专利名称:空气蒸馏制氧的方法和设备的制作方法
本申请涉及空气蒸馏制氧的方法和设备,更具体地说,涉及加压制氧的方法和设备。
EP—A—422,974公开了一种在复式蒸馏塔中低温蒸馏空气以加压制氧的方法。液氧从低压塔7的底部抽出(如
图1所示),并在辅助交换器9中与少部分的供给空气进行热交换而被蒸发。供给空气的残留部分分成二股气流,一股经导管14直接进入中压塔6,另一股在被送往低压塔7之前在涡轮4中膨胀。
本发明的第一个目的是相对于公知方法降低加压制氧方法所用能量的成本。
本发明的第二个目的是在设备也包括由低压塔提供的氩气塔的情况下提高氩气的产量。
为此,本发明提供了一种在复式蒸馏塔(包括中压塔和低压塔)中低温蒸馏空气以加压制取气态氧的方法,其中来自于中压塔的富液被分成第一部分液体和第二部分液体,它们被送往低压塔的不同水平面,其特征在于该不同的水平面低于非纯氮从低压塔中抽出的水平面。
为了改善低压塔的回流,来自中压塔的富液分为第一和第二部分液体,该第一和第二部分在初步过冷后被送往低压塔中的不同水平面。这样在设备也包括氩气塔的情况下特别显著地改善了氩气的分离。
这两部分也能以不同的温度送往低压塔,以便进一步改善低压塔的回流,以及在设备也包括氩气塔的情况下的氩气的分离。
优选的是一部分供给空气在送往复式蒸馏塔前被膨胀,供给空气的残留部分在辅助交换器中被部分冷凝。
对于在辅助交换器中仅部分冷凝的空气,与加压氧的热交换在比假设空气全部冷凝时的温度略高的某一适中温度下进行。
对于辅助交换器中的相同温度差异来说,空气的压力能因此减少,通过将膜式蒸发器用作辅助交换器,(如在EP—A—130,122中所公开的)其温差能平均减少到0.6℃。
为其目的,本发明也提供了一种低温蒸馏空气以加压制取气态氧的设备,它包括复式蒸馏塔,其中配备至少一个其上安装有低压塔的中压塔;把非纯氮从低压塔中抽出的装置;以及把富液从中压塔底部抽出并送往低压塔中两个不同的水平面(位于非纯氮抽出水平面之下)的装置。
泵送氧的主要缺点来源于冷凝过程中空气的超量压力。如果为了使过量压缩的空气压力高于中压塔压力的需要,氧必须泵送到合适的压力,则该发明将毫无意义,因为总的来说,这种安排会消耗更大的压缩能量,如果所有的未膨胀空气通过辅助交换器,与EP—A—422,974的系统相比,这种安排使过量压缩的空气流速大约提高了三倍。
如果在低压塔的顶部回流少,当希望按传统的蒸馏方法在平行于低压塔的塔中分离氩气时,氩气的回收率低。
顶部回流的减少是由于下列因素所致如果空气在氧蒸发器中冷凝并且在中压塔中没有发生蒸馏,则其在低压塔底部的主蒸发器中没有参与加热,用于在低压塔顶部回流的液氮数量因而减少。
如果膨胀工作空气仅仅被送往低压塔,会产生同样的情况,进一步减少低压塔的顶部回流。
为了克服这些困难,在EP—A—422,974中已建议将一部分冷凝空气送入中压塔(底部之上的几个塔板中)以便在这一塔中至少发生一些蒸馏。
然而,在本发明中,为了补偿例如由于在外部蒸发器中冷凝的液相空气与中压塔底部的富液混合所引起的回流损失,这一富液分为两部分第一部分送往低压塔的第一水平面,在有吹气涡轮的情况下一般是吹送空气的水平面;第二部分送往低压塔中的介于第一水平面和非纯氮抽出水平面之间的水平面。
很清楚,这种注入水平面的安排除了对在本申请中所描述的方法有益以外对低温分布也是有益的。
参考附图,现在说明本发明和现有技术的操作实施例,其中图1表示的是现有技术的设备的实施方案简图;图2和图3表示的是本发明的设备的两个实施方案简图。
图1所示的设备基本包括可有不同流速的主空气压缩机1(例如是带有可动叶片的离心型)、带有可动叶片的空气增压器2、热交换管线3、冷源涡轮4、空气蒸馏装置5,该装置5包括复式蒸馏塔(包括中压塔6,安装于6上的低压塔7和小塔7A),蒸发器—冷凝器8,辅助交换器9和泵10。此设备适用于经由导管12制造不同流速的压力比大气压高的气态氧。
待处理(被压缩器1压缩至6巴,冷却到室温并纯化)的一般流速的空气被分成两部分。第一部分被增压器2增压,而第二部分直接经过热交换管线3,并在3中分成具有固定流速的两股气流第一股气流在热交换管线的通道中冷却,一部分在部分冷却后离开热交换线,在涡轮4中膨胀至1巴并在露点附近吹进低压塔7中,第二股气流继续冷却至6巴下的露点附近,然后经导管14注入低压塔6的底部。
增压的第一部分在热交换管线的通道上冷却至露点附近,然后在辅助交换器9中冷凝,并被分成恒定流速的二股气流,第一股气流膨胀至6巴经导管16送往中压塔,第二股气流在膨胀阀13中膨胀至1巴,然后注入低压塔7中。
