高浓度氨氮废水资源化处理工艺的制作方法

文档序号:4849591阅读:244来源:国知局
专利名称:高浓度氨氮废水资源化处理工艺的制作方法
技术领域
本发明涉及废水处理技术领域,特别涉及一种高浓度氨氮废水资源化处理 工艺。
背景技术
近年来,随着城市人口的日益膨胀和工农业的不断发展,水环境污染事故 屡屡发生,对人、畜构成严重危害。许多湖泊和水库因氮、磷的排放造成水体 富营养化,严重威胁到人类的生产生活和生态平衡。氨氮是引起水体富营养化 的主要因素之一,为满足公众对环境质量要求的不断提高,国家对氮制订了越 来越严格的排放标准,研究开发经济、高效的除氮处理技术已成为水污染控制 工程领域研究的重点和热点。氨氮存在于许多工业废水中,特别是钢铁、化肥、无机化工、铁合金、玻 璃制造、肉类加工和饲料等生产过程,均排放氨氮废水,其浓度取决于原料性 质、工艺流程、水的耗量及水的复用等。对一给定废水,选择技术方案主要取 决于 一是水的性质;二是处理效果;三是经济效益。以及处理后出水的最后 处置方法等。虽然有许多方法都能有效地去除氨,如物理方法有反渗透、蒸馏、 土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电渗析、 电化学处理、催化裂解;生物方法有硝化及藻类养殖,但其应用于工业废水的处理,必须具有应用方便、处理性能稳定、适应于废水水质及比较经济等优点,因此,目前氨氮处理实用性较好的技术为(1)生物脱氮法;(2)氨吹脱、汽 提法;(3)折点氯化法;(4)离子交换法。生物脱氮可去除多种含氮化合物,其处理效果稳定,不产生二次污染,而 且比较经济,但有占地面积大、低温时效率低、易受有毒物质影响且运行管理 比较麻烦。氨吹脱、汽提工艺具有流程简单、处理效果稳定、基建费和运行费 较低等优点,但其缺点是生成水垢,在大规模的氨吹脱、汽提塔中,生成水垢是一个严重的操作问题。如果生成软质水垢,可以安装水的喷淋系统;而如果生成硬质水垢,不论用喷淋或刮刀均不能消除此问题。折点氯化法效果最佳, 不受水温影响,操作方便,投资省,但对于高浓度氨氮废水的处理运行成本很 高。离子交换法具有投资省、工艺简单、操作较为方便的优点,但对于高浓度 的氨氮废水,会使树脂再生频繁而造成操作困难,且再生液仍为高浓度氨氮废 水,需再处理。因此,至今还没有寻找到一种通用的有效方法。发明内容本发明公开了一种高浓度氨氮废水资源化处理工艺,该工艺包括如下步骤a. 首先将高浓度氨氮废水注入调节池,在调节池内均质;b. 调节池出水经废水提升泵进入综合反应器,在进入综合反应器前加入pH 值调质剂,调节pH值到10.5 11.5,同时加入0.08%解氨剂,在综合反应器中 稀碱液泵和喷射泵循环喷射后回收解吸氨气的热量,同时将PH值调质剂和解氨 剂充分混匀;C.预加热废水经废水泵控制流量送至化工填料塔,从塔上部进入,经废水 分布器均匀分布在填料上与塔底部上升的蒸汽热气流传质传热,塔内含氨气体 在塔上部与回流的雾化氨水接触传质传热,增浓后的氨气从塔顶排出,被喷射泵抽出后送入超级氨回收器回收;d.解吸氨后的塔底废水被高温泵泵入超重力脱氨分离机,进一步将少量残 留氨氮脱出达标后,向出水中加入硫酸,调节pH值至7 8后排放,未达标的 废水则返回超重力脱氨分离机重复进行处理,直至达标后排放,而脱出的含氨 气体进入超级氨回收器。该工艺还包括这一步骤超级氨回收器回收的稀氨水进入稀氨水制备槽, 稀氨水制备槽中的稀氨水则被送回综合反应器进行增浓处理,最后浓氨水进入 浓氨水储备槽。其中,所述超级氨回收器,其回收氨水第一级为循环氨水,回送到综合反 应器回收水份,同时清洗综合反应器上部分填料,确保回收氨水的质量,采用 普通循环水冷却;第二级为产品氨水,可能有少量的不凝性气体夹带氨气,在 尾气吸收器内被系统均匀补充的纯水净化后排至大气,采用低温冷水冷却;所述PH值调质剂为氢氧化钠或氢氧化钙;所述步骤b还包括提高进料的pH值,以加速氨的解吸,同时综合反应器中 废水pH值较高,可防止氨气溶解在喷射液中,造成温升过高及溶液蒸汽压过高, 影响喷射泵真空度。本发明的有益效果是经本发明处理后,废水中氨氮由23200mg/L下降为 8mg/L,达到国家一级排放标准,处理后的水可回用及景观绿化。同时,从高浓 度氨氮废水中脱出来的氨气通过吸收塔吸收后,可回收18% 25%以上浓度的水,有一定的经济效益,且废水中氨氮浓度越高,效益越明显。


