专利名称:用于扰动流速原料空气的低温空气分离系统的制作方法
技术领域:
本发明一般涉及原料空气的低温精馏。
低温空气分离工厂操作要求将高沸点杂质如水、二氧化碳和烃类在入塔之前由原料空气中除去。水和二氧化碳会在空气分离所用低温下凝固。如果烃类有可能在沸腾氧池中积累,它就会危及安全。除去这些杂质的一种方法是将反向换热器或再生器与最终净化吸附床联合使用。反向换热器和再生器的工作方式是将杂质冷冻,然后周期性地切换流动通道,让低压废气物流反向流过原先被高压空气占据的通道。低压废物流较冷但处于低压,可以将杂质蒸发并使换热器净化,从而为下次流向切换做好准备。这种周期性切换导致进入塔系统的原料空气流的短暂终止,因为切换后处于低压下的通道必在能将原料空气送入塔系统之前用空气增压。这种不稳定期的长短是原料空气和废气压力比以及换热器通道体积的函数。对于再生器来说,这一问题通常最严重,因为它的体积大。用等压操作可使不稳定期缩短,但仍然会降低原料空气的流速。
最近,吸附剂床被用来由加入低温空气分离工厂的原料物流中除去高沸点杂质。这种床的优点是不需要很多废气物流,因而加入的原料空气可以基本上以两种或三种清洁产品而得到。使用两类这种预净化器变温吸附(TSA)和变压吸附(PSA)。正如名字所指出的,TSA主要取决于将吸附的杂质逐出吸附剂的热量,而PSA利用床内绝对压力的差别使杂质脱附。两者均以间歇方式操作,空气流过清洁床时杂质被吸附在床上,然后这些杂质在脱附步骤中被除去。通常使用两个或多个床。为减少对塔系统的影响,通过将空气泄入另一床中使即将使用的床加压一分钟左右。当床达到压力后,将所有的空气转给它。在该加压步骤中,塔的原料空气流速降低。这又是一种造成塔不稳定的周期性扰动。不稳定期的频率和长短将取决于具体的预净化器系统。通常用PSA时该不稳定期较长,因为切换频率以分钟计,而TSA的切换频率以小时计。
施加于工厂的原料空气流速的周期性或偶然性扰动使空气分离工厂塔中的液体由塔内件下泄并落入塔釜,或至少流到塔中低于稳态操作时的水平,从而使塔的操作效率降低,即当量理论塔板高度(HETP)增加。
因此,本发明的一个目的是提供一种即使有施加于工厂的原料空气流速的周期性或偶然性扰动也能有效操作的低温空气分离系统。
用本发明可达到上述的和其它的目的,本领域技术人员在阅读了本公开后,对这些目的会更加清楚,本发明的一个方面是一种进行原料空气低温精馏的方法,它包括(A)将含高沸点杂质的原料空气送到一个预净化器系统并在该预净化器系统中除去高沸点杂质以生产清洁原料空气;(B)将清洁原料空气由预净化器系统送到一座低温空气分离工厂,该工厂至少含有一个塔并且在至少一个塔的至少某一部分有带筛网填料孔隙的筛网填料;(C)预净化器系统的操作方式可引起由预净化器系统到低温空气分离工厂的清洁原料空气流速的偶然扰动;和(D)在塔内进行逆流气/液低温精馏以便由原料空气生产至少一种产品,而在所说由预净化器系统到低温空气分离工厂的清洁原料空气流速扰动期间将液体保持在筛网填料孔隙中。
本发明的另一方面是一种进行原料空气低温精馏的设备,它包括(A)一个预净化器系统、向预净化器系统提供原料空气的装置以及净化预净化器系统从而使预净化器系统以能引起原料空气流速扰动的方式操作的装置;(B)一座低温空气分离工厂,它包含至少一个塔和将原料空气由预净化器系统送往低温空气分离工厂的装置;(C)在低温空气分离工厂至少一个塔的至少某一部分内的带筛网填料孔隙的筛网填料,所说筛网填料孔隙在所说原料空气流速扰动期间能保存液体;和(D)从低温空气分离工厂回收至少一种产品的装置。
