专利名称:降低气体中no的制作方法
技术领域:
本发明涉及降低气体中,特别是工艺气体和废气中氮氧化物含量的方法,以及适用于该方法的设备。
在许多工艺,如燃烧工艺中,或在硝酸的工业生产中,产生载有一氧化氮NO,二氧化氮NO2(合称为NOx)和一氧化二氮N2O的废气。在NO和NO2长期以来已知为具有生态毒性关联性的化合物(酸雨,烟雾形成)并在世界范围内规定这些物质最大允许排放的极限值的同时,由于一氧化二氮对同温层臭氧的分解和对温室效应的贡献并非在不值得考虑的程度,它近年来渐增地进入环境保护的焦点。因此,由于环境保护的原因,迫切需要能够脱除一氧化二氮排放以及NOx排放的技术方案。
一方面为单独脱除N2O和另一方面为单独脱除NOx,已经有许多可能方式。
在NOx还原方面,可以特别提及在含钒的TiO2催化剂存在下通过氨进行NOx的选择性催化还原(SCR)(参见例如G.Ertl,H.Knzinger,J.WeitkampHandbook of Heterogeneous Catalysis(多相催化手册),第4卷,第1633-1668页,VCH Weinheim(1997))。视催化剂而定,这可以在约150℃-约450℃的温度下进行和使得NOx浓度可以降低多于90%。它是从工业工艺的废气中减少NOx的最广泛采用的变化方案。
基于沸石催化剂,使用各种还原剂进行的NOx还原方法也是已知的。除Cu交换沸石(参见例如EP-A-0914866)以外,含铁的沸石特别显示出有益于实际使用。
例如,US-A-4571329要求保护在Fe沸石存在下,通过氨还原包括至少50%NO2的气体中的NOx的方法。NH3对NO2的比例是至少1.3。根据在此描述的方法,据称通过氨还原含NOx的气体而没有形成作为副产物的N2O。
US5451387描述了在铁交换沸石上,通过NH3进行NOx的选择性催化还原的方法,其在约400℃的温度下进行。
与减少废气中的NOx不同,该NOx减少方法在工业上已建立许多年,为脱除N2O仅存在非常少的工业方法,这些方法通常针对N2O的热或催化分解。由Kapteijn等人给出催化剂的综述,该催化剂已经证实对于一氧化二氮分解和减少具有原则上的适应性(Kapteijn F.等人,Appl.Cat.BEnvironmental 9(1996)25-64)。
Fe和Cu沸石催化剂再次显现为特别适用,这些催化剂引起N2O纯分解为N2和O2(US-A-5171553)或借助于NH3或烃而催化还原N2O为N2和H2O或CO2。
例如,JP-A-07060126描述了在Pentasil类型含铁沸石存在下,在450℃的温度下通过NH3还原N2O的方法。可以通过此方法达到的N2O浓度降低程度是71%。
在Catal.Lett.62(1999)41-44中,Mauvezin等人给出有关MOR、MFI、BEA、FER、FAU、MAZ和OFF类型各种铁交换沸石的适应性的与此相关的综述。根据此参考文献,可以在低于500℃下仅在Fe-BEA的情况下,通过加入NH3达到多于90%的N2O还原。
除上述N2O和NOx的单独脱除方法以外,也存在可以使用单一催化剂进行的联合脱除方法。
WO-A-00/48715公开了一种方法,其中将含NOx和N2O的废气在200-600℃的温度下在β类型(=BEA类型)铁沸石催化剂上导过,其中废气另外包含用量比例为0.7-1.4的NH3,基于NOx和N2O的总量。在此,NH3用作NOx和N2O两者的还原剂。尽管该方法在低于500℃的温度下操作,但如上述方法它有如下原则上的缺点需要大约等摩尔数量的还原剂(在此NH3)以脱除N2O含量。
