特别适用于低温的可变负荷的制冷系统的制作方法

文档序号:4761547阅读:207来源:国知局
专利名称:特别适用于低温的可变负荷的制冷系统的制作方法
技术领域
本发明一般是关于制冷作用,特别是关于可用于产生制冷作用的多组分冷冻液的用途。本发明特别可用于提供降至低温下的制冷作用。
制冷作用一般通过制冷循环中压缩和然后膨胀冷冻液产生。所述通用的系统的众所周知的例子包括制冷器和空调器。制冷剂一般是单一组分的流体,其在需要的温度下进行相变化,由液体变为气体,产生可用于冷却目的汽化潜热。通用系统的效率可以通过使用多组分流体作为制冷剂进行改进,所述制冷剂可以在需要的温度范围内产生可变量的制冷作用。但是,已知的多组分流体的制冷循环在降至更冷的低温的大的温度范围内不能有效地产生制冷作用。此外,最熟知的制冷剂流体是有毒的,可燃的和/或消耗臭氧的。
因此,本发明的一个目的是提供用多组分制冷剂流体产生制冷作用的方法,所述制冷剂流体可以在降至低温的大的温度范围内产生制冷作用。
本发明的另一个目的是提供多组分制冷剂流体,其是无毒的,不可燃的和低消耗或不消耗臭氧的。
本技术领域技术熟练的人员在阅读本说明书时,本发明的上述和其他目的对他们来说是显而易见的,这些目的通过本发明可以实现。
本发明的一方面是产生制冷作用的方法,包括(A)压缩可变负荷的制冷剂混合物,所述混合物含有至少一种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、大气气体和碳氢化合物的组分,产生压缩的可变负荷的制冷剂混合物;(B)冷却压缩的可变负荷的制冷剂混合物,产生冷却的压缩的可变负荷的制冷剂混合物;
(C)膨胀冷却的压缩的可变负荷的制冷剂混合物,产生制冷作用,得到较低温度可变负荷的制冷剂混合物;和(D)加热较低温度的可变负荷的制冷剂混合物。
本发明的另一方面是无毒的,不可燃的和低消耗臭氧的制冷剂混合物,含有至少一种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、大气和碳氢化合物的组分。
在这里使用时,术语“可变负荷的制冷剂”是指以一定比例的两种或更多种组分的混合物,这样的比例使这些组分的液相在该混合物的泡点和露点之间进行连续的和提高温度的变化。混合物的泡点是在给定的压力下混合物都处于液相但加热时开始形成与液相平衡的汽相。混合物的露点是这样的温度,在给定的压力下混合物都处于汽相但移出热时开始形成与说明平衡的液相。因此,混合物的泡点和露点之间的温度范围是液相和汽相平衡时同时存在的范围。在本发明的实施中在可变负荷的制冷剂的泡点和露点之间的温度差是至少10°K,优选至少20°K最优选至少50°K。
在这里使用时,术语“碳氟化合物”表示下列化合物中的一个化合物四氟甲烷(CF4)、全氟乙烷(C2F6)、全氟丙烷(C3F8)、全氟丁烷(C4F10)、全氟戊烷(C5F12)、全氟乙烯(C2F4)、全氟丙烯(C3F6)、全氟丁烯(C4F8)、全氟戊烯(C5F10)、六氟环丙烷(环-C3F6)和八氟环丁烷(环-C4F8)。
在这里使用时,术语“碳氢氟化合物”表示下列化合物中的一个化合物三氟甲烷(CHF3)、五氟乙烷(C2HF5)、四氟乙烷(C2H2F4)、七氟丙烷(C3HF7)、六氟丙烷(C3H2F6)、五氟丙烷(C3H3F5)、四氟丙烷(C3H4F4)、九氟丁烷(C4HF9)、八氟丁烷(C4H2F8)、十一氟戊烷(C5HF11)、氟甲烷(CH3F)、二氟甲烷(CH2F2)、氟乙烷(C2H5F)、二氟乙烷(C2H4F2)、三氟乙烷(C2H3F3)、二氟乙烯(C2H2F2)、三氟乙烯(C2HF3)、氟乙烯(C2H3F)、五氟丙烯(C3HF5)、四氟丙烯(C3H2F4)、三氟丙烯(C3H3F3)、二氟丙烯(C3H4F2)、七氟丁烯(C4HF7)、六氟丁烯(C4H2F6)和九氟戊烯(C5HF9)。
