于产生第二顶部蒸汽流和底部液体流;(7)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(8)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述接触和分离部件以在中间塔进料位置供应所述加热膨胀的第二冷凝馏分至所述接触和分离部件;(9)所述第一膨胀部件连接所述第一分开部件以接收所述第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述接触和分离部件以在低于所述中间塔进料位置的塔的第一下部进料位置供应所述膨胀的第二流至所述接触和分离部件;(10)第四膨胀部件,连接所述分离部件以接收所述至少一个液体流的至少一部分并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以供应所述膨胀的液体流到所述蒸馏塔的中间塔进料位置;(11)所述蒸馏塔连接所述接触和分离部件以接收所述底部液体流的至少一部分;(12)所述接触和分离部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的塔的第二下部进料位置接收所述第一顶部蒸汽流的至少一部分;(13)第三分开部件,连接所述接触和分离部件以接收于其中分离的所述第二顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(14)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(15)抽回蒸汽部件,连接所述接触和分离部件以接收来自低于所述中间塔进料位置和高于所述塔的所述第一和第二下部进料位置的所述接触和分离装置的区域的蒸馏蒸汽流;(16)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(17)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(18)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(8)和(14)的加热至少一部分时形成冷凝流;(19)第五膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第五膨胀部件进一步连接所述接触和分离部件,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述接触和分离部件;和(20)控制部件,适于调节所述进料流至所述接触和分离部件的量和温度以维持所述接触和分离部件的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
29. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为第一顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)第一分开部件,在所述第一冷却部件之前将所述气流分开为第一流和第二流;(2)第二冷却部件,连接所述第一分开部件以接收所述第一流并将其充分冷却从而将其实质上冷凝;(3)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的第一流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(4)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接一接触和分离部件以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述接触和分离部件,所述接触和分离部件适于产生第二顶部蒸汽流和底部液体流;(5)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(6)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述接触和分离部件以在中间塔进料位置供应所述加热膨胀的第二冷凝馏分至所述接触和分离部件;(7)所述第一冷却部件连接所述第一分开部件以接收所述第二流,所述第一冷却部件适于在压力下充分冷却所述第二流以将其部分地冷凝;(8)分离部件,连接所述第一冷却部件以接收部分冷凝的所述第二流,并将其分离为蒸汽流和至少一个液体流;(9)所述第一膨胀部件连接所述分离部件以接收所述蒸汽流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述接触和分离部件以在低于所述中间塔进料位置的塔的第一下部进料位置供应所述膨胀的蒸