WO-A-01/51181公开了用于NOx和N2O脱除的方法,其中将工艺气体或废气导过包含负载铁的沸石作为催化剂的两个反应区。在此,在第一反应区中,N2O分解,在第一和第二反应区之间向气体混合物中加入氨并在第二还原区中还原NOx。
现在令人惊奇地发现,当不仅仅在第一反应区中发生N2O含量降低到所需脱除程度,而且用于NOx还原的反应区也可用于降低N2O含量时,可以显著提高上述方法的效率。自从令人惊奇地发现如下情况以来,这是可能的当使用负载铁的沸石催化剂时,可以同时进行NOx还原(如通过NH3)和N2O分解。当该方法在高压,即在高于2巴,优选高于4巴的压力下操作时,第二反应步骤中对N2O分解的贡献特别大。
本发明的目的是提供一种简单但经济的方法,该方法得到对于NOx脱除和N2O脱除两者的良好转化率,其具有最小的操作和资金成本。前者除了包括调节必需的操作温度所用的能量,还包括还原剂的消耗和由于催化剂床中的流动阻力而引起的能量损失(压力损失)。基本上由催化剂的要求数量和与其相关的设备体积而确定资金成本。
此外,存在还原剂引入的问题,该还原剂必须与要处理的气体流充分混合以保证还原剂的尽可能高的效率(避免滑动和副反应)。出于安装技术和经济考虑,用于此目的必需的混合器应当占据尽可能少的空间。
这些目的通过本发明的方法和本发明的设备达到。
本发明提供一种降低气体中,特别是工艺气体和废气中NOx和N2O含量的方法,该方法包括如下措施a)将含N2O和NOx的气体导过两个催化剂床的序列,所述催化剂床包含一种或多种负载铁的沸石,b)在两个催化剂床之间加入用于NOx的还原剂,c)在第一催化剂床和第二催化剂床中调节低于500℃的温度,d)在两个催化剂床中调节至少2巴的气体压力,e)选择第一和第二催化剂床中的空速使得在第一催化剂床中,气体中N2O含量降低最高至90%,基于第一催化剂床进口处的N2O含量,和在第二催化床中,气体中N2O含量进一步降低至少30%,基于第二催化剂床进口处的N2O含量。
在用于纯N2O分解的第一催化剂床中,气体中仍然存在的NOx,如期望的那样,通过活化作用促进所需的N2O分解,如Kgel等人已经在Catal.Comm.2(2001)273-6中对于各种N2O/NOx比例描述了该活化作用。
然而,也可以在第二催化剂床中通过分解成氮气和氧气而达到N2O浓度的显著降低。这是令人惊奇的,由于首先,由还原剂的加入而降低活化N2O分解的NOx含量,其次,预期的是加入的还原剂临时吸附在催化剂表面上并因此封阻N2O分解的活性中心。
在选择的工艺条件下,即高压和特别是降低的NH3/NOx比例下,这些影响明显不存在。
本发明的方法因此使得可以在低操作温度和经济的空速下进行N2O的分解和NOx的还原两者,并同时达到N2O和NOx的高脱除率。
对于本发明的目的,所谓概念空速是指每小时气体混合物的体积份数(在0℃和1.014巴绝对压力(bara)下测量)除以催化剂的体积份数所得的商。可因此通过气体的体积流量和/或通过催化剂的数量调节空速。
通常将载有氮氧化物的气体以200-200,000h-1,优选5,000-100,000h-1,特别地5,000-50,000h-1的空速在催化剂上导过,基于两个催化剂床的总催化剂体积。
在离开第一催化剂床之后,根据本发明的方法,N2O含量优选高于200ppm,特别地高于300ppm。在第一催化剂床中发生的是在第一催化剂床开始处存在的N2O含量中减少最高90%,优选最高80%。