本文所用术语“原料空气”是指一种主要含氮气、氧气和氩气的混合物,例如大气。
本文所用术语“塔”是指一种蒸馏或分馏塔或区,即一种接触塔或区,其中液体和蒸气相逆流接触进行流体混合物的分离。有关蒸馏塔更深入的讨论,请参阅Chemical Engineer’s Handbook,fifth edition,edited by R.H.Perry and C.H.Chilton,McGraw-Hill Book Company,New York,Section13,连续蒸馏方法。
蒸气和液体接触分离方法取决于组分蒸气压之间的差别。高蒸气压(或易挥发或低沸点)组分倾向于在蒸气相增浓,而低蒸气压(或难挥发或高沸点)组分倾向于在液相增浓。部分冷凝是利用将蒸气混合物冷却使易挥发组分在蒸气相增浓从而使难挥发组分在液体相增浓的分离方法。精馏,或连续蒸馏,是通过对蒸气相和液体相进行逆流处理使相继的部分蒸发和冷凝结合起来的分离方法。上行蒸气相和下行液体相的逆流接触一般是绝热的而且可以包括相间的积分(分级)或微分(连续)接触。利用精馏原理分离混合物的分离方法的配置经常可以互换地叫做精馏塔、蒸馏塔或分馏塔。低温精馏是一种至少部分地在150K或150K以下进行的精馏方法。
本文所用术语“间接热交换”是指两种流体之间不发生任何物理接触或互混而使它们进行的热交换。
本文所用术语“顶部冷凝器”是指一种由塔蒸气产生塔的下行液体的换热设备。
本文所用术语“上部”和“下部”分别指塔的高于和低于其中点的部分。
本文所用术语“再生器”是指一种换热设备,它有一个含有蓄热材料的容器、一个外壳和任选的一个或多个穿过外壳的空心螺旋管。再生器的管程是螺管内的体积。再生器的壳程是壳内螺管外的体积。
本文所用术语“高沸点杂质”是指水蒸气、二氧化碳和烃类中的一种或多种。
本文所用术语“预净化器系统”是指一种由原料空气中除去高沸点杂质的系统。可用于实施本发明的预净化器系统的例子包括再生器、变压吸附床、变温吸附床和反向换热器。
图1是本发明一个优选实施方案的示意流程图,其中预净化器系统由再生器组成,低温空气分离工厂有一单塔。
图2说明本发明操作中与图1所示实施方案相应的一个典型的原料空气流速扰动。
图3和4分别说明可用于实施本发明的编结筛网填料和编织筛网填料。
图5是本发明另一优选实施方案的示意流程图,其中预净化器系统由变压吸附床组成,低温空气分离工厂有三个塔。
将参照附图对本发明予以详细说明。现参见图1,原料空气通常被压缩到绝对压力85和165磅/英寸2(psia)之间,然后用典型方法冷却并除去游离水。压缩原料空气物流1然后通过切换阀2转向至一对再生器3之一的壳程30,再生器外壳内一般含有填充材料如石头。原料空气在该冷却过程由于流过壳程30而被冷却至接近其露点而且所有残余的水和大部分二氧化碳通过冷凝而被除去。被冷却的原料空气物流31由壳程30被取出并通过单向阀4以物流20被送往吸附剂床5以除去与原料空气一起由再生器冷端出来的烃类和所有残余的二氧化碳。典型的吸附剂是硅溶胶。清洁冷空气然后被送入含筛网填料7的精馏塔6下部,后面将对该填料进行更详细的讨论。塔6操作在85至165psia压力范围。原料空气在塔6中通过低温精馏被分离为氮蒸气和富氧液体。
