专利名称:双蒸发器两级致冷循环中冷冻剂流量液面的控制的制作方法
有关申请相关的参考文献本申请与待审批的题为“简单蒸汽压缩致冷循环中冷冻剂流量的液面控制”的专利申请有关,该专利申请序号为RD-23,429,是与本申请同时申请并转让给本发明的同一受让人的。发明背景本发明总的说来涉及制冷系统中冷冻剂的膨胀控制,更具体地说,涉及用脉宽调制的电磁阀进行膨胀控制。这里使用的“制冷系统”一词是指一制冷装置、空调机或任何其它产生致冷作用的系统。
家用冰箱采用的一般制冷系统通常是按简单的蒸汽压缩循环工作的。这种循环包括一个压缩机、一个冷凝器、一个膨胀装置和一个蒸发器,所有这些都按上述次序依次串联连接。制冷装置的空气吹过蒸发器,控制空气流使部分空气流流到冷藏室,其余的空气流流到新鲜食物室。因此致冷循环在适合于冷藏室的温度产生其致冷作用,这个温度比新鲜食物室所需要的温度要低。由于在低温下产生冷却作用所需要的机械能高于较高温度下相应的机械能,因而简单的蒸汽压缩循环使用的机械能要比在两种温源下产生冷却作用的那种循环所使用的机械能多。
1990年3月27日专利权授予Heinz Jaster且转让给本发明的同一受让人的美国专利4,910,972中介绍了一种适用于家用冰箱、热力效率有所提高的致冷循环。美国专利4,910,972中公开的循环包括第一和第二压缩机、一个冷凝器、第一膨胀装置、第一蒸发器、一个分相器、第二膨胀装置和第二蒸发器,所有这些组成部分都按上述次序依次串联连接。分相器接收来自第一蒸发器的两相剂,并将液相冷冻剂提供给第二膨胀装置,将饱和汽相冷冻剂提供给第二压缩机。第一蒸发器在大约25°F下工作,冷却新鲜食物室,第二蒸发器在大约-10°F下工作,冷却冷藏室。这种双蒸发器的两级循环消耗的机械能比一般单蒸发器系统要少得多。
毛细管简单、价廉,因此家用冰箱一般都采用它作为膨胀装置。然而,毛细管作为膨胀装置有某一系列的局限性。例如,毛细管必须制造昨非常长,内径达到可以制造并大得足以避免堵管。这就需要冰箱有中足够的内部空间来容纳毛细管长度方向的尺寸。此外,由于采用对毛细管的膨胀控制,因而生产过程中要求冷冻剂的注入操作得非常精确,因为冷冻剂通过毛细管的流量对系统中冷冻剂的料量非常敏感。
具体结合到双蒸发器两级致冷循环,毛细管还有其另外的局限性。双蒸发器两步循环一般的致冷室温度控制方案是在蒸发器室的温度高于设定值时启动蒸发器的风扇,并在两室的温度已达到较低温度设定值时关掉所有风扇和压缩机。若两毛细管的尺寸按两风扇都在运行的情况选取,则关掉新鲜食物室的风扇时,新鲜食物蒸发器的压力就下降,降低了流经第二毛细管的冷冻剂流量。发生这种情况时,分相器中的液面上升,于是液态冷冻剂会溢流入新鲜食物的抽气管线中。这也会使冷藏蒸发器出口显著过热,使冷藏蒸发器的压力下降。所有这些现象都起降低冷藏室冷却能力和系统效率的作用。
此外,毛细管的尺寸还可以取得使冷冻剂的流量只在某一个工作条件下达到最佳状态。因此,毛细管的尺寸通常取得使冷冻剂的流量在正常工作条件征达到最佳状态。这就是说,致冷循环开始时(以及在高负荷的情况下),毛细管尺寸不够大,蒸发器中致冷剂不足。这降低了冰箱的冷却能力和效率。致冷循环快结束时,毛细管则尺寸过大,因而蒸发器中的冷冻剂泛滥,再次降低冰箱和效率。因此,采用毛细管进行膨胀时的循环效率远低于有效膨胀控制下所能达到的效率。
然而,以一般恒温膨胀的形式进行的有效膨胀控制,在家用冰箱中并不能很好发挥作用。恒温膨胀阀尽管经常用于冷冻剂流量大的汽车空调系统和商用制冷系统中,但却不能制造得使流量孔小到足以调节家用冰箱冷冻剂非常之低的流量率(一般为10-12磅/小时)。就是说,要达到所要求的压降,阀孔需要达到10密耳或以下的数量级,这样的尺寸对制造是不实际的,而且非常容易发生堵塞。