在离开第一催化剂床之后,将含N2O和NOx的气体首先与气态还原剂,优选与NH3混合,并随后在优选小于450℃的温度下,以选择的空速导过催化剂,以达到N2O(由分解)和NOx(由还原)的同时脱除。
在第二催化剂床中发生的是在第二催化剂床开始处存在的N2O含量中进一步减少至少30%,优选至少40%。
在本发明的方法中,在第一和第二催化剂床中使用含铁的沸石。在此,在各自催化剂床中可以涉及不同的催化剂或优选可以涉及相同的催化剂。
催化剂床的空间分离方面,可以通过热量的输出或输入而调节第二催化剂床的温度或进入它的气体流的温度,使得它低于或高于第一催化剂床的温度。
根据本发明,其中仅除去N2O的第一催化剂床中的气体流温度以及其中除去N2O和NOx的第二催化剂床中的气体流温度低于500℃,优选在250-500℃,特别地300-450℃和非常特别优选350-450℃。第二催化剂床中的温度优选相应于第一催化剂床中的温度。催化剂床中的温度可以有利地作为在催化剂床入口和出口处气体流温度的算术平均值而确定。
同样如选择的空速那样,操作温度的选择在此由所需的N2O脱除程度确定。
优选选择第一催化剂床中的温度、体积流量和催化剂数量使得在第一催化剂床中分解在第一催化剂床开始处存在的N2O中的90%,优选最高80%和非常特别优选最高70%。
优选选择第二催化剂床中的温度、体积流量和催化剂数量使得在第二催化剂床中,气体中N2O含量进一步减少至少30%,基于第二催化剂床进口处的N2O含量。
在至少2巴,优选至少3巴,非常特别优选4-25巴的高压下实施本发明的方法。通过合适的设备,如适当的压力阀或适当配置的喷嘴,在第一催化剂床和第二催化剂床之间,即在第一催化剂床下游并在第二催化剂床上游进行还原剂的进料。
在第一反应区中,由于非常高的水含量会使高操作温度(如>500℃)很必要,所以一般优选相对低的水浓度。依赖于使用的沸石类型和操作时间,这可能超过催化剂的水热稳定性极限。然而,由于这可能抵消由水引起的失活,所以NOx含量在此起关键作用。
对于在第二反应区中的NOx还原,由于在此在相对低的温度下就已达到高的NOx脱除率,所以高水含量起次要的作用。
以NOx还原所需的数量加入还原剂。在本说明书范围内,该数量是指这样的还原剂数量,其是用于完全还原气体混合物中存在的NOx部分或还原气体混合物中存在的NOx到所需的最终浓度所必需的,而不发生N2O的明显减少。
作为用于本发明目的的还原剂,可以使用这样的物质,该物质具有用于NO2还原的高活性和选择性,并且该物质在选择的反应条件下的选择性和活性大于对于N2O的可能的还原的选择性和活性。
可以用于本发明目的的还原剂是,例如烃、氢气、一氧化碳、氨或其混合物,如合成气。特别优选是氨或在引入它们的情况下释放氨的物质,如脲或氨基甲酸铵。
加入的还原剂数量在此允许微不足道地大于在选择的反应条件下NOx还原所要求的数量。
在氨作为还原剂的情况下,依赖于所需的NOx含量降低的程度,使用直至最多1.2,优选1.0-1.2摩尔份数的氨,基于每摩尔份数的NOx。如果需要NOx的更低的脱除程度,氨的摩尔份数量最大是1.2*y,基于每摩尔份数的NOx;y在此是还原中应消耗的NOx的百分比份数。
当选择合适的催化剂和工艺条件时,加入的NH3不用作N2O的还原剂,而选择性还原废气中含有的NOx。
本发明的方法因此使得可以在低的操作温度下,采用低消耗量的气态还原剂,如NH3进行N2O和NOx的脱除,这是迄今为止通过现有技术中描述的方法不可能的。
当要脱除大量N2O时,这特别有大的优点。