氮浓度至少为95%(mole)的氮蒸气由塔6上部以物流8被取出并被分为第一部分或回流物流10和第二部分或产品物流9。回流物流10进入塔顶冷凝器11,在这里被冷凝并回到塔6作为回流液。产品物流9被送入再生器3的管程并流过埋入再生器填充材料的螺管12。离开再生器的温和产品(通常比进入的原料空气冷5-15K)然后由再生器管程取出作为产品氮32加以回收,其流速一般是加入原料空气流速的30至60%(mole%),氮浓度至少是95%(mole%)。
富氧液体由塔6下部以釜液13被取出并靠压力输送至塔顶冷凝器11。该釜液通常含高于30%(mole)的氧气。物流13中的釜液最好在被送入塔顶冷凝器11之前通过换热器17进行过冷。塔顶冷凝器11内的沸腾压力大大低于塔6的操作压力,因此可以进行釜液的输送。釜液流速用一个流动限制器件例如控制阀14加以控制。附加吸附剂可以放入釜液输送管线或冷凝器以便最终清除残余的烃类和二氧化碳。与冷凝的氮回流物流相反,富氧液体在塔顶冷凝器中沸腾。塔顶冷凝器11的操作压力比塔6低得多。塔顶冷凝器的压力一般比塔6的操作压力至少低10psia。这就使氧物流的沸腾温度降低到在塔压力下氮蒸气的冷凝温度以下。所得富氧蒸气15,此后称作废气,经调节沸腾侧压力因而也调节塔压力的控制阀16流出塔顶冷凝器11。废气然后在换热器或过热器17中与上行的釜液进行逆流热交换。废气然后经过单向阀4流入还没有原料空气流过,即处于非冷却期的再生器3的壳程冷端。再生器将通过阀2周期性地在原料空气和废气之间进行切换以便让再生器既经过冷却期,也经过非冷却期。废气以物流33由系统取出。氮蒸气通常在冷却期和非冷却期都要流过一个再生器。
外加低温液体由外部低温液体源经管线18加入塔中为系统提供制冷,在图1所示实施方案中它是氮浓度至少为95%(mole)的液氮。调节外加低温液体的流速以保持冷凝器11中的液面,以摩尔为基准,该流速是氮气产品物流32流速的2至15%。另外也可将部分或全部所需外加低温液体加到塔顶冷凝器。
再生器通过在温热空气原料和冷废气物流之间进行周期性切换进行工作。这一点由切换阀2来完成。在切换过程中,在空气进入塔系统之前必须将再生器由废气物流压力增压至塔的压力。这一情况表示于图2中。叫做再生器A的第一再生器最初接受原料空气并处于高压下。切换时,它被下吹进入废气口33直至达到废气物流的压力。
叫做再生器B的第二再生器最初处于低压下。切换后向其中供给原料空气。再生器中的压力随时间上升。但是,直至再生器B的压力至少达到塔的压力时,原料空气才能流入塔中。由管线20流入塔的原料空气流速也表示于图2。塔的不稳定状态清楚地表示出来。
再充压时间通常大约为5-25秒。切换频率通常是几分钟,一般在3-5分钟范围内。在扰动期间,进入塔的原料空气流速降低而且由于塔内上行蒸气的减少使塔中液体倾向于下泄。特别是当片状金属结构填料用作塔内件时情况更是如此。为了抵销这种倾向并避免这种下泄的不利结果,塔中至少一部分应含有筛网填料,而且最好是如图1所示,整个塔都是这样。筛网填料与低温精馏塔中通常使用的片状金属结构填料的区别在于前者是由编织或编结在一起形成织物的丝组成。与此相反,片状金属填料是折皱或叠合而形成构件的金属薄片。图3表示编结筛网填料的一个例子,图4表示编织填料或网状筛网填料的一个例子。
