专利名称:进行多相催化的反应性蒸馏、尤其是用于制备假紫罗酮的装置和方法
技术领域:
本发明涉及一种用于在多相颗粒状催化剂存在下进行反应性蒸馏的塔、反应性蒸馏的方法以及用途。
在现有技术中,已知有各种可能的方法用于进行多相催化的反应性蒸馏,即在进行多相催化反应的同时在同一个塔中通过蒸馏进行分离一种可能性是将由蒸馏技术已知类型的填料用活性催化剂组合物涂布,例如来自Sulzer AG,CH8404 Winterthur的KATAPAK-M填料的情况正是如此。这种情况的缺点在于需要单独进行催化剂开发以制备可应用于蒸馏填料的活性催化剂组合物,活性催化剂组合物对填料的粘附常常有限以及仅可涂布较有限量的活性催化剂组合物。
因此,具有填料和颗粒状催化剂的反应性蒸馏塔更有利。对此,已知的是将催化剂颗粒引入丝网的孔穴内,这些孔穴直接充当蒸馏内件,如来自Sulzer AG,CH8404 Winterthur的KATAPAK-S型,或者被设计为浅孔形式置于蒸馏填料的各层之间,如来自Montz GmbH,D-40723 Hilden的Multipak型。然而,这些设计就可容纳的催化剂量而言也是有限的,并且另外在操作中易于产生故障,因为必须精确保持每单位面积的预定液体流量,而这在实践中存在困难。
来自美国休斯顿CDTech的Bale是一种类似的设计,但其孔穴结构显著更大,因此可得到的分离效率较低。它们例如在EP-A-0466954中述及。
所有将催化剂颗粒引入孔穴中的设计具有的共同点是填充和取出催化剂颗粒费力且耗时。
相比之下,那些其中将催化剂填装于塔板上并在那里悬浮于液体中或容纳在自塔板以下的塔中的设计就不那么复杂。但是,这些实施方案仅适用于非常耐磨的催化剂,而在实践中很少这样。
本发明的目的是使得可以在反应性蒸馏塔中使用常规颗粒状催化剂,从而确保新鲜催化剂的填装和用过的催化剂的取出操作简便,可以通过避免在较大床高情况下的喷射床和过高固有重量而减少颗粒状催化剂的机械负载,此外还可均化塔横截面上的气体和液体流。
我们发现该目的通过一种用于在多相颗粒状催化剂存在下进行反应性蒸馏的塔而实现,所述塔具有有序填料或散堆填料,这些填料在塔内部形成空隙。
在本发明中,通过有序填料或散堆填料的气流的水力直径与催化剂颗粒的当量直径的商为2-20,优选5-10,以使催化剂颗粒在重力作用下疏松地引入到空隙中、进行分布和取出。
由此已发现可直接向装有有序填料或散堆填料的塔中加载催化剂颗粒,而不必为此构建额外的接收空间,例如孔穴。
水力直径已知被定义为流体流过的面积的四倍与其周长的比例。具有线性波纹的填料的水力直径的实际计算在与图2有关的
中述及。
散堆填料的水力直径通过床孔隙率ψ,即床空体积/总体积和填料的当量直径来确定, 其中d水力=水力直径,dp=填料直径,以及ψ=孔隙率。填料的当量直径被定义为散堆填料的六倍体积与表面积之间的比例(参见VDI Wrmeatlas[VDI热学手册],第5版,1988,Lk1)。
所存在的催化剂颗粒的当量直径被定义为颗粒的六倍体积与表面积之间的比例(参见VDI Wrmeatlas[VDI热学手册],第5版,1988,Lk1)。
根据本发明,将通过有序填料或散堆填料的气流的水力直径与催化剂颗粒的当量直径的商保持在以上所定义的范围内,可确保催化剂颗粒在重力作用下疏松地引入到有序填料或散堆填料的空隙中、进行分布和取出。
对于可使用的有序填料或散堆填料原则上没有限制,可以使用蒸馏技术中常规使用的塔内件,以便增加呈逆流形式迁移通过塔的各相,即气相和液相之间的界面面积。塔内部的有序填料或散堆填料形成空隙,所述空隙原则上必须彼此相连以确保蒸馏分离作用所要求的气相和液相的逆流。
本发明人由此已发现原则上可在重力作用下将催化剂颗粒疏松地引入到在塔内部连通有序填料或散堆填料的相互连接的空隙中,对它们进行分布和再将用过的催化剂颗粒取出。