图l为本发明工艺流程图;图2为本发明中超重力脱氨分离机。
具体实施方式
下面我们结合附图和具体实施方式
对本发明做更详细解释。 参阅图l, 一种高浓度氨氮废水资源化处理工艺。 实施例1a. 首先将高浓度氨氮废水注入调节池,在调节池内均质;b. 调节池出水经废水提升泵进入综合反应器,在进入综合反应器前加入pH 值调质剂,调节pH值到10.5,同时加入0.08%解氨剂,在综合反应器中稀碱液 泵和喷射泵循环喷射后回收解吸氨气的热量,同时将PH值调质剂和解氨剂充分 混匀;c. 预加热废水经废水泵控制流量送至化工填料塔,从塔上部进入,经废水 分布器均匀分布在填料上与塔底部上升的蒸汽热气流传质传热,塔内含氨气体 在塔上部与回流的雾化氨水接触传质传热,增浓后的氨气从塔顶排出,被喷射 泵抽出后送入超级氨回收器回收;d. 解吸氨后的塔底废水被高温泵泵入超重力脱氨分离机,进一步将少量残 留氨氮脱出达标后,向出水中加入硫酸,调节pH值至7后排放,未达标的废水 则返回超重力脱氨分离机重复进行处理,直至达标后排放,而脱出的含氨气体进入超级氨回收器。该工艺还包括这一步骤超级氨回收器回收的稀氨水进入稀氨水制备槽, 稀氨水制备槽中的稀氨水则被送回综合反应器进行增浓处理,最后浓氨水进入 浓氨水储备槽。其中,所述超级氨回收器,其回收氨水第一级为循环氨水,回送到综合反 应器回收水份,同时清洗综合反应器上部分填料,确保回收氨水的质量,采用 普通循环水冷却;第二级为产品氨水,可能有少量的不凝性气体夹带氨气,在 尾气吸收器内被系统均匀补充的纯水净化后排至大气,采用低温冷水冷却;所述pH值调质剂为氢氧化钠或氢氧化钙;所述步骤b还包括提高进料的pH值,以加速氨的解吸,同时综合反应器中 废水pH值较高,可防止氨气溶解在喷射液中,造成温升过高及溶液蒸汽压过高, 影响喷射泵真空度。实施例2a. 首先将高浓度氨氮废水注入调节池,在调节池内均质;b. 调节池出水经废水提升泵进入综合反应器,在进入综合反应器前加入pH 值调质剂,调节pH值到ll,同时加入0.08%解氨剂,在综合反应器中稀碱液泵 和喷射泵循环喷射后回收解吸氨气的热量,同时将PH值调质剂和解氨剂充分混匀;'c. 预加热废水经废水泵控制流量送至化工填料塔,从塔上部进入,经废水 分布器均匀分布在填料上与塔底部上升的蒸汽热气流传质传热,塔内含氨气体 在塔上部与回流的雾化氨水接触传质传热,增浓后的氨气从塔顶排出,被喷射 泵抽出后送入超级氨回收器回收;d.解吸氨后的塔底废水被高温泵泵入超重力脱氨分离机,进一步将少量残 留氨氮脱出达标后,向出水中加入硫酸,调节pH值至7.5后排放,未达标的废 水则返回超重力脱氨分离机重复进行处理,直至达标后排放,而脱出的含氨气 体进入超级氨回收器。该工艺还包括这一步骤超级氨回收器回收的稀氨水进入稀氨水制备槽, 稀氨水制备槽中的稀氨水则被送回综合反应器进行增浓处理,最后浓氨水进入 浓氨水储备槽。 —其中,所述超级氨回收器,其回收氨水第一级为循环氨水,回送到综合反 应器回收水份,同时清洗综合反应器上部分填料,确保回收氨水的质量,采用 普通循环水冷却;第二级为产品氨水,可能有少量的不凝性气体夹带氨气,在 尾气吸收器内被系统均匀补充的纯水净化后排至大气,采用低温冷水冷却;所述PH值调质剂为氢氧化钠或氢氧化钙;所述步骤b还包括提高进料的pH值,以加速氮的解吸,同时综合反应器中 废水pH值较高,可防止氨气溶解在喷射液中,造成温升过高及溶液蒸汽压过高, 影响喷射泵真空度。