如图3和4中数字50和51分别所示,筛网填料在网丝之间有小的筛网填料孔隙。筛网填料孔隙的最佳尺寸是塔中处理的液体表面张力的函数。但必须至少有一些筛网填料孔隙足够小以便能在原料空气流速扰动期间保存液体。在塔内进行低温精馏时液/气对流过程中,液体通过毛细管作用沿网丝散开,并根据筛孔尺寸滞留在筛网填料孔隙或交联丝网的间隙。至少在某些孔隙中,在筛网填料表面形成连续液膜从而避免了在施加于工厂的原料空气流速扰动期间液体的下泄,因此,部分或完全避免了以往原料空气流的这种扰动引起的效率损失。液体在网丝上和网丝间的毛细作用使筛网填料具有很大的静态滞留量。虽然某些液体继续向下流动,但大部分滞留在填料中。于是,使塔内成分分布和泄入塔釜液体量的变化幅度减小。
图5说明一个用多塔低温空气分离工厂进行的本发明的实施方案。现参照图5,原料空气20在压缩机21中被压缩,在冷却器22中被冷却并在变压吸附床组成的预净化器23中除去高沸点杂质。然后清洁原料空气被分成物流73和74。物流74通过压缩机75被进一步压缩,然后这两股物流通过初级换热器15被返回物流冷却。物流73然后通过汽轮膨胀机76进行汽轮式膨胀,然后以物流24进入塔300,该塔是一低温空气分离工厂双塔系统的高压塔,它还包括低压塔400和图5所示实施方案中的氩塔500。物流74流过阀77后也进入塔300。
塔300一般操作在75至300psia压力范围。原料空气在塔300中通过低温精馏被分离为富氮塔顶蒸气和富氧塔底液体。前面提到,图5所示低温精馏工厂还包括一个第三塔,在这里是用来生产粗氩的氩塔。富氮塔顶蒸气25由塔300进入主冷凝器350,在这里被再沸塔400的塔底液冷凝。所得液氮26以物流27作为回流液进入塔300,以物流201经换热器65进入塔400作为回流物流202。如果需要,可将物流202的一部分回收作为产品液氮。富氧液体物流28由塔300流经换热器29,在这里通过与返回物流进行间接热交换而被过冷,所得物流30被分成经阀32进入塔400的第一部分31,和经阀34进入氩塔500塔顶冷凝器35的第二部分33。富氧液体在塔顶冷凝器35中被部分蒸发,所得蒸气和残留液体分别以物流36和37进入塔400。
塔400在低于塔300的压力下操作,一般在15至60psia范围内。加入塔400的流体在塔400中通过低温精馏被分离为富氮蒸气和富氧液体,即液氧。富氮蒸气或气体氮在管线38中由塔400取出,流过换热器65和29被加温,然后流过初级换热器15。如果需要,可将某些或全部的氮气作为气体氮产品40加以回收。为了达到控制产品纯度的目的,由塔400低于物流38取料点的位置取出废气物流71,让其流过换热器65、29和15,以物流72由系统除去。
含氩流体在管线41中由塔400流入氩塔500,并在氩塔500中通过低温精馏被分离为富氩蒸气和富氧液体。富氧液体由管线42回到塔500。富氩蒸气由管线43流入塔顶冷凝器35,在这里通过与富氧流体进行间接热交换被部分冷凝。所得富氩流体物流44进入塔500作为回流液,其中一部分45作为粗氩产品加以回收,其氩浓度至少90%(mole)。虽然所述体系生产粗氩,即含有一些残存氧和氮的氩,塔400和500可含有附加的分离级以便使生产的氩成为产品级,即所含氧和氮少于5ppm。
液氧在管线420中由塔400取出并通过液体泵3加至高压,一般加到50至500psia的范围。所得加压液体氧物流46然后流过主换热器15在其中被蒸发。所得高压气体氧78作为产品氧气加以回收。如果需要,也可由管线421回收某些液体氧。