因此,需要有另一种方案代替毛细管和恒温膨胀阀作为家用冰箱的膨胀控制器。发明简介本发明即满足了上述要求,它采用脉宽调制的的电磁阀进行膨胀控制。先是产生脉宽调制的控制信号,因此控制信号使电磁阀周期性地开合。控制信号的脉冲宽度确定了冷冻剂流过电磁阀的平均流量。电磁阀的工作循环随蒸发器的干燥度而变化,精确控制着冷冻剂的平均流量。
具体地说,本发明提供的制冷系统包括由一个脉宽调制的电磁阀构成的第一膨胀装置、一个冷藏间蒸发器、第一和第二压缩机、一个冷凝器、第二膨胀装置和新鲜食物蒸发器,所有这些部件都按上述次序依次串联连接。此外还连接有一个分相器,接收来自新鲜食物蒸发器的冷冻剂,分相器的第一出口用以给脉宽调制电磁阀提供液相冷冻剂,分相器的第二出口用以给第二压机提供气相冷冻剂。分相器中配置有一液面传感器,此外还配备有一个控制器,供控制脉宽调制电磁阀的工作循环,接收来自液面传感器的输入。
液面传感器的类型可以是那种随液面的变化提供连续的变化信号的液面传感器,也可以是液面开关。在后一种情况下,控制器在分相器液面高于液面开关的位置时产生第一脉冲宽度的控制信号,在液面低于液面开关的位置时产生脉冲宽度较小的第二脉冲宽度控制信号。另一方案,也可以配备两个液面开关。在此情况下,当液面高于较高液面开关的位置时控制器增加脉冲宽度,在液面低于较低液面开关的位置时减小脉冲宽度。
采用脉宽调制的电磁阀进行膨胀控制有若干好处。由于脉宽调制电磁阀是以振荡的方式工作的,因而流量孔可以制造得大些,从而避免堵塞问题。采用脉宽调制控制的系统对总的冷冻剂的充料量是不太敏感的,这在生产过程中简化了进料方面的要求。脉宽调制电磁阀能适应压缩机在其汽缸工作容积变化时冷冻剂的不同流量率,因而有利于与可调压缩机和/或多速压缩机配用。在中止循环的过程中,脉宽调制电磁阀可用来保持高低压之间可靠的密封作用,从而避免冷冻剂流动,同时节能。因此这种电磁阀起能量控制阀的作用,无需采用另外的阀门来覆行这个职能。
除了确保制冷器的蒸发器中足够的液体致冷剂、控制分相器的液面水平外,还能防止液体致冷剂进入新鲜食品抽出管线。分相器的液面由一传感器监视,且因为分相器邻近膨胀阀还防止了“振荡工作”(hunting)。
参看附图阅读下面的详细说明和所附的权利要求书可以清楚了解本发明的其它目的和优点。
本说明书的结论部分,特别指出和清楚阐明了本发明的主题,但要理解本发明的内容,最好还是参照附图参阅下面的有关说明。附图中图1是本发明致冷循环一个实施例的原理图2是按本发明用来控制膨胀阀的脉宽调制频率信号的示意图;图3是采用两个液面开关的液面检测机构形式的示意图。发明详介参看附图,所有不同各视图中同样的编号表示同样的元件。图1示出了制冷系统10,该系统包括第一压缩机12、第二压缩机14、冷凝器16、第一膨胀装置18、第一蒸发器20、分相器22、第二膨胀装置24和第二蒸发器26,所有这些组成部分都按上述次序依次串联连接。冷冻剂加入制冷系统10中,在压缩机12、14中加以压缩。冷冻剂经压缩后排到冷冻器16中冷却和冷凝。接着,冷冻剂流过第一膨胀装置18,边流过边膨胀,再流入配置在制冷装置中的新鲜食物室中的第一蒸发器20。热从新鲜食物室传递到流过新鲜食物蒸发器20中的冷冻剂,从而冷却新鲜食物室。
两相冷冻剂从新鲜食物蒸发器20排到分相器22中。分相器22由一个封闭的容器构成,其上部分有一个入口供接收两相冷冻剂之用,此外还有两个出口。一个出口位于容器底部,给第二膨胀装置24提供液相冷冻剂。另一个出口由一个从容器上部分延伸到外面的导管形成。因此这个导管设计得使其将气相冷冻剂提供给接第二压缩机14入口的新鲜食物抽气管28。