在此必须确保存在足够的自由空隙以用于导致蒸馏的气流,使得与气流呈逆流形式的液流不回行。这一点根据本发明是通过选择非常小的通过有序填料或通过散堆填料的气流的水力直径与催化剂颗粒的当量直径的商来确保的,即所述商的值处于以上所定义的范围内。
本发明对可使用的催化剂颗粒的形状和尺寸没有限制,但是为提高多相催化反应的时空产率,优选高比表面积并因此优选小催化剂颗粒。如所已知的,在催化剂颗粒床中,压降随着催化剂颗粒的不断缩小而增加,并在反应性蒸馏的情况下将液体和蒸气通量限制至经济上不可取的小值。由于液体在催化剂床中的沟流效应通常非常显著,因此对于工业化生产所要求的大的塔直径,仅获得低蒸馏分离效率。这些缺点迄今已阻碍了本身可取的催化剂床作为反应性蒸馏中的分离内件的用途。相比之下,根据本发明,就催化活性而言也优选的精确的小催化剂颗粒特别适于与有序填料或散堆填料联合使用,因为它们的尺寸与有序填料或散堆填料的空隙尺寸相比越小就越便于引入。
催化剂颗粒优选是非负载催化剂,但也可使用负载催化剂。就催化剂颗粒的形状而言,原则上没有限制,常常使用实心或空心圆柱、球、鞍形体或蜂窝状或星形棒状体。合适的催化剂颗粒尺寸例如对于实心圆柱催化剂颗粒为约1.5×4-约4×8mm。
根据本发明,有序填料或散堆填料在塔内部形成的空隙应使得催化剂颗粒在重力作用下疏松地引入到空隙中、进行分布和取出。
作为塔内件,优选使用规整填料,即具有限定的供逆流相通过的通过区域且以规则几何形状系统组成的有序填料。有序填料通常由基本上彼此平行设置的金属片、多孔金属网层或丝网层制成。有序填料与其它塔内件相比,其特征在于具有更高的载荷容量、改进的分离效率和更低的比压降。填料通常由波纹金属片、多孔金属网层或丝网层制成,基本上彼此平行设置,通常具有线性波纹,这些波纹将片状金属填料、多孔金属网层或丝网层分割成波纹面,并且在这种情况下波纹面相对于垂直面的倾斜角通常为30°-45°。对于本发明,可使用波纹面相对于垂直面的倾斜角为10°-45°,优选30°的有序填料。通过将接连的有序填料片以相对于垂直面同样的倾斜角设置,但符号相反,产生已知的交叉沟槽结构,如例如由来自Sulzer AG,CH-8404 Winterthur的Mellapak、CY或BX型填料或来自Montz GmbH,D-40723 Hilden的A3、BSH、B1或M型填料所示。
对于用于反应性蒸馏,优选使用允许气流增加的规整填料的特定实施方案。
在特别优选的实施方案中,将一种或多种具有高比表面积的有序片状金属填料与一种或多种具有低比表面积的有序片状金属填料交替设置。结果形成具有不同水力直径的中间空间。特别优选的是对有序片状金属填料的比表面积进行选择,使得首先形成其中水力直径与催化剂颗粒的当量直径的商小于1的中间空间,其次形成其中水力直径与催化剂颗粒的当量直径的商大于2,特别是处于以上所定义的2-20,尤其是5-10的范围内的中间空间。不将催化剂颗粒加载到首先提及的水力直径与催化剂颗粒的当量直径之比小于1的中间空间中,根据本发明,催化剂颗粒仅加载到其中所述商大于2的中间空间中。该特定实施方案确保气流增加,压降降低。
优选本发明的有序填料的原料通常额外地具有开孔,例如具有直径约4-6mm的圆孔,以便增加有序填料的泛液点并能使塔的载荷更高。有序填料的泛液点是单位时间单位横截面积的气体或液体体积,其中滴流液体因填料内部和以上的气流而回行或夹带至完全泛液的位点。超过该载荷导致分离效率迅速降低并且压降陡然增加。
除有序填料外,同样可以使用散堆填料,此时原则上对填料的形状没有限制。因此,例如可以使用蒸馏技术中已知的所有形状的散堆填料,如Raschig环、Pall环或鞍形填料。
具有水平表面部分的有序填料或散堆填料是有利的。水平表面部分承担催化剂颗粒的部分重量并将其引向塔壁。结果使催化剂的机械负载降低。
优选的有序填料由用于垂直安装于塔中的有序片状金属填料形成,所属片状金属填料具有线性波纹,这些波纹将有序片状金属填料分割成波纹面,波纹面相对于水平面的倾斜角为90°-45°,优选60°。