变压吸附预纯化器使用两个或多个吸附床来除去进料空气中的高沸点杂质。一个床处理加压原料空气,而另一个床用低压清扫气,通常是废氮气例如图5物流72中的流体,进行再生。当一个床充分再生而另一个床接近满负荷时,一部分原料空气被转向至低压床使其压力提高到原料空气的压力。然后将所有原料空气送到新的加压床而另一个床在用低压废气物流再生前泄至大气压力。这种转换的结果使进入塔的原料空气流速在再生床加压期间下降并因液体在塔中下泄对塔的性能有不利影响。塔中使用筛网填料可抵销液体下泄。
适合用于实施本发明的筛网填料可由金属例如不锈钢、铝、青铜和铜制成。以不锈钢为最好。可用于制造筛网填料的其它材料包括陶瓷、纤维素和碳纤维。
当在塔中使用时,筛网填料最好用于整个塔。但如果需要,筛网填料也可只用于塔的某一部分或某些部分,而塔的其余一个或多个部分含有其它传质内件例如片状金属结构填料。
虽然本发明可以与较大的或多塔的低温空气分离工厂联合使用,相信它会在较小的单塔低温空气分离工厂得到最大的应用。本发明还能消除预净化器操作以外的原因例如压缩机的波动产生的原料空气流速扰动造成的分离效率降低。
虽然参照某些优选实施方案对本发明作了详细说明,但本领域技术人员会知道,在权力要求的实质和范围内本发明还会有其它实施方案。
权利要求
1.一种进行原料空气低温精馏的方法,它包括(A〕将含高沸点杂质的原料空气送到一个预净化器系统并在该预净化器系统中除去高沸点杂质以生产清洁原料空气;(B〕将清洁原料空气由预净化器系统送到一座低温空气分离工厂,该工厂至少含有一个塔并且在至少一个塔的至少某一部分有带筛网填料孔隙的筛网填料;(C〕预净化器系统的操作方式可引起由预净化器系统到低温空气分离工厂的清洁原料空气流速的偶然扰动;和(D〕在塔内进行逆流气/液低温精馏以便由原料空气生产至少一种产品,而在所说由预净化器系统到低温空气分离工厂的清洁原料空气流速扰动期间将液体保持在筛网填料孔隙中。
2.权利要求1的方法,其中所说至少一种产品包括氮。
3.权利要求1的方法,其中所说至少一种产品包括氧。
4.一套进行原料空气低温精馏的设备,它包括(A)一个预净化器系统、向预净化器系统提供原料空气的装置以及净化预净化器系统从而使预净化器系统以能引起原料空气流速扰动的方式操作的装置;(B)一座低温空气分离工厂,它包含至少一个塔和将原料空气由预净化器系统送往低温空气分离工厂的装置;(C)在低温空气分离工厂至少一个塔的至少某一部分的带筛网填料孔隙的筛网填料,所说筛网填料孔隙在所说原料空气流速扰动期间能保存液体;和(D)由低温空气分离工厂回收至少一种产品的装置。
5.权利要求4的装置,其中预净化器系统包括再生器。
6.权利要求4的装置,其中预净化器系统包括变压吸附床。
7.权利要求4的装置,其中筛网填料包括编结筛网填料。
8.权利要求4的装置,其中筛网填料包括编织筛网填料。
9.权利要求4的装置,其中低温空气分离工厂有一单塔。
10.权利要求4的装置,其中低温空气分离工厂至少有两个塔。
全文摘要
一种低温空气分离系统,其中由预净化器非连续操作引起的原料空气流速扰动所造成的分离效率降低,可通过在扰动期间用筛网填料阻止塔液下泄的方法加以缓解或消除,筛网填料具有利用表面张力在扰动期间存留液体的空隙。
文档编号F25J3/04GK1230680SQ9910454
公开日1999年10月6日 申请日期1999年3月30日 优先权日1998年4月1日
发明者J·F·比林汉, W·J·奥尔斯泽斯基, J·P·里料塔 申请人:普拉塞尔技术有限公司