在这里使用时,术语“碳氢氟氟化合物”表示下列化合物中的一个化合物氯二氟甲烷(CHClF2)、氯氟甲烷(CH2ClF)、氯甲烷(CH3Cl)、二氯氟甲烷(CHCl2F)、氯四氟乙烷(C2HClF4)、氯三氟乙烷(C2H2ClF3)、氯二氟乙烷(C2H3ClF2)、氯氟乙烷(C2H4ClF)、氯乙烷(C2H5Cl)、二氯三氟乙烷(C2HCl2F3)、二氯二氟乙烷(C2H2Cl2F2)、二氯氟乙烷(C2H3Cl2F)、二氯乙烷(C2H4Cl2)、三氯氟乙烷(C2H2Cl3F)、三氯二氟乙烷(C2HCl3F2)、三氯乙烷(C2H3Cl3)、四氯氟乙烷(C2HCl4F)、氯乙烯(C2H3Cl)、二氯乙烯(C2H2Cl2)、二氯氟乙烯(C2H2ClF)和二氯二氟乙烯(C2HClF2)。
在这里使用时,术语“氟化醚”表示下列化合物中的一个化合物三氟甲氧基-全氟甲烷(CF3-O-CF3)、二氟甲氧基-全氟甲烷(CHF2-O-CF3)、氟甲氧基-全氟甲烷(CH2F-O-CF3)、二氟甲氧基-二氟甲烷(CHF2-O-CHF2)、二氟甲氧基-全氟乙烷(CHF2-O-C2F5)、二氟甲氧基-1,2,2,2-四氟乙烷(CHF2-O-C2HF4)、二氟甲氧基-1,1,2,2-四氟乙烷(CHF2-O-C2HF4)、全氟乙氧基-氟甲烷(C2F5-O-CH2F)、全氟甲氧基-1,1,2-三氟乙烷(CF3-O-C2H2F3)、全氟甲氧基-1,2,2-三氟乙烷(CF3-O-C2H2F3)、环-1,1,2,2-四氟丙醚(环-C3H2F4-O-)、环-1,1,3,3-四氟丙醚(环-C3H2F4-O-)、全氟甲氧基-1,1,2,2-四氟乙烷(CF3-O-C2HF4)、环-1,1,2,3,3-全氟丙醚(环-C3H5-O-)、全氟甲氧基-全氟丙酮(CF3-O-CF2-O-CF3)、全氟甲氧基-全氟乙烷(CF3-O-C2F5)、全氟甲氧基-1,2,2,2-四氟乙烷(CF3-O-C2HF4)、全氟甲氧基-2,2,2-三氟乙烷(CF3-O-C2H2F3)、环-全氟甲氧基-全氟丙酮(环-CF2-O-CF2-O-CF2-)和环-全氟丙醚(环-C3F6-O)。
在这里使用时,术语“大气气体”表示下列气体中的一种气体氮(N2)、氩(Ar)、氪(Kr)、氙(Xe)、氖(Ne)、二氧化碳(CO2)、氧(O2)和氦(He)。
在这里使用时,术语“碳氢化合物”表示下列化合物中的一个化合物氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、丙烷(C3H8)、丙烯(C3H6)、丁烷(C4H10)、丁烯(C4H8)、环丙烷(C3H6)和环丁烷(C4H8)。
在这里使用时,术语“无毒的”表示在根据可接受的暴露极限处理时未出现急性或慢性危害。
在这里使用时,术语“不可燃的”表示没有闪点或具有至少600°K的非常高的闪点。
在这里使用时,术语“低消耗臭氧”表示按照蒙特利尔议定书规定具有消耗臭氧潜能值小于0.15,而在该议定书中二氯氟甲烷(CCl2F2)的消耗臭氧潜能值为1.0。
在这里使用时,术语“不消耗臭氧”表示没有含有氯、溴或碘原子的组分。
在这里使用时,术语“标准沸点”表示在1标准大气压,即每平方时14.696磅(绝对压力)下的沸腾温度。
在这里使用时,术语“低温”表示温度150°K或更低。
在这里使用时,术语“间接热交换”表示使两种流体产生热交换关系而这两种流体相互无任何物理接触或混合。
在这里使用时,术语“膨胀”表示压力降低。
在这里使用时,术语“汽轮膨胀”和“汽轮膨胀机”分别表示高压流体流过汽轮机使流体的压力和温度降低化而产生制冷作用的方法和设备。


图1是在给定压力下可变负荷的制冷剂混合物的一般的温度和浓度关系曲线。
图2是本发明可以实施的系统的示意图。
图3是本发明可以实施的另一个系统的示意图。
图4是本发明可以用于在宽的温度范围内产生制冷作用的三个封闭系统的示意图。