实施例3a. 首先将高浓度氨氮废水注入调节池,在调节池内均质;b. 调节池出水经废水提升泵进入综合反应器,在进入综合反应器前加入pH 值调质剂,调节pH值到11.5,同时加入0.08%解氨剂,在综合反应器中稀碱液 泵和喷射泵循环喷射后回收解吸氨气的热量,同时将PH值调质剂和解氨剂充分 混匀;c. 预加热废水经废水泵控制流量送至化工填料塔,从塔上部进入,经废水分布器均匀分布在填料上与塔底部上升的蒸汽热气流传质传热,塔内含氨气体 在塔上部与回流的雾化氨水接触传质传热,增浓后的氨气从塔顶排出,被喷射 泵抽出后送入超级氨回收器回收;d.解吸氨后的塔底废水被高温泵泵入超重力脱氨分离机,进一步将少量残 留氨氮脱出达标后,向出水中加入硫酸,调节pH值至8后排放,未达标的废水 则返回超重力脱氨分离机重复进行处理,直至达标后排放,而脱出的含氨气体 进入超级氨回收器。该工艺还包括这一步骤超级氨回收器回收的稀氨水进入稀氨水制备槽, 稀氨水制备槽中的稀氨水则被送回综合反应器进行增浓处理,最后浓氨水进入 浓氨水储备槽。其中,所述超级氨回收器,其回收氨水第一级为循环氨水,回送到综合反 应器回收水份,,同时清洗综合反应器上部分填料,确保回收氨水的质量,采用 普通循环水冷却;第二级为产品氨水,可能有少量的不凝性气体夹带氨气,在 尾气吸收器内被系统均匀补充的纯水净化后排至大气,采用低温冷水冷却;所述pH值调质剂为氢氧化钠或氢氧化钙;所述步骤b还包括提高进料的pH值,以加速氨的解吸,同时综合反应器中 废水pH值较高,可防止氨气溶解在喷射液中,造成温升过高及溶液蒸汽压过高, 影响喷射泵真空度。参阅图2,本发明中使用的超重力脱氨分离机,该机包括机座21、机壳l、 上端盖3,机壳1内设有传动和转动机构、进水和布水机构、集水和出水机构、 进气管、排气管;传动机构包括双轴承箱18以及由双轴承箱支承的主轴9,主轴9的一端与机壳l内的开口离心筐7和离心折流式转子之间固定环密封连接,主轴上、下端装开口离心筐7,中端装离心折流式转子;转动机构包括开口离心筐7和离心折流式转子,离心折流式转子由折流转 子静盘10和折流转子动盘13组成,折流转子静盘10与机壳1固定连接,折流 转子动盘13与主轴连接并随轴一起转动,在动、静盘上按一定间距同心安装了 一定数量的折流圈,动盘13上的动折流圈15与静盘10留有一定距离,同样静 盘10上的静折流圈12与动盘13也留有一定距离,从而形成了供气液流通的折 流式通道,然后将两盘嵌套在一起形成折流床;进水及布水机构由进水布水管4组成,进水布水管4固定在机壳1上,其 一端位于机壳1外,另一端位于机壳1内并伸入开口离心筐7内;集水及出水机构包括静盘集液区14与机壳1下部的集液区11,机壳1的底 部装有溢流出液管20;进气管及排气管包括蒸汽进气管17、空气进气管19和位于超重力脱氨分离 机上端盖上的排气管2。开口离心筐7表面开有通孔,同时蒸汽进气管17与空气进气管19设置在 靠近机壳1底部处,进水布水管4位于开口离心筐7内的部分上则设有喷水孔。工作时,连续相的气体由空气进气管19进入壳体,在压差的作用下,从转 子外缘沿着静折流圈12与动折流圈15之间的间隙曲折地由外向中心逐圈流动, 最后经位于折流床上的排气孔5离开折流床。而作为分散相的液体由进液口进 入并被引流至动盘13中心,随后被一系列高速旋转的动折流圈反复甩向静折流 圈,最后在壳体内收集后由出液口引出。液相在其间重复了多次分散到聚集的 过程,此过程中,液体以极其细微的液滴甩离动圈,高速运动的液滴在静圈上被碰撞、剪切和飞溅,在旋转气体离心力的作用下形成了比表面积极大而又不断更新的气液界面,因此具有极高的传质速率。