蒸馏填料的比表面积为约250-750m2/m3。对于用于进行多相催化的反应性蒸馏的塔而言,优选使用具有约50-250m2/m3的低比表面积的有序填料。
在用于蒸馏的有序填料的情况下,通常0.07-0.1mm的金属片壁厚就足够了。相比之下,在多相催化的反应性蒸馏的情况下,取决于催化剂重量和催化剂颗粒的机械稳定性,使用壁厚为0.1-5mm,优选0.15-0.3mm的金属片。
优选使用这样的有序填料或散堆填料在它们的表面上具有降低的流动阻力,其中该降低的流动阻力尤其通过有序填料或散堆填料材料的穿孔和/或粗糙度实现,或通过将有序填料构建为多孔金属网而实现。在此,优选以如下方式使穿孔就数量和尺寸而言具有所需的大小,即至少20%比例,优选40-80%比例的液体反应混合物通过这些穿孔并流到其下方的催化剂颗粒上。
在优选实施方案中,有序填料材料由多孔金属网组成,其中有序填料材料的构建应使得以膜形式流经填料材料的液体可尽可能完全地通过填料材料向下流,其中滴流经出口边缘加强。
优选将穿孔设置在垂直位于塔中的有序片状金属填料的波纹低边的附近,如DE-A 100 31 119中所述。结果,流体优选通过倾斜波纹面的上侧,并且降低了临界低侧的液体负载。为此,使用用于垂直安装于塔中的有序片状金属填料制成的有序填料,所述有序片状金属填料具有线性波纹,这些波纹将有序片状金属填料分割成波纹面,这些波纹面具有宽度a以及穿孔,a由波纹边缘至波纹边缘测量,其中比例X为至少60%的穿孔至每个波纹面的波纹低边的间距b为至多0.4a。优选被波纹面的穿孔占据的面积比例为波纹面的5-40%,尤其是10-20%。
在进一步优选的实施方案中,有序填料由波皱或波纹层形成,且在每种情况下在两个波皱或波纹层之间设置一个平坦的中间层,在这种情况下,该平坦的中间层不延伸至有序填料的边缘,或在有序填料边缘区域具有增加的透气性,尤其是具有孔,如DE-A 19601558所述。
也可不设置平坦的中间层,而是设置不那么密集的波皱或波纹层。
术语“有序填料的边缘区域”指的是同心体积单元,其自圆柱外表面延伸至圆柱内表面(有序填料通常为圆柱形),其中圆柱外表面由波皱或波纹层的外端限定,而圆柱内表面由平坦层的外端限定。连接圆柱内表面和圆柱外表面并与填料层取向平行且通过塔轴的水平线与1-20个,优选3-10个由彼此相邻设置的层形成的沟槽交叉。由此,对于不延伸至边缘区域的平坦层,在边缘区域开出至多20个彼此相邻的沟槽。延伸至边缘区域的第二层优选在其表面的20-90%,特别优选其表面的40-60%面积上是透气的,即例如设置有孔。
在由金属片形成的沟槽与塔壁接触的位点处,发生上升气流堵塞,因为沟槽被塔壁封闭。这导致有序填料的分离效率显著较差。通过打开塔壁区域中的有序填料沟槽,可以以简单而有效的方式消除该分离效率降低的原因。在这种情况下,气体可自终止于塔壁的沟槽迁移至将其引向相反方向的其它沟槽。
本发明还涉及在如上所述装有有序填料或散堆填料以及催化剂颗粒床的塔中进行反应性蒸馏的方法。优选操作塔的气体和液体负载,使得最大达到泛液极限负载的50-95%,优选70-80%。
本发明还涉及上述塔和方法的用途,用于进行多相催化的反应性蒸馏,特别是酸或碱催化的平衡反应,特别优选用于通过在氧化铝负载的镨催化剂存在下使柠檬醛和丙酮进行醛醇缩合而制备假紫罗酮。
以下将参考附图和实施例更详细地描述本发明。
在附图中,图1显示本发明的有序填料实施方案的示意图,
图2显示具有线性波纹的有序片状金属填料的示意图,图3显示具有穿孔的有序片状金属填料的示意图,和图4表示本发明的塔的实施方案的示意图。
图1中的示意图显示有序填料1,其具有有序片状金属填料2,这些片状金属填料具有线性波纹5,形成波纹面6,在每种情况下均在两个接连的有序片状金属填料2之间形成中间空间3。根据本发明,催化剂颗粒4被加载到该中间空间内。