本发明包括由确定的组分按比例组成的形成可变负荷的制冷剂混合物和所述制冷剂混合物在制冷循环中的用途。根据过程和在过程中的位置,即热交换位置(上部、中部、下部),可变负荷的制冷剂混合物可以都是气体、气体/液体,或都是液体相。优选的循环是封闭的循环。可变负荷的冷冻剂混合物显示平缓的温度变化并伴随相变化。这些变化由图1中在给定压力下可变负荷的混合物的温度和浓度关系曲线说明。在温度(timx)下组分A和B的任何给定的混合物(xmix),存在两相,饱和蒸汽的组成(xmixv)与同蒸汽平衡的液体组成不同,液体有组成(xmixL)。随着温度降低,液相组成和汽相组成将变化,每个相都变成富含组分B。冷凝的混合物继续不断地改变其组成和冷凝温度。其特征是可改进制冷循环的性能。所述循环的改进与使用多组分有关,每个组分有其本身的标准沸点和有关的汽化潜热。适当选择制冷剂组分、混合物中的最佳浓度、以及操作压力大小和制冷剂循环,可在需要的温度范围内产生可变量的制冷作用。作为温度的函数的可变制冷作用的提供能够在制冷作用使用物系统中最佳控制热交换温度差,因此降低了系统的能量要求。
本发明的可变负荷的制冷剂混合物含有至少一种选自碳氟化合物、碳氯氟化合物和氟代醚的组分和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、大气气体和碳氢化合物的组分。
本发明的一个优选的可变负荷的制冷剂混合物含有至少两种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、大气气体和碳氢化合物的组分。
本发明的另一个优选的可变负荷的制冷剂混合物含有至少一种碳氟化合物和至少一种选自碳氢氯化合物和大气气体中的组分。
本发明的另一个优选的可变负荷的制冷剂混合物含有至少一种碳氟化合物、至少一种碳氢氟化合物和至少一种大气气体。
本发明的另一个优选的可变负荷的制冷剂混合物含有至少三种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、碳氢化合物和大气气体的组分。
本发明的另一个优选的可变负荷的制冷剂混合物含有至少两种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种大气气体。
本发明的另一种优选的可变负荷的制冷剂混合物含有至少两种选自碳氟化合物、碳氢氟化合物和氟代醚的组分,至少一种大气气体,和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、碳氢化合物和大气气体的组分。
本发明的另一个优选的可变负荷的制冷剂混合物含有至少两种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少两种不同的大气气体。
本发明的另一个优选的可变负荷的制冷剂混合物包括至少一种氟代醚,即含有至少一种氟代醚和至少一种选自碳氟化合物、碳氢氟化合物、氟代醚、碳氢氯氟化合物、碳氢化合物和大气气体的组分。
在本发明的一个优选实施方案中可变负荷的制冷剂混合物不含有碳氢氯氟化合物。在本发明的另一个优选实施方案中可变负荷的制冷剂不含有碳氢化合物。最优选的可变负荷的制冷剂既不含有碳氢氯氟化合物也不含有碳氢化合物。最优选的可变负荷的制冷剂是无毒的,不可燃的和不消耗臭氧的,而可变负荷的制冷剂混合物的每个组分是碳氟化合物、碳氢氟化合物、氟代醚或大气气体。
在本发明的一个优选实施方案中,可变负荷的制冷剂仅由碳氟化合物组成。在本发明的另一个实施方案中可变负荷的制冷剂仅由碳氟化合物和碳氢氟化合物组成。在本发明的另一个优选实施方案中可变负荷的制冷剂仅由碳氟化合物和大气气体组成。在本发明的另一个实施方案中可变负荷的制冷剂仅由碳氟化合物、碳氢氟化合物和氟代醚组成。在本发明的另一个优选实施方案中可变负荷的制冷剂仅由碳氟化合物、氟代醚和大气气体组成。最优选的可变负荷的制冷剂的各个组分是碳氟化合物、碳氢氟化合物、氟代醚和大气气体。
本发明特别有利的用于从环境温度达到低温。表1-15列举了本发明的可变负荷的制冷剂混合物的优选实施例。在表中给出的浓度范围以摩尔百分数计。表1~5中所示的实施例是在约200°K以上产生制冷作用的优选混合物,在表6-15中所示实施例是在约200°K以下产生制冷作用的优选混合物。
表1组分 浓度范围C5F125-35C4F100-25C3F810-50C2F610-60CF40-25
