带有内设气化器的综合的低温空气分离装置的制作方法

文档序号:4761940阅读:141来源:国知局
专利名称:带有内设气化器的综合的低温空气分离装置的制作方法
技术领域
本发明涉及一种综合的低温空气分离装置/内设气化器的联合循环发电系统的作业,具体地说,涉及一种能在改变对上述内设气化器的联合循环发电系统的电力需求量期间以恒定的生产能力工作的低温空气分离装置,并涉及使上述空气分离装置改变其耗电量的作业方法,以便在用电高峰期间使上述内设气化器的联合循环发电系统的净发电量达到最大,同时又保持该内设气化器的联合循环发电系统在改变发电量作业时的最高效率。
能源成本的逐步提高已迫使人们加紧努力开发替代能源的事业。这项努力的结果之一是出现内设气化器的联合循环发电站。
由这种内设气化器的联合循环发电系统发电可以比标准的燃煤发电厂降低成本和减少环境危害。在这种先进的系统中,煤或其他碳质材料与纯度通常为80%(体积)以上的氧气进行不完全的氧化气化反应。对反应产生的气体进行净化而成为低硫的合成气体燃料。这种主要含有氢和一氧化碳的合成气体燃料可用于燃气涡轮发电系统发电,而环境污染物较少。
近年来,用于上述内设气化器的联合循环发电系统的先进燃气涡轮、燃煤气化工艺、和空气分离装置的较高效率和已证实的可靠性刺激着人们对气化联合循环技术产生日益增长的兴趣。内设气化器的联合循环发电系统的上述三个要素的正确结合是达到最高工作效率和最低发电成本所必需的。
在美国专利No.4328008(授予Munger等)和No.4052176(授予Child等)中较详细地公开了上述的内设气化器的联合循环发电系统。这两篇专利已纳入本文作为参考。
基于燃烧的发电系统(包括内设气化器的联合循环发电系统)会遇到由于电力需求量变化而低于系统设计能力的作业期,在此期间,上述系统在低于设计效率下工作。因此,一个内设气化器的联合循环发电系统设备的选用及工艺的设计必须考虑在设计能力下的稳态作业,又要考虑在非设计的、部分负载的或者说萧条状态下的作业。
供入空气和氮气的内设气化器的联合循环发电系统是一种好的方案,因为这种系统有可能在最高的综合效率下工作,特别是在非设计的、部分负载的或者说萧条状态下作业。
由于上述发电站的作业取决于用户的用电量,所以供入电站的氧量常常需要随用电量的变化和通常的日常用电循环中发生的用电量的减少而改变。例如,对典型的内设气化器的联合循环发电站夜间的电力需求量可能是白天需求量的50~75%。用电量还可能发生季节性的变化。在用电量减少时,发电站必须通过减少供入燃气涡轮燃烧室中的空气流量和燃料在部分负载下即“下跳”的状态下作业。
上述的内设气化器的联合循环发电系统输出功率的变化与对空气分离装置生产的用于该系统的氧和氮的需要量(气化器作业所需的氧量更重要)的增加和减少相对应。而且,重要的是,当空气分离装置的产物量增加或减少时,所生产的氧和氮的纯度应保持在或高于气化过程所要求的水平。
遗憾的是,将空气分离装置与内设气化器的联合循环发电系统相结合会出现一个问题。在上述内设气化器的联合循环发电系统出现之前,空气分离装置不必按照内设气化器的联合循环发电系统作业的要求而严格改变它们的生产。并且它们也是这样设计的。通常对完全内设的空气分离装置提出的要求是,它必须能在设计能力的50%~100%条件下工作,同时又能适应每分钟约生产能力的3%的生产率的变化(有时称为“跳动”)。
下面简单说明上述问题,当空气分离装置在部分负载下作业或者说处于减产状态时,产物的需求量较少,而且,当供气压力下降时,蒸馏塔中的液体还会发生闪蒸而产生更多的产物,而闪蒸的液体又是富氧的,可能降低氧和氮产物流的纯度。
那么,问题在于如何控制原料压缩空气的压力可能改变的空气分离装置的变化、同时又能满足变化的需氧量和严格的纯度要求。