图2示意显示具有线性波纹5和波纹面6的有序片状金属填料2。a为波纹面6的宽度,其由波纹边缘5至波纹边缘5测量,c代表两个相邻波纹边缘5的间距,以及h代表波纹的高度。
图3示意显示有序片状金属填料2的特定实施方案,其具有波纹边缘5、波纹面6,且宽度为a的波纹面6具有穿孔,穿孔距各波纹面6的波纹低边5的距离为b。
图4中示意显示的反应性蒸馏塔7具有两个纯分离区8,分别位于反应性蒸馏塔7的上部和下部区域,装有规整织物填料。在塔的中间区域设置有反应区9,其下部9a含有未引入催化剂颗粒的有序填料,其上部9b含有已引入催化剂颗粒的本发明的填料。反应性蒸馏塔7装有塔底重沸器10,以及在塔顶部装有冷凝器11。原料作为料流I和II加载于塔的上部区域,反应混合物作为塔底料流III取出,塔顶料流IV于塔顶取出。压力控制器PC设置在塔顶。
实施例实施例1-松散填装实验用两种来自Montz的B1型的偏置90°设置的有序蒸馏填料对直径为0.3m的塔段进行装填,其中各有序填料的高度均为23cm。将催化剂颗粒通过疏松填装引入有序蒸馏填料中。测定进料体积和催化剂颗粒的引入和除去的操作简便性。所用催化剂颗粒是γ-Al2O3和TiO2实心圆柱。直径为1.5mm、高度为1-4mm的实心γ-Al2O3圆柱具有2mm的当量颗粒直径。直径为4mm、高度为2-10mm的实心TiO2圆柱具有5mm的当量颗粒直径。
1A)使用直径1.5mm的实心γ-Al2O3圆柱进行疏松填装实验。使用来自Montz的各自具有不同比表面积且波纹面相对于水平面的倾斜角不同的B1型有序填料。
1A1)使用比表面积为125m2/m3且相对于水平面的角度为80°的B1-125.80型片状金属填料。90%的表面体积填装上述催化剂颗粒。有序填料的水力直径为19mm。催化剂能够非常容易地引入,并且处于干态下也可完全再次滴出。催化剂颗粒的当量直径与有序填料的水力直径的比例为9。
1A2)将比表面积为250m2/m3且相对于水平面的角度为80°的B1-250.80型有序填料用上述催化剂颗粒填装。在这种情况下,80%的表面体积能够填装催化剂颗粒。有序填料的水力直径为9.4mm。催化剂能够非常容易地引入,并且处于干态下也可完全再次滴出。催化剂颗粒的当量直径与有序填料的水力直径的比例为4.7。
1A3)使用B1-250.60型填料,即比表面积为250m2/m3且相对于水平面的角度为60°的填料。80%的表面体积能够填装上述催化剂颗粒。有序填料的水力直径为9.4mm。催化剂能够非常容易地引入,并且处于干态下也可完全再次滴出。催化剂颗粒的当量直径与有序填料的水力直径的比例为4.7。
1B)实心TiO2圆柱,直径4mm使用上述B1-125.80和B1-250.60型有序片状金属填料。
1B1)将B1-125.80型有序片状金属填料,即比表面积为125m2/m3且相对于水平面的角度为80°的填料用上述催化剂颗粒填装,以填充80%的表面体积。有序填料的水力直径为19mm。催化剂能够非常容易地引入,并且处于干态下也可完全再次滴出。催化剂颗粒的当量颗粒直径与有序填料的水力直径的比例为4.5。
1B2)将B1-250.60型有序填料,即比表面积为250m2/m3且相对于水平面的角度为60°的填料用上述催化剂颗粒填装,以填充它的50%表面体积。有序填料的水力直径为9.4mm。催化剂能够非常容易地引入,并且处于干态下也可完全再次滴出。催化剂颗粒的当量直径与有序填料的水力直径的比例为2.4。
相比之下,对于市售的常规催化剂填料,即其中催化剂被引入例如来自Sulzer的Katapak型或来自Montz的Multipack型的孔穴内,仅20-30%的表面体积,特殊情况下为最多50%的表面体积可填装催化剂。
实施例2-压降测定在直径0.1m的塔段中,使用试验混合物氮气/异丙醇进行压降测定。为此,向塔段内引入催化剂床并用限定量的异丙醇冲洗(一个滴流位点)。与此成逆流方式,使限定量的氮气自下而上通过有序填料/床。在实验中测量每单位高度的有序填料或床的比压降,并测定泛液点。所用催化剂颗粒为实心γ-Al2O3圆柱。该实心圆柱(d=1.5mm,h=1-4mm)具有2mm的当量颗粒直径。然后测定引入到规整填料中的床的比压降和泛液点。