提供给第二膨胀装置24的液相冷冻剂在第二膨胀装置24中膨胀,然后流向配置在冷藏室中的第二蒸发器26。冷冻剂流过冷藏蒸发器26中时,热量从冷藏室传递到冷冻剂,使冷冻剂蒸发。冷冻剂从冷藏蒸发器26中出来时最好处在过热的气态。接着,气相冷冻剂通过冷藏抽气管线30,返加第一压缩机12。第一压缩机12输出的经压缩的气相冷冻剂与来自新鲜食物抽气管线28的气相冷冻剂混合,此混合的冷冻剂流到第二压缩机14的入口,这时重复上述循环。上述美国专利4,910,972更全面地介绍这种双蒸发器两步循环过程,这里也把该美国专利包括进来,以供参考。
虽然图1中没有示出,但不言而喻,新鲜食物抽气管线28也可与冷凝器16、第一膨胀装置18之间的冷冻剂管线按逆流热交换的关系配置,从而提高循环效率。同样,冷藏抽气管线30也可与冷凝器16与第一膨胀装置18之间的冷冻剂管线并与分相器22、第二膨胀装置24之间的冷冻剂管线按逆流热交换的关系配置。这种热交换关系一般是通过将相应各管线(或至少各管线的一部分)焊接在一起达到的。
按照本发明,第二膨胀装置24是个脉宽调制电磁阀,作为反馈回路的一部分由控制器32加以控制。控制器32根据分相器22中的液面控制膨胀阀24。为达到此目的,分相器22配备有液面传感器34。液面传感器34检测分相器22中的液面,并产生与该检测液面相应的输出信号。控制器32接收该输出信号,并产生控制信号36馈给电磁阀24。控制信号36是个脉宽调制频率信号,它促使阀24在全开与全合状态之间振荡,从而以开-合状态的工作循环确定了冷冻剂通过膨胀阀24的平均流量。根据检测出的液面调节脉冲宽度,以控制阀24的工作循环,从而保持所要求的使系统的工作性能最佳的液面。通常,液面上升时,流量会增加,液面下降时,流量会减小。
图2示出了控制信号36的抽样波形。波形是个数字方波,在最高控制电压V1与最低控制电压V2之间交替变化。波形处在最高控制电压V1时,阀24移到全开的状态,波形处在最低空制电压V2时,阀24移到全合的状态。图2中所示的脉宽调制波形,其电压变化不是瞬时变化的,而是在最高与最低电压值之间有一个短暂的过渡期。这可以避免膨胀阀突然打开和关闭时冷冻剂产生压力冲击波的问题。无论系统中冷冻剂流量率的要求如何,波形频率是稳定的。这个频率最好取大约0.1-2赫的范围。
冷冻剂流过阀24的平均流量率取决于脉宽调制波形的工作循环。因此,在图2所示的时间to之前,阀24全开的时间比其全闭的时间短,因而冷冻剂的平均流量率较低。在时间to(这时检测出分相器22中的液面升高)之后,控制器32调节工作循环,使阀24全开的时间比其全闭的时间长,从而提高冷冻剂的平均流量。
膨胀阀24最好是个常闭阀,就是说,阀24在其电磁线圈断电时关闭。这意味着,阀关闭时,最低控制电压V2可以为0。此外,每当压缩机12停车时,阀24的电源中断。这样可以防止冷冻剂在循环中止时流到蒸发器18中去,从而节能。因此,电磁阀24起能量控制阀的作用,因而无需专门的阀来覆行这个职能。
控制器32可以采用本技术领域中周知的任何一种脉宽调制控制方案。适用的控制方案有1987年3月24日专利权授予RichardH,Alsenz美国专利4,651,535和1993年10月26日专利权授予DonaldE Janke的美国专利5,255,530中所述的控制方案,这里也把该两个专利包括进来以供参考。
液面传感器34可以是现有技术中周知的几乎任何类型液面传感装置。适用于本发明的一种传感器是随液面的变化提供连续变化的电流或电压信号的传感器。在此情况下,控制信号16按液面连续调节。这样就可以根据分相器22的液面精密控制冷冻剂流过阀24的流量。另一种不太精确但较经济的方法是采用液面开关,例如浮控开关。液面开关只指示液面高于或低于给定的液面。在本发明中,控制信号36在分相器22中的液面高于给定液面时取较大的脉冲宽度,在所述液面低于给定液面时取较小的脉冲宽度。