表2组分 浓度范围C5F125-35C3H3F60-25C3F810-50CHF310-60CF40-25表3组分 浓度范围C3H3F55-35C3H3F60-25C2H2F45-20C2HF55-20C2F610-60CF40-25表4组分浓度范围CHF2-O-C2HF45-35C4F100-25CF3-O-CHF210-25CF3-O-CF30-20C2F610-60CF40-25
表5组分 浓度范围CHF2-O-C2HF45-35C3H2F60-25CF3-O-CHF210-50CHF310-60CF40-25表6组分 浓度范围C5F125-25C4F100-15C3F810-40C2F60-30CF410-50Ar 0-40N210-80表7组分 浓度范围C3H3F55-25C4F100-15C3F810-40CHF30-30CF410-50Ar0-40N210-80
表8组分 浓度范围C3H3F55-25C3H3F60-15C2H2F40-20C2HF55-20C2F60-30CF410-50Ar 0-40N210-80表9组分 浓度范围CHF2-O-C2HF45-25C4H100-15CF3-O-CHF210-40CF3-O-CF30-20C2F60-30CF410-50Ar 0-40N210-80
表10组分浓度范围C3H3F55-25C3H2F60-15CF3-O-CHF210-40CHF30-30CF40-25Ar 0-40N210-80表11组分 浓度范围C5F125-25C4F100-15C3F810-40C2F60-30CF410-50Ar 0-40N210-80Ne 0-10He 0-10表12组分 浓度范围C3H3F55-25C4F100-15C3F810-40CHF30-30CF410-50Ar 0-40N210-80Ne 0-10He 0-10
表13组分 浓度范围C3H3F55-25C3H2F60-15C2H2F45-20C2HF55-20C2F60-30CF410-50Ar 0-40N210-80Ne 0-10He 0-10表14组分 浓度范围CHF2-O-C2HF45-25C4F100-15CF3-O-CHF210-40CF3-O-CF30-20C2F60-30CF410-50Ar 0-40N210-80Ne 0-10He 0-10表15组分 浓度范围C3H3F55-25C3H2F60-15CF3-O-CHF310-40CHF30-30CF40-25Ar 0-40N210-80Ne 0-10He 0-10
图2说明本发明可以实施的一个制冷循环。现在参考图2,本发明的可变负荷的制冷剂混合物在制冷循环或循环1中循环。制冷剂2通过压缩机3压缩,形成压缩的制冷剂流体4,通过后冷却器70冷却至接近环境温度,然后通过热交换器5冷却或优选至少部分液化。除非另有说明,在附图中说明的每个热交换步骤都是间接交换步骤。然后,冷却的制冷剂流体通过阀7节流,即膨胀,至较低压力。压力膨胀可以通过汽轮机,例如气体膨胀,两相膨胀,或液体膨胀汽轮机进行。可以通过在热交换器9中用间接热交换冷却流体8在单一或窄的温度范围下利用产生的制冷作用,或者可以在热交换器5中在更宽的温度范围内利用。按照由逆向物流10和同向物流11说明的可利用制冷作用冷却通过热交换器5的一个或多个流体物流。虽然在整体上在交换器5中物流11显示被加热,但是在局部上在交换器5中其可以被冷却。然后得到的热的制冷剂混合物作为物流2进入压缩机3,重复循环。
冷却设备也可包括预冷却器循环或循环12,其中用于在中温下提供制冷作用的本发明的可变负荷的制冷剂混合物13在预冷却器的压缩机14中被压缩,在后冷却器71中冷却至环境温度,得到的压缩的流体5在热交换器5中冷却。得到的冷却流体16通过阀或合适的汽轮机17节流,产生制冷作用,得到的较低温度的制冷剂流体18被加热,然后作为物流13循环至压缩机14。