实施例2-对比例B01/0732PCBR当床高为45cm、F因子为0.038Pa10.5(相当于气体流速1000L/h)、液体载荷为0.178m3/m2h(相当于液体流速1.4L/h)时,测得比压降为3.33毫巴/m。有序填料在恒定液体载荷0.178m3/m2h下自F因子0.0575Pa10.5(相当于气体流速1500L/h)就开始泛液。
实施例2-根据本发明将催化剂床引入两层偏置90°的来自Montz的BS-250.60型规整填料中。
当床高为46cm、F因子为0.038Pa10.5(相当于气体流速1000L/h)、液体载荷为0.178m3/m2h(相当于液体流速1.4L/h)时,测得比压降为1.09毫巴/m。有序填料在恒定液体载荷0.178m3/m2h下自F因子0.114Pa10.5(相当于气体流速3000L/h)就开始泛液。因此,最大气体载荷与没有引入到有序填料中的催化剂床相比增加了1倍。
以下参考图2,描述具有线性波纹的有序填料的水力直径的计算。
图2中示例的有序片状金属填料2具有彼此平行设置的线性波纹5,这些波纹将有序片状金属填料2分割成波纹面6。将自波纹边缘5至波纹边缘5测量的波纹面6的宽度标记为a,两个接连的波纹边缘5之间的距离标记为c,以及将波纹高度标记为h。然后使用以下等式计算由这种有序片状金属填料制成的有序填料的气流水力直径 实施例3-通过柠檬醛和丙酮的醛醇缩合制备假紫罗酮搭建的实验装置对应于图4中的示意图。反应性蒸馏塔7在各个分离区8均填装有一段来自Montz的A3-500型规整织物填料,其总高度各为23cm。将反应区9的较低区域填装上一层Montz-Pak型B1-1000,具体单元高度为30mm。该层用作催化剂屏障以使催化剂颗粒不会滴落到下面的分离区中。在该层上安装三层单元高度为212mm的B1-250.60型Montz-Pak,催化剂通过疏松填装引入这些层中。该情况下填装3121g催化剂,堆密度为700kg/m3。所用催化剂为5%镨/γ-Al2O3的实心圆柱,粒径为1.5mm,高度为1-4mm,其通过将γ-Al2O3用硝酸镨水溶液浸渍并随后煅烧而制备。在塔上以规律的间隔安装热电偶和取样点,以便可测定塔中的温度分布和浓度分布。
反应物柠檬醛和丙酮(分别为图4中的料流I和II)自设置于天平上的储液容器中计量加入反应性蒸馏塔中,质量流量由泵控制。
使用恒温器加热至124℃的塔底重沸器10在操作过程中的滞留量为50-150mL,这取决于停留时间。塔底料流III通过泵在液面控制下自塔底重沸器10输送至置于天平上的容器中。
反应性蒸馏塔的塔顶料流在使用低温恒温器操作的冷凝器11中冷凝。一部分冷凝物经由回流分离器作为料流IV进入置于天平上的储液容器中,而其它部分作为回流液加载于塔中。该装置装有压力控制器PC,并且设计系统压力为20巴。在整个实验过程中使用过程控制系统PCS对所有流入和流出料流进行连续监测并记录。该装置以24小时连续运行。
将220.0g/h的料流I-相当于1.4mol/h的纯度97%的柠檬醛,和840.0g/h的料流II-相当于14.32mol/h预热至80℃的纯度99%的丙酮连续加载于上述反应性蒸馏塔7中。
实验程序反应区9中使用的催化剂为5%Pr/γ-Al2O3的实心圆柱(d=1.5mm,h=1-4mm)。设定系统压力为3巴,回流比为3kg/kg。底部温度为92.5℃。所得的塔底料流III为735.6g/h的粗产物,含有62.14重量%的丙酮、0.71重量%的水、0.45重量%的异亚丙基丙酮、0.95重量%的双丙酮醇、9.14重量%的柠檬醛、24.43重量%的假紫罗酮和2.18重量%的高沸点成分。在塔顶部取出323.2g/h的馏出物(料流IV),其由95.8重量%的丙酮和4.2重量%的水组成。