图3示出了采用两个液面开关的另一种结构方案。第一个液面开关34a安置在分相器22中所要求最高液面的位置,第二个液面开关34b安置在所要求最低液面的位置。只要实际液面在两个液面开关34a、34b之间,控制信号的脉冲宽度就按冷冻剂通过阀24的正常流量设定。每当液面超过液面时,第一个液面开关34a受激发于是控制信号的脉冲宽度增加。每当液面下降到最低液面以下时,第二液面开关34b受激发,于是控制信号36的脉冲宽度增加。此外,若液面开关34a或34b受激发从而脉冲宽度受到调节,经过一段给定的时间之后,液面没有恢复到正常液面,则可以进一步增加或减小脉冲宽度,这视乎哪一个液面开关受激发而定。
第一膨胀装置18可以是象毛细管之类的普通膨胀装置,也可以是另一种也由控制器32控制的脉宽调制电磁阀。在后一种情况下,在冷凝器14与第一膨胀装置18之间的冷冻剂管线上装上另外一个分相器。附加的这个分相器配备以液面传感器,供反馈到控制32之用。与其它分相器不同,增设的这个分相器只需要一个在底部的出口,供将液相冷冻剂提供给第一膨胀装置18之用。
上面已介绍过用脉宽调制电磁阀进行膨胀控制经改进的制冷系统。电磁阀是根据分相器中的液面控制的。虽然上面是就本发明的一些具体实施例进行说明的,但本技术领域的行家们都知道,在不脱离本发明在本说明书所附的权利要求书中所述的精神实质和范围的前提下是可以对上述实施例进行种种修改的。
权利要求
1.一种制冷系统,供使用在有一个冷藏室和一个新鲜食物室的制冷装置中,所述制冷系统包括第一膨胀装置,由一个脉宽调制电磁阀组成;第一蒸发器,供冷却冷藏室之用;第一和第二压缩机;一个冷凝器;第二膨胀装置;第二蒸发器,供冷却新鲜食物室之用;所有以上部件都按上述次序依次串联连接在一起;和一个分相器,供接收来自第二蒸发器的冷冻剂,其第一出口给所述脉宽调制电磁阀提供液相冷冻剂,其第二出口给所述第二压缩机提供气相冷冻剂;一个液面传感器,配置在所述分相器中;和一个控制器,供控制所述脉宽调制电磁阀的工作循环之用,控制器的输入端与所述液面传感器相连接。
2.如权利要求1所述的制冷系统,其特征在于,所述液面传感器随所述分相器中液面的变化提供连续变化的信号。
3.如权利要求1所述的制冷系统,其特征在于,所述液面传感器是个液面开关。
4.如权利要求3所述的制冷系统,其特征在于,所述控制器在所述分相器中的液面高于所述液面开关的位置时产生脉冲宽度为第一脉冲宽度的控制信号,在所述分相器中的液面低于所述液面开关的位置时产生脉冲宽度为第二脉冲宽度的控制信号。
5.如权利要求3所述的制冷系统,其特征在于,它还包括另一个液面开关,配置在所述分相器中,且与所述控制器的输入端相连接,所述附加的液面开关在安置在所述第一次提到的液面开关下面。
6.如权利要求5所述的制冷系统,其特征在于,所述控制器在所述分相器中的液面高于所述第一次提到的液面开关的位置时增加其控制信号的脉冲宽度在所述分相器中的液面低于所述附加的液面开关的位置时减小其控制信号的脉冲宽度。
7.如权利要求1所述的制冷系统,其特征在于,所述第二膨胀装置是个脉宽调制电磁阀。
全文摘要
用脉宽调制法控制电磁膨胀阀(24)的冷冻剂流量,该阀用于双蒸发器两级循环制冷系统(10)。(10)有一分相器(22)接收低温蒸发器(20)的两相冷冻剂,将液相冷冻剂送给脉宽调制电磁阀(24)。(22)中有液面传感器(34),还有控制器(32)控制脉宽调制电磁阀(24)的工作循环,并接收液面传感器(34)的输入。(34)随液面变化提供连续变化信号或根据分相器的液面高于或低于给定液面来控制电磁阀的工作循环的液面开关。也可配备两个液面开关(34a,34b)。
文档编号F25B5/04GK1124055SQ95190141
公开日1996年6月5日 申请日期1995年2月22日 优先权日1994年3月3日
发明者H·贾斯特 申请人:通用电气公司