汽流至所述接触和分离部件;(10)第四膨胀部件,连接所述分离部件以接收所述至少一个液体流的至少一部分并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以供应所述膨胀的液体流到所述蒸馏塔的中间塔进料位置;(11)所述蒸馏塔连接所述接触和分离部件以接收所述底部液体流的至少一部分;(12)所述接触和分离部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的塔的第二下部进料位置接收所述第一顶部蒸汽流的至少一部分;(13)第三分开部件,连接所述接触和分离部件以接收于其中分离的所述第二顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(14)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(15)抽回蒸汽部件,连接所述接触和分离部件以接收来自低于所述中间塔进料位置和高于所述塔的所述第一和第二下部进料位置的所述接触和分离装置的区域的蒸馏蒸汽流;(16)合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(17)压缩部件,连接所述合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(18)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(6)和(14)的加热至少一部分时形成冷凝流;(19)第五膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第五膨胀部件进一步连接所述接触和分离部件,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述接触和分离部件;和(20)控制部件,适于调节所述进料流至所述接触和分离部件的量和温度以维持所述接触和分离部件的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
30. 一种用于将含有甲烷、C2成分、C3成分和重碳氢化合物成分的气流分离为挥发性残余气体分馏物和含有大部分所述C2成分、C3成分和重碳氢化合物成分或者所述C3成分和重碳氢化合物成分的相对较少挥发性分馏物的设备,所述设备中有(a)第一冷却部件,在压力下冷却所述气流,关联于在压力下提供冷却流;(b)第一膨胀部件,关联于在压力下接收所述冷却流的至少一部分并将其膨胀到较低压力,借以进一步冷却所述流;和(c)蒸馏塔,关联于接收所述进一步冷却流,所述蒸馏塔适于将所述进一步冷却流分离为第一顶部蒸汽流和所述相对较少挥发性分馏物;改进在于其中所述设备包括(1)所述第一冷却部件适于在压力下充分冷却所述气流以将其部分地冷凝;(2)分离部件,连接所述第一冷却部件以接收所述部分冷凝的气流,并将其分离为蒸汽流和至少一个液体流;(3)第一分开部件,连接所述分离部件以接收所述蒸汽流并将其分开为第一流和第二流;(4)第一合并部件,连接所述第一分开部件和所述分离部件以接收所述第一流和所述至少一个液体流的至少一部分,并形成合并流;(5)第二冷却部件,连接所述第一合并部件以接收所述合并流并将其充分冷却从而将其实质上冷凝;(6)第二分开部件,连接所述第二冷却部件以接收所述实质上冷凝的合并流,并将其分开为至少一种第一冷凝馏分和第二冷凝馏分;(7)第二膨胀部件,连接所述第二分开部件以接收所述第一冷凝馏分并将其膨胀到所述较低压力,所述第二膨胀部件进一步连接一接触和分离部件以在中间塔上部进料位置供应所述膨胀的第一冷凝馏分至所述接触和分离部件,所述接触和分离部件适于产生第二顶部蒸汽流和一底部液体流;(8)第三膨胀部件,连接所述第二分开部件以接收所述第二冷凝馏分并将其膨胀到所述较低压力;(9)热交换部件,连接所述第三膨胀部件以接收所述膨胀的第二冷凝馏分并使其加热, 所述热交换部件进一步连接所述接触和分离部件以在中间塔进料位置供应所述加热膨胀的第二冷凝馏分至所述接触和分离部件;(10)所述第一膨胀部件连接所述第一分开部件以接收所述第二流并将其膨胀至所述较低压力,所述第一膨胀部件进一步连接所述接触和分离部件以在低于所述中间塔进料位置的塔的第一下部进料位置供应所述膨胀的第二流至所述接触和分离部件;(11)第四膨胀部件,连接所述分离部件以接收所述至少一个液体流的至少一部分并将其膨胀到所述较低压力,所述第四膨胀部件进一步连接所述蒸馏塔,以供应所述膨胀的液体流到所述蒸馏塔的中间塔进料位置;(12)所述蒸馏塔连接所述接触和分离部件以接收所述底部液体流的至少一部分;(13)所述接触和分离部件进一步连接所述蒸馏塔,以在低于所述中间塔进料位置的塔的第二下部进料位置接收所述第一顶部蒸汽流的至少