假紫罗酮基于柠檬醛以97.3%的选择性和基于丙酮以84.4%的选择性获得。基于柠檬醛的收率为66.7%。
在F因子为0.12Pa10.5,液体载荷为0.3m3/m2h时,测得塔中的压差为约1毫巴。
当使用不含有序填料的未控制的催化剂床时,相比之下测得两倍的压降。
压差是塔载荷(气体和液体)的量度。取决于所用物料的性质和内件类型,压差随载荷的增加而增加,直至出现泛液。在泛液状态下,催化剂被旋起并可产生高催化剂摩擦。因此必须避免该状态。
因此,当使用本发明的有序填料时,对于同样的塔径而言,可获得更高的产量。
权利要求
1.一种用于在多相颗粒状催化剂存在下进行反应性蒸馏的塔,其具有有序填料或散堆填料,这些填料在塔内部形成中间空间,其中通过有序填料或散堆填料的气流的水力直径与催化剂颗粒的当量直径的商为2-20,优选5-10,使得催化剂颗粒在重力作用下疏松地引入到中间空间中、进行分布和取出。
2.如权利要求1所要求的塔,其中有序填料是规整填料。
3.如权利要求2所要求的塔,其中规整填料是交叉沟槽填料。
4.如权利要求1-3之一所要求的塔,其中有序填料或散堆填料具有水平表面部分。
5.如权利要求4所要求的塔,其中有序填料由用于垂直安装于塔中的有序片状金属填料形成,所述片状金属填料具有线性波纹,这些波纹将有序片状金属填料分割成波纹面,其中波纹面相对于水平面的倾斜角为90°-45°,优选60°。
6.如权利要求1-5之一所要求的塔,其中有序填料或散堆填料在其表面上的流动阻力降低,这优选是由于有序填料或散堆填料材料的穿孔和/或粗糙度,或通过将有序填料构建为多孔金属网所致。
7.如权利要求2-6之一所要求的塔,其中有序填料由波皱或波纹层形成,且每种情况下在两个波皱或波纹层之间设置一个平坦的中间层,其中该平坦的中间层不延伸至有序填料的边缘,或在有序填料的边缘区域具有增加的透气性,尤其是具有孔。
8.如权利要求2-7之一所要求的塔,其中有序填料由用于垂直安装于塔中的有序片状金属填料形成,所述片状金属填料具有线性波纹,这些波纹将有序片状金属填料分割成波纹面,且这些波纹面具有宽度a和穿孔,所述宽度a自波纹边缘至波纹边缘测量,其中比例X为至少60%的穿孔距每个波纹面的波纹低边的距离b为至多0.4a。
9.一种用于在多相颗粒状催化剂存在下进行反应性蒸馏的塔,其具有有序填料或散堆填料,这些填料在塔内部形成中间空间,其中该塔具有交替设置的且区别在于有序填料或散堆填料的比表面积的第一和第二部分区域,使得在第一部分区域中,通过有序填料或散堆填料的气流的水力直径与催化剂颗粒的当量直径的商为2-20,优选5-10,其中催化剂颗粒在重力作用下疏松地引入到中间空间中、进行分布和取出,而在第二部分区域中,通过有序填料或散堆填料的气流的水力直径与催化剂颗粒的当量直径的商小于1且无催化剂颗粒引入该第二部分区域中。
10.一种在如权利要求1-9之一所要求的塔中进行反应性蒸馏的方法,包括操作塔的气体和液体负载,使得最大达到泛液极限负载的50-95%,优选70-80%。
11.如权利要求1-9之一所要求的塔或如权利要求10所要求的方法的用途,用于进行多相催化的反应性蒸馏,尤其是酸或碱催化的平衡反应,特别优选用于在氧化铝负载的镨催化剂存在下通过使柠檬醛和丙酮进行醛醇缩合而制备假紫罗酮。
全文摘要
本发明涉及一种用于在多相颗粒状催化剂存在下进行反应性蒸馏的塔,其具有填料或填充体,这些填料或填充体在塔内部形成空腔。通过填料或填充体的气流的水力直径与催化剂颗粒的当量直径的商为2-20,优选5-10,由此使催化剂颗粒在重力作用下疏松地引入到空腔中、进行分布和取出。
文档编号B01J19/32GK1599641SQ02824316
公开日2005年3月23日 申请日期2002年12月5日 优先权日2001年12月6日
发明者G·凯贝尔, C·米勒, W·多布勒, T·迪恩施泰纳, M·西格尔, H·扬森, B·凯贝尔 申请人:巴斯福股份公司