最好是空气分离装置具有能满足峰值负载要求的产氧能力同时在非峰值负载期间又不在欠佳的状态下工作,因为空气分离装置不在设计能力或接近于其设计能力下工作时效率会降低。而且,最好在高峰期间能将发电量提高到超过设计水平而不会由于过大的设备和非最佳工作状态而提高成本。
本发明的目的是要寻求一种技术使空气分离装置可高效地生产氧而不必考虑由于用电量的变化而改变对内设的空气分离装置的需求,同时又能保持相当恒定的纯度满足上述内设气化器的联合循环发电系统的气化器的规范。
纳入本专利作为参考的美国专利No.5526647(授予Grenier)公开过一种使用液态空气贮存罐和液态氧贮存罐在可变流量的压力下生产气态氧的工艺。
引入的空气在热交换器中通过与来自蒸馏装置的产物进行热交换而冷却。从蒸馏装置中抽出液态氧,施加蒸发压力使之蒸发,并在热交换器中用引入的空气再加热(该引入的空气因此而液化)。
在相对于正常流量的压力下减少气态氧的需求量时,由蒸馏装置生产的多余的液态氧被抽出来送到液氧贮存罐中。再将数量相当于抽出的液态氧的已贮存起来的液态空气引入蒸馏装置中。
在相对于正常流量的压力下增加对气态氧的需求量时,从液氧贮存罐中抽出所需的过量的液态氧,施加蒸发压力并在热交换器中于这种蒸发压力下蒸发。再将通过这种蒸发作用而液化的相当数量的空气贮存在液态空气贮存罐中。
上述系统的缺点是必需设置两个贮存罐,一个贮存液态空气,另一个贮存液态氧,还要设置输送这些液化气体的管道和泵送装置。
在外设容器中贮存气态氧或液态氧需要高的投资成本,在致冷装置外面或空气分离装置的冷箱外面贮存液态氧也需要高的制冷成本来保持合适的温度。
纳入本专利作为参考的美国专利No.5265429(授予Dray)采用液态氧沸腾器由液态氧产生气态氧并在该液态氧沸腾器与低温致冷装置之间设置液态空气贮存罐来适应发电站变化的负载。既解决了由于抽取液态氧造成的致冷损失又解决了低温制冷装置的工作波动问题。
纳入本专利作为参考的美国专利No.5437160(授予Darredeau)涉及到生产用于内设气化器的联合循环发电系统的氧的空气分离系统。
Darredeau提出了解决需氧量变化问题的办法,即当对产物氧的需求量或供给空气的流量增大时,将一种多余的富氮液体引入蒸馏装置,而当对产物氧的需求量或供给空气的流量减小时,则从蒸馏装置抽出多余的富氮液体并将这种液体贮存起来。
本发明论述对改进上述先进的发电系统的作业方法的需要,具体说明了在各种负载状态下供入空气和氧的内设气化器的联合循环发电系统和空气分离装置的改进的作业。
本发明是一种综合系统,包含一种发电的内设气化器的联合循环发电系统;一种对不完全氧化气化装置的气化器供氧的空气分离装置以及在使用前贮存液态氧或液态空气的贮存罐。在一个最佳实施例中,空气分离装置设计成整天在恒定的产氧量下工作,而所生产的多余的氧则贮存在空气分离装置的制冷段或冷箱内。这就避免了与“上跳”和“下跳”过程有关的产物纯度变化带来的问题,而且可采用较小的空气分离装置进行作业而节约投资成本,因为空气分离装置总是在(或接近于)设计能力下工作,另外还可减少空气分离装置在峰值需求量期间的动力消耗。


图1是本发明方法的示意图。
通过使用一种氧生产率整天保持在稳定的最佳水平并在电厂工作状态变化时不会出现明显波动的工艺方法可以进一步提高产品质量和工作效率以及节约投资和作业成本。上述的空气分离装置在较低能耗期间可在(或接近于)其设计能力下工作,其中,通常要求的为了与气化器需氧量相匹配的产氧量的改变(有时称之为“负载跟踪”)可以利用在可变能耗最低期间生产而储存起来的氧量加以平衡。
本发明的工艺方法和装置用具有至少一个蒸馏塔的低温蒸馏系统分离空气,在该系统中,空气以空气分离装置的设计生产率或接近于该生产率的速度被分离成富氧和富氮的气流,而不管上述的内设气化器的联合循环发电系统的负载状态如何。该工艺方法在增加用电量和供气压力时以及在减少需氧量和降低供气压力时都可基本保持产物的纯度要求。可以避免与产氧量急剧增加有关的问题(通常称为“上跳或下跳”)。