预冷却器循环的作用可以通过按照图3所说明的中间除去部分制冷剂混合物和循环液体来实现。液体循环的特征提供了使制冷剂混合物与需要的温度范围相对应的工艺方法的适应性和避免了液体制冷剂不必要的冷却和可能的冻结。图3中一般的单元的数字与图2中的相同,不再详细说明。现在参考图3,冷冻剂流体20通过压缩机21压缩,形成压缩的制冷剂流体22,其通过后冷却器71冷却以除去压缩产生的热,至接近环境温度,然后通过热交换器5的部分隔室冷却和部分冷凝。冷却的两相制冷剂混合物23通过相分离器24,在其中分离成蒸汽和液体。蒸汽25通过热交换器5进一步冷却,通过阀26节流,通过热交换器9和/或5加热。液体27通过阀28,然后通过热交换器5汽化。在图3说明的实施方案中在汽化前液体与通过阀26节流的低压蒸汽混合。得到的热的制冷剂混合物作为物流29返回压缩机21,重新开始制冷循环。虽然说明了单相分离,当然在不同温度下的多相分离可用于提供分阶段的预冷却系统。
本发明特别用于提供从环境温度降至低温,甚至低至5°K的制冷作用。尽管本发明可用于提供在单循环中全温度范围内的上述制冷作用,一般优选提供在多个串连的循环中的制冷作用。多个串连循环的使用使每个循环提供在选择的范围内的制冷作用。由于选择的混合物仅要求在较有限的温度范围内可操作,因此,简化了合适的制冷剂混合物的选择。应注意,虽然每个串连的循环主要是用来提供在有关的温度范围内的制冷作用,但是也可以提供在较高的温度范围内的部分制冷作用。因此,关于在给定的温度范围内提供制冷作用方面串连的循环可能相互有点部分重叠。
结合图4说明和讨论串连的循环系统。现在参考图4。含有两种或更多种例如四氟甲烷、三氟甲烷、全氟丙烷、全氟丁烷、五氟丙烷、四氟乙烷、二氟甲氧基-二氟甲烷和全氟戊烷的较高温度的可变负荷的制冷剂流体在较高温度循环30中循环,其中由环境温度约300°K降至约200°K产生制冷作用。约300°K的较高温度的制冷剂流体31在压缩机32中压缩,通过冷却器33和热交换器60冷却,通过阀34节流,产生约200°K较低温度的制冷剂流体35。然后较低温度的制冷剂流体加热至约300°K,作为物流31返回压缩机32。
除了一种或多种对于较高温度流体列举的组分外还含有氢和/或氩的中温可变负荷的制冷剂流体在中温循环40中循环,其中由从约200°K降至约100°K产生制冷作用。中温制冷剂流体41在压缩机42中压缩,通过冷却器43和热交换器60和61冷却,通过阀44节流,得到约100°K较低温度的制冷剂流体45,其被加热后作为物流41返回压缩机42。
含有两种或更多种氮、氩、氦、氖和氢的很低温度的制冷剂流体在很低温度的循环50中循环,其中温度范围从约100°K到约20°K或更低。很低温度制冷剂流体51在压缩机52中压缩,通过冷却器53和热交换器60,61和62冷却,通过阀54节流,产生约20°K或更低的较低温度的制冷剂流体55,其通过加热器56和热交换器62,61和60加热,然后作为物流51返回压缩机52。
本发明特别用于在宽的温度范围,特别是包括低温的温度范围内产生制冷作用。在本发明的优选实施方案中可变负荷的制冷剂混合物的两种或多种组分的每一种的标准沸点与所述制冷剂混合物中其他各组分的标准沸点相差至少20°K。该标准沸点差增加了在宽的温度范围,特别是包括低温的温度范围内产生制冷作用的效率。在本发明的特别优选的实施方案中,多组分制冷剂流体中最高沸点组分的标准沸点比该多组分制冷剂流体中最低沸点组分的标准沸点高至少50°K,优选至少100°K,最优选至少200°K。
组成本发明的制冷剂混合物的组分和其浓度应达到形成可变负荷的制冷剂混合物和优选保持在本发明方法的整个温度范围内可变负荷特性。这明显地增加了可产生制冷作用的效率和在所述宽的温度范围内的应用。确定种类的组分具有附加的益处,它们可以用于形成无毒的,不可燃的和低或不消耗臭氧的混合物。这提供了优于通用的一般是有毒的,可燃的和/或消耗臭氧制冷剂的附加优点。