一部分;(14)第三分开部件,连接所述接触和分离部件以接收于其中分离的所述第二顶部蒸汽流,并将其分开为至少一种第一蒸汽馏分和第二蒸汽馏分;(15)所述热交换部件进一步连接所述第三分开部件以接收所述第二蒸汽馏分的至少一部分并使其加热,之后排出所述加热的第二蒸汽馏分的至少一部分作为所述挥发性残余气体分馏物;(16)抽回蒸汽部件,连接所述接触和分离部件以接收来自低于所述中间塔进料位置和高于所述塔的所述第一和第二下部进料位置的所述接触和分离装置的区域的蒸馏蒸汽流;(17)第二合并部件,连接所述第三分开部件和所述抽回蒸汽部件以接收所述第一蒸汽馏分和所述蒸馏蒸汽流,并形成合并蒸汽流;(18)压缩部件,连接所述第二合并部件以接收所述合并蒸汽流并将其压缩至较高压力;(19)所述热交换部件进一步连接所述压缩部件以接收所述压缩的合并蒸汽流,并将其充分冷却以冷凝其至少一部分,借此在供应步骤(9)和(1 的加热至少一部分时形成冷凝流;(20)第五膨胀部件,连接所述热交换部件以接收所述冷凝流并将其膨胀到所述较低压力,所述第五膨胀部件进一步连接所述接触和分离部件,以在顶部进料位置供应所述膨胀的冷凝流的至少一部分到所述接触和分离部件;和(21)控制部件,适于调节所述进料流至所述接触和分离部件的量和温度以维持所述接触和分离部件的顶部温度在一温度,借以回收所述相对较少挥发性分馏物中的大部分成分。
31.根据权利要求21、22、23、M或25所述的改进,其中所述抽回蒸汽部件连接所述蒸馏塔,以从低于所述顶部进料位置且高于所述中间塔上部进料位置的所述蒸馏塔的区域接收所述蒸馏蒸汽流。
32.根据权利要求21、22、23、M或25所述的改进,其中所述抽回蒸汽部件连接所述蒸馏塔,以从低于所述中间塔进料位置的所述蒸馏塔的区域接收所述蒸馏蒸汽流。
33.根据权利要求沈、27、观、四或30所述的改进,其中所述抽回蒸汽部件连接所述接触和分离部件,以从低于所述顶部进料位置和高于所述中间塔进料位置的所述接触和分离部件的区域接收所述蒸馏蒸汽流。
34.根据权利要求沈、27、观或四所述的改进,其中(1)第四分开部件,连接所述蒸馏塔以接收所述第一顶部蒸汽流,并将其分开为所述蒸馏蒸汽流和第二蒸馏蒸汽;(2)所述接触和分离装置适于连接所述第四分开部件,以在所述塔第二下部进料位置接收所述第二蒸馏蒸汽流;和(3)所述合并部件适于连接所述第四分开部件以接收所述蒸馏蒸汽流。
35.根据权利要求30所述的改进,其中(1)第四分开部件,连接所述蒸馏塔以接收所述第一顶部蒸汽流,并将其分开为所述蒸馏蒸汽流和第二蒸馏蒸汽;(2)所述接触和分离装置适于连接所述第四分开部件,以在所述塔第二下部进料位置接收所述第二蒸馏蒸汽流;和(3)所述第二合并部件适于连接所述第四分开部件以接收所述蒸馏蒸汽流。
36.根据权利要求21、22、23、M或25所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述蒸馏塔的中间塔第二上部进料位置。
37.根据权利要求31所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述蒸馏塔的中间塔第二上部进料位置。
38.根据权利要求32所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述蒸馏塔的中间塔第二上部进料位置。
39.根据权利要求沈、27、观、29、30或35所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述接触和分离装置的中间塔第二进料位置。
40.根据权利要求33所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述接触和分离装置的中间塔第二进料位置。
41.根据权利要求34所述的改进,其中所述加热膨胀的第二冷凝馏分供应至所述接触和分离装置的中间塔第二进料位置。
全文摘要
本发明公开一种从碳氢化合物气流中回收重碳氢化合物的方法和设备。将所述流冷却并分开为第一流和第二流。将第一流进一步冷却并分为第一馏分和第二馏分。将所述第一馏分和第二馏分膨胀到分馏塔压力,并在将所述膨胀的第二馏分加热后,在中间塔上部进料位置处供应。将第二流膨胀到塔压力,并在中间塔进料位置处供应。从塔的高于第二流的进料点抽出蒸馏蒸汽流,与塔顶蒸汽流的一部分合并,压缩至较高压力,并且冷却以冷凝其至少一部分,从而形成冷凝流。至少一部分的冷凝流被膨胀至塔压力并引导到分馏塔作为其顶部进料。
文档编号F25J3/00GK102498359SQ201080041508
公开日2012年6月13日 申请日期2010年8月27日 优先权日2009年9月21日
发明者H·M·赫德森, J·D·威尔金森, J·T·林奇, K·T·奎拉尔, T·L·马丁内斯 申请人:奥特洛夫工程有限公司