本发明系统的一个重要优点是改变了从高能耗期间至低能耗期间氧的分离和液化的能量利用情况。
空气分离装置在非高峰期间按一定的效率持续生产液态空气或氧。对中间不需使用的液态空气或氧贮存在下蒸馏塔的底部从而增加蒸馏塔底部的液体量,或者贮存在空气分离装置的冷箱内的独立的贮存罐内,并在高峰期使所贮存的液态空气或氧恢复其致冷价值后加以利用,以增加空气分离装置的能力并同时提供额外的蒸发氧供给气化器。
在高峰期间,将同样的氧量或者说增加的氧量供入气化器,同时又减少或保持通过压缩机进入空气分离器的空气体积,在低能耗的非高峰期间,则利用所生产的贮存起来的液态氧补充所需的输氧量。这就降低了每吨氧所消耗的动力,因为在用电高峰期,必须压缩的空气较少。因此,明显地降低了通常与生产液态氧有关的动力成本负担。
本发明的工艺程序适应性强且效率高。故所要求的空气分离装置的尺寸及其用电量都明显低于设计标准并能在供氧量变化的情况下作业。空气分离装置的用电量从高峰期间至非高峰期间的变化允许上述内设气化器的联合循环发电系统的净功率输出的改变大于其总功率的改变,同时又可使燃气涡轮和气化装置始终在(或接近于)最佳状态下运转。
参看图1,空气压缩机1对已除去低沸点杂质如水蒸汽和二氧化碳的原料空气流30进行压缩。所得到的增压空气流2进入主热交换器3。在这里通过与返回的气流的间接热交换,使气流2的温度从常温冷却到适合于蒸馏法分离空气的温度。冷却过的增压空气离开热交换器3通过管道4进入双塔蒸馏系统的高压蒸馏塔5。
上述的已冷却的增压空气在高压蒸馏塔5中分馏成一种塔顶馏出物高压氮蒸汽25和富氧的底液11,高压氮蒸汽25进入低压蒸馏塔6的底部,在这里通过与由管道27引入塔6中的沸腾液态氧的间接热交换而冷凝。已冷凝的液态氮之一部分26离开蒸馏塔6之底部作为纯回流返回到高压蒸馏塔5,从冷凝的液氮26分离出第二部分液氮12进入热交换器8,在这里经受过冷处理后再通过管道17引入蒸馏塔6。
塔顶馏出物低压气态氮7(其绝对压力通常为60~90磅/英寸2)离开低压蒸馏塔6通过热交换器8再进入循环,在热交换器8经过部分加热后经由管道9流入热交换器3。通过热交换器8和3回收氮气流7的致冷值。该氮气流从热交换器3通过管道23排出或随意输送到内设气化器的综合循环系统的燃烧涡轮(未示出)中。
富氧的底液11从蒸馏塔5流出并进入热交换器8,在这里冷却后的液流27被送入蒸馏塔6的中间部位进行进一步的蒸馏和提纯。
从压缩机1流出的原料空气中的一部分19从管道2分流出来,通过增压压缩机(未示出)后再随意供入热交换器3。在热交换器3中冷却后的空气流14离开该热交换器3进入膨胀室15,在这里膨胀和冷却后,通过管道16进入蒸馏塔6的中间部位以提供致冷效应并通过蒸馏使之分离出组分。
上述冷凝的回流氮17和减压的富氧底液27在蒸馏塔6内进行蒸馏,得到从塔顶流出的氮气流7,而液氧流则通过管道18流出蒸馏塔6。多余的液态氧可储存在低压蒸馏塔6的底部。从低压蒸馏塔6流出的液态氧通过管道13随意地输送到贮存罐21,并贮存在液氧贮存罐21中,直到对内设气化器的综合循环系统提出高发电量需求而需要使用液态氧时为止。如果需要的话,液态氧可从贮存罐21通过管道24进入再循环,并与液氧流18相结合进入热交换器8中。
从贮存罐21流出的液氧也可通过管道29送入液氧泵31,在这里加压后通过管道32流入蒸发器33。在这里蒸发,获得高压氧产品而不用耗费压缩时所需的能量。从蒸发器33通过管道34流出的高压气态氧在管道35中与从压缩器22流出的氧产品流20相结合。
贮存罐21置于空气分离装置的冷箱内,因此几乎不耗费能量就使氧保持在液态。在一个最佳实施例中,所产生的多余的液氧贮存在低压蒸馏塔6的底部。
气态氧18离开蒸馏塔6并进入热交换器8,然后作为气流10流出并进入热交换器3,再通过管道28流出。然后在压缩机22中进行压缩后,作为高压气态氧20流出。