本发明的一个优选的无毒的不可燃的和不消耗臭氧的可变负荷的制冷剂混合物含有两种或更多种选自下列的组分C5F12,CHF2-O-C2HF4、C4HF9、C3H3F5、C2H5-O-CH2F、C3H2F6、CHF2-O-CHF2、C4F10、CF3-O-C2H2F3、C3HF7、CH2F-O-CF3、C2H2F4、CHF2-O-CF3、C3F8、C2HF5、CF3-O-CF3、C2F6、CHF3、CF4、O2、Ar、N2、Ne和He。
本发明对于大多数用途,特别是低温应用产生制冷作用。在这些用途中,一个称为气体分离方法,例如低温空气分离和其他低温分离和天然气浓缩、液化器、食品冷冻、排放气体回收、热泵、低温液体储藏和输送容器中的再冷凝、结晶、固化、低温研磨、化学储藏和输送,生物和医药材料储藏和运输,和用于材料处理和储藏的冷冻室,即低温室。
虽然本发明已经参考一些优选实施方案详细说明,但是本技术领域技术熟练的人员会认识到在本申请权利要求的精神和范围内有本发明的其他实施方案。
权利要求
1.产生制冷作用的方法,包括(A)压缩可变负荷的制冷剂混合物,所述混合物含有至少一种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种选自碳氯化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、大气气体和碳氢化合物的组分,产生压缩的可变负荷的制冷剂混合物;(B)冷却压缩的可变负荷的制冷剂混合物,产生冷却的压缩的可变负荷的制冷剂混合物;(C)膨胀冷却的压缩的可变负荷的制冷剂混合物,产生制冷作用,得到较低温度可变负荷的制冷剂混合物;和(D)加热较低温度的可变负荷的制冷剂混合物。
2.权利要求1的方法,其中压缩的可变负荷的制冷剂混合物由于步骤(B)冷却的结果部分冷凝,分离得到的液体和剩余蒸汽,然后在加热之前将蒸汽进一步冷却。
3.权利要求1的方法,首先用第一可变负荷的制冷剂混合物进行,然后用第二可变负荷的制冷剂混合物进行,其中第一可变负荷的制冷剂混合物通过冷却第二可变负荷的制冷剂混合物加热。
4.在低温下产生制冷作用的方法,包括(A)压缩可变负荷的制冷剂混合物,所述混合物含有至少一种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、大气气体和碳氢化合物的组分,产生压缩的可变负荷的制冷剂混合物;(B)冷却压缩的可变负荷的制冷剂混合物,产生冷却的压缩的可变负荷的制冷剂混合物;(C)膨胀冷却的压缩的可变负荷的制冷剂混合物和产生制冷作用,在低温下得到较低温度可变负荷的制冷剂混合物;和(D)加热较低温度的可变负荷的制冷剂混合物。
5.无毒的,不可燃的和低消耗臭氧的制冷剂混合物,含有至少一种选自碳氟化合物、碳氢氟化合物和氟代醚的组分和至少一种选自碳氟化合物、碳氢氟化合物、碳氢氯氟化合物、氟代醚、大气气体和碳氢化合物的组分。
6.权利要求5的制冷剂混合物,其中混合物中每种组分的标准沸点与该制冷却混合物中其他各组分的之每一的标准沸点相差至少20°K。
7.权利要求5的制冷剂混合物,其中制冷剂混合物中最高沸点组分的标准沸点比该制冷剂组合物中最低沸点组分的标准沸点高至少50°K。
8.权利要求5的制冷剂混合物,含有至少一种碳氟化合物,至少一种碳氢氟化合物和至少一种大气气体。
9.权利要求5的制冷剂混合物,含有至少两种选自碳氟化合物、碳氢氟化合物和氟代醚的组分,和至少两种大气气体。
10.权利要求5的制冷剂混合物,含有至少一种氟代醚和至少一种选自碳氟化合物、碳氢氟化合物、氟代醚、碳氢氯氟化合物、碳氢化合物和大气气体的组分。
全文摘要
产生制冷作用的方法,特别是在包括低温的宽的温度范围内产生制冷作用的方法,其中无毒的,不可燃的和低消耗或不消耗臭氧的混合物由确定的组分形成,并在制冷循环中的压缩、冷却、膨胀和加热步骤中保持可变负荷的形式。
文档编号F25J1/02GK1265462SQ99127429
公开日2000年9月6日 申请日期1999年12月28日 优先权日1998年12月30日
发明者A·阿查亚, B·阿曼, W·J·奥尔斯泽夫斯, D·P·波纳奎斯特, J·A·维伯 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1