开口离心筐7内设有填料函, 该填料函周边开有许多圆孔。气体由填料床的外圆周边进入高速旋转的填料床, 自外由填料床外侧小孔向内作强制性的流动,向上流出。而液体由进水布水管4 射出,喷入旋转体,在离心力作用下自内向外通过填料流出,使气液之间发生 高效的逆流接触,在高速转动的环形旋转丝网填料中,利用强大的离心力,使 气液膜变薄,传质阻力减小,增强其设备传质速率和处理能力。采用本发明对高浓度氨氮废水处理有良好的去除效能,经该工艺处理后, 废水中氨氮由23200mg/L下降为8mg/L,处理后的水可回用及景观绿化。从高浓度氨氮废水中脱出来的氨气通过吸收塔吸收后,可回收18% 25% 以上浓度的氨水,有一定的经济效益,废水中氨氮浓度越高,效益越明显。那 么处理不同氨氮浓度的废水,所产生的经济效益也不相同。按每处理一吨氨氮 浓度为1000mg/L的废水可获2. 2元的经济效益来计算,氨氮浓度每增加1倍, 效益也增加1倍。若处理1吨氨氮浓度7000mg/L的废水可获15. 4元的经济效、An^.。
权利要求
1.一种高浓度氨氮废水资源化处理工艺,其特征在于该工艺包括如下步骤a.首先将高浓度氨氮废水注入调节池,在调节池内均质;b.调节池出水经废水提升泵进入综合反应器,在进入综合反应器前加入pH值调质剂,调节pH值到10.5~11.5,同时加入0.08%解氨剂,在综合反应器中稀碱液泵和喷射泵循环喷射后回收解吸氨气的热量,同时将pH值调质剂和解氨剂充分混匀;c.预加热废水经废水泵控制流量送至化工填料塔,从塔上部进入,经废水分布器均匀分布在填料上与塔底部上升的蒸汽热气流传质传热,塔内含氨气体在塔上部与回流的雾化氨水接触传质传热,增浓后的氨气从塔顶排出,被喷射泵抽出后送入超级氨回收器回收;d.解吸氨后的塔底废水被高温泵泵入超重力脱氨分离机,进一步将少量残留氨氮脱出达标后,向出水中加入硫酸,调节pH值至7~8后排放,未达标的废水则返回超重力脱氨分离机重复进行处理,直至达标后排放,而脱出的含氨气体进入超级氨回收器。
2. 根据权利要求1所述一种高浓度氨氮废水资源化处理工艺,其特征在于: 该工艺还包括这一步骤超级氨回收器回收的稀氨水进入稀氨水制备槽,稀氨 水制备槽中的稀氨水则被送回综合反应器进行增浓处理,最后浓氨水进入浓氨 水储备槽。
3. 根据权利要求2所述一种高浓度氨氮废水资源化处理工艺,其特征在于:所述超级氨回收器,其回收氨水第一级为循环氨水,回送到综合反应器回收水份,同时清洗综合反应器上部分填料,确保回收氨水的质量,采用普通循环水冷却;第二级为产品氨水,可能有少量的不凝性气体夹带氨气,在尾气吸收器 内被系统均匀补充的纯水净化后排至大气,采用低温冷水冷却。
4. 根据权利要求1所述一种高浓度氨氮废水资源化处理工艺,其特征在于所述pH值调质剂为氢氧化钠或氢氧化钙。
5. 根据权利要求1所述一种高浓度氨氮废水资源化处理工艺,其特征在于所述步骤b还包括提高进料的pH值,以加速氨的解吸,同时综合反应器中废水 pH值较高,可防止氨气溶解在喷射液中,造成温升过高及溶液蒸汽压过高,影响喷射泵真空度。
全文摘要
本发明公开了一种高浓度氨氮废水资源化处理工艺,该工艺采用组合工艺对氨氮废水进行资源化处理。经本发明处理后,废水中氨氮由23200mg/L下降为8mg/L,达到国家一级排放标准,处理后的水可回用及景观绿化。同时,从高浓度氨氮废水中脱出来的氨气通过吸收塔吸收后,可回收18%~25%以上浓度的氨水,有一定的经济效益,且废水中氨氮浓度越高,效益越明显。
文档编号C02F9/08GK101613166SQ20091006017
公开日2009年12月30日 申请日期2009年7月30日 优先权日2009年7月30日
发明者霓 唐, 唐绍明 申请人:唐绍明;唐 霓
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1