在峰值需求量期间,某些管道的流量可以增大。例如,管道2的压缩空气流量可从通常的约100%增加到约105%,而管道18中的液氧流量可从约100%增加至约115%。反之,在非峰值期间,某些管道的流量可减小。管道2的压缩空气流量可从通常流量的约100%减小至约95%,管道18中的液氧流量可从约100%减小至约85%。
最好使通过管道2进入系统的空气流量保持在一个恒定值,以避免任何由于进气流量的变化而造成系统的起伏或使产品质量突升或突降等问题。本发明的系统具有足够的适应性,进气流量的变化不会引起系统效率的明显波动。
实例1在本实例中,计算出各种耗电量,以确定使用上述恒定作业的空气分离装置在能量消耗量上的差异。结果表明,使用本发明的综合系统可得到2兆瓦的附加纯功率输出。这也证明,当改变氧的需求量时,可用投资成本较低的较小的空气分离装置获得相当的纯功率输出。
权利要求
1.一种为内设气化器的联合循环发电系统供给燃料制氧的方法,其特征在于,(a)在一种具有蒸馏塔和热交换器的空气分离装置中对空气进行低温蒸馏以生产液态氧;(b)对上述液态氧进行全部或部分蒸发而产生高压气态氧,供给内设气化器的联合循环发电系统作为燃料;(c)将未蒸发的那一部分液态氧收集起来并贮存备用,待需要高压气态氧时使之蒸发;其中,液态氧的蒸发是在空气分离装置中与经受低温蒸馏的空气进行间接热交换而完成的。
2.根据权利要求1的方法,其特征在于,当对内设气化器的联合循环发电系统的电力需求量小于其正常所需的发电量时,所生产的液态氧超过上述内设气化器的联合循环发电系统所需要的量,故将多余的液态氧收集并贮存起来。
3.根据权利要求1的方法,其特征在于,在对内设气化器的联合循环发电系统的电力需求量大于其正常所需的发电量时,便从贮存罐中抽出所收集的液态氧,使之在空气分离装置中于高压下与经受低温蒸馏的空气进行间接热交换的过程中蒸发,从而使空气分离装置的耗电量小于其正常需求量,并增加内设气化器的联合循环发电系统所生产的净电量。
4.根据权利要求1的方法,其特征在于,在可变流量下制氧。
5.根据权利要求1的方法,其特征在于,在基本上恒定的流量下制氧。
6.根据权利要求1的方法,其特征在于,在恒定的流量下制氧。
7.一种内设气化器的联合循环/空气分离装置发电系统,其特征在于,空气分离装置以基本上恒定的速率制氧,而与内设气化器的联合循环发电系统的发电需求量无关,在低发电量期间生产的多于内设气化器的联合循环发电系统的需氧量的氧以液态氧的形态贮存在空气分离装置内,并且保存到需要使用为止。其特征还在于,要用上述液态氧时,它被转换成气态氧供上述的内设气化器的联合循环发电系统使用。
8.一种随时改变内设气化器的联合循环/空气分离装置发电系统中的空气分离装置的耗电量的方法,包含下列步骤(a)不管对上述内设气化器的联合循环发电系统的电力需求量如何,以基本上恒定的速率生产液态氧;(b)收集和贮存在空气分离装置中生产的超过上述的内设气化器的联合循环发电系统所需氧量的那部分液态氧;(c)在上述内设气化器的联合循环发电系统的电力需求高峰期间,至少从上述贮存的多余液态氧中抽出一部分,并在高压下使该部分液态氧与进入空气分离装置的空气进行间接热交换而变成高压气态氧,从而使空气分离装置的耗电量小于其正常所需的耗电量,并增加上述内设气化器的联合循环发电系统生产的净电量。
全文摘要
一种含有一个内设气化器的联合循环发电系统和一个空气分离装置(5)的综合系统,上述空气分离装置(5)对部分氧化气化装置的气化器(33)和贮存罐(21)供氧,上述贮存罐(21)贮存液态氧或液态空气,直到要用液态氧或液态空气为止。
文档编号F25J3/04GK1290325SQ99802706
公开日2001年4月4日 申请日期1999年2月3日 优先权日1998年2月4日
发明者弗莱德里克·C·扬克 申请人:德士古发展公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1