蒸发器—冷凝器8以中压塔顶部氮的大约相同流速的冷凝在低压塔底部蒸发恒定流速的液氮。“富液”(富氧空气)从中压塔底部移出并在膨胀阀18中膨胀至1巴,注入低压塔的中间水平面,“贫液”(几乎纯氮)从中压塔的顶部移出并在膨胀阀19中膨胀至1巴,注入低压塔的顶部。
液氮注入小塔7A的顶部(经膨胀阀21)。纯氮从小塔7A的顶部抽出并送往热交换管线13,在经由导管20离开之前在那里被重新加热。非纯氮经导管25从低压塔7的顶部移出并经导管18排出。
从低压塔7的底部抽出的液氧在辅助交换器9(装有膜式蒸发器)中蒸发之前被泵送到要求的压力,蒸发是通过与在辅助交换器9中部分冷凝的空气热交换而进行的。气化氧在热交换线管3中再次加热后,经由导管12移走。
为了产生氩气,富氩部分从低压塔7的较低位置抽出并送往氩气塔16,在16中蒸馏。这一部分主要包括氩气和氧气。来源于在塔16中蒸馏的底液又重新回到低压塔7的较低位置处。氩气塔16中的顶部冷凝器29被来自于中压塔6底部的富液冷却,被阀门23膨胀,蒸发并送往低压塔。
来自中压塔6底部的富液残留部分被阀门18所膨胀以形成略高于大气压的压力,并经阀门18在与在涡轮4中(吹送空气)膨胀的空气的注入水平面大致相同的水平面处送往低压塔7中。
而图2所示的设备不同于现有技术,即没有被增压器2增压的所有空气被送往涡轮4中膨胀并进一步送往低压塔7中。增压的并在辅助交换器9中部分冷凝的空气全部注入到中压塔6的底部。
为了提高氩气的产量,在29中未蒸发的富液的残留部分被分成两部分第一部分如图1所示在阀门18中膨胀后注入低压塔7中的吹进空气的水平面处;第二部分富液在阀门17中膨胀到后来的压力后被送往低压塔7中的中等水平面处(介于来自于阀门18的第一部分富液的注入水平面和经过阀门25的氮的抽出水平面之间)。
在液氧被加压以便使压力达到中压塔的压力(也就是说约2巴)的情况下,图2的系统能被简化。
图3的改进仅在于单个的空气压缩器1,所有的压缩空气被送往涡轮4或交换器9。此时在交换器9中部分冷凝的空气全部通往中压塔6的底部。在低压塔底的液氧水平面和进入蒸发器9中的它的入口之间的水平面差将氧的气化压力固定;图2的泵10因而被省略了。
如果需要的话,一部分富液能被过冷,以便在吹进空气的水平面处注入的那部分的温度低于在中等水平面处注入的那部分的温度。
交换器9的这种安排使空气压缩提高了大约6%,因而使氧制品的单位能量提高大约6%。
富液注入的水平面的这种安排使氩气的产量增加了约5%(与EP—A—422,974中的氩产量相比),用本发明方法获得的生产率大约是80%。
权利要求
1.加压制备气态氧的方法,该方法是通过在复式蒸馏塔5(包括中压塔6和低压塔7)中低温蒸馏空气来进行的,其中,来自中压塔的富液被分为第一和第二部分液体,它们被送往低压塔7中的不同水平面处,其特征在于不同的水平面低于非纯氮从低压塔7中抽出的水平面。
2.按照权利要求1的方法,其中富氩流体从低压塔7中抽出并在塔16中蒸馏。
3.按照权利要求1或2的之一的方法,其中,富氧液体从低压塔7的较低位置处抽出。
4.按照前述权利要求之一的方法,其中该两部分在被送往低压塔7之前被冷却到不同的温度。
5.按照前述权利要求之一的方法,其中一部分供给氧气被吹进低压塔7的中等水平面处,并且富液的注入水平面不低于这一中等水平面。
6.加压制备气态氧的设备,该设备是通过低温蒸馏空气来进行的,它包括复式蒸馏塔5,该塔配置有至少一个在其上安装有低压塔7的中压塔6;把非纯氮从低压塔25中抽出的装置12;以及把富液从中压塔6的底部抽出并把其送往低压塔7的两个不同水平面(位于非纯氮抽出的水平面之下)处的装置。
7.按照权利要求6的设备,其包括氩气蒸馏塔16。
8.按照权利要求6和7之一的设备,其包括把富氧液体从低压塔7中的较低位置抽出的装置12。
9.按照权利要求6到8之一的设备,其包括把富液以不同的两个温度送入低压塔7中的装置。
10.按照权利要求6至9之一的设备,其包括把空气送往低压塔7的中等水平面处的装置4和把两部分富液送往中等水平面处附近或之上的水平面处的装置。
全文摘要
本发明涉及加压制氧的方法。在该方法中,来自于复式蒸馏塔5的液氧通过交换器9,在其中与在交换器9中部分冷凝的供给空气发生热交换而被蒸发。被涡轮4所膨胀的供给空气的残余部分用于维持系统冷却。
文档编号F25J3/04GK1121172SQ9510513
公开日1996年4月24日 申请日期1995年4月11日 优先权日1994年4月12日
发明者Y·考比利, P·弗兰斯 申请人:乔治·克劳德方法的研究开发空气股份有限公司