对于本发明的目的也可以自由设计向要处理的气体流中引入气态还原剂的方式,只要这是在沿气流方向在第二催化剂床的上游进行。例如,可以在第二催化剂床的容器上游的进料管线中或紧邻在催化剂床之前引入还原剂。可以采用气体形式或液体或水溶液的形式引入还原剂,所述液体或水溶液在要处理的气体流中蒸发。
根据本发明使用的催化剂基本上包含优选为>50wt%,特别地>70wt%的一种或多种负载铁的沸石。例如,除了Fe-ZSM-5沸石以外,其它含铁沸石,如MFI或FER类型含铁沸石也可以包含在根据本发明使用的催化剂中。此外,根据本发明使用的催化剂可进一步包含本领域技术人员已知的添加剂,如粘结剂。
根据本发明使用的催化剂优选基于通过固态离子交换引入铁的沸石。市售铵沸石(如NH4-ZSM-5)和相应的铁盐(如FeSO4×7H2O)通常用作此目的的原料和由机械措施在球磨机中在室温下彼此充分混合。(Turek等人;Appl.Catal.184,(1999)249-256;EP-A-0955080)。由此明确参考这些文献。随后在箱式炉中在空气中在400-600℃的温度下煅烧获得的催化剂粉末。在煅烧之后,将含铁的沸石在蒸馏水中充分洗涤,在滤出沸石后干燥。随后向以此方式获得的含铁沸石中掺入合适的粘结剂并混合,并例如挤出以形成圆柱形催化剂体。合适的粘结剂包括所有通常使用的粘结剂,在此最广泛使用的是硅酸铝如高岭土。
根据本发明,可以使用的沸石负载有铁。铁含量在此可以为最多至25%,但优选为0.1-10%,基于沸石的质量。
负载铁的沸石优选为MFI、BEA、FER、MOR、FAU和/或MEL类型,特别是ZSM-5类型。
在优选的实施方案中,至少在第二催化剂床中使用其晶体结构不含有孔或槽,结晶学直径大于或等于7.0埃的负载铁的沸石。
这些包括MFI、FER和/或MEL类型,特别地ZSM-5类型的负载铁的沸石。
在本发明方法中也可以使用其中一部分晶格铝已经由一种或多种元素同晶取代,例如由一种或多种选自如下的元素替换的沸石B、Be、Ga、Fe、Cr、V、As、Sb和Bi。同样包括其中晶格硅由一种或多种元素同晶取代,例如由一种或多种选自如下的元素替换的沸石Ge、Ti、Zr和Hf。
根据本发明使用的沸石的构型或结构的精确数据在如下文献中给出Atlas of Zeolite Structure Types(沸石结构类型图集),Elsevier,第4修正版,1996,该文献在此明确引入作为参考。
在本发明的方法中,非常特别优选使用采用水蒸气处理的以上定义的沸石催化剂(“汽蒸”催化剂)。通过这样的处理从沸石的晶格中脱铝;这种处理对本领域技术人员是已知的。这些水热处理的沸石催化剂令人惊奇地在本发明的方法中显示特别高的活性。
优选使用已经负载有铁并且其中晶格外铝对晶格铝的比例是至少1∶2,优选1∶2-20∶1的水热处理沸石催化剂。
反应气体的水含量优选为<25体积%,特别地<15体积%。一般优选是低水含量。
一般情况下,由于较高的水含量会造成需要较高的操作温度,所以优选相对低的水浓度。依赖于使用的沸石类型和操作时间,这可能超过催化剂的水热稳定性极限并因此要适应于每种情况下选择的特定情况。
应当根据可能性使CO2和反应气体中其它失活组分的存在量最小化,该失活组分是本领域技术人员已知的,因为它们会对N2O脱除具有不利的作用。
由于根据本发明使用的催化剂具有适当的选择性,该选择性抑制气态还原剂,如NH3与O2在<500℃的温度下的反应,所以本发明的方法也在O2存在下操作。
在选择反应区的适当操作温度方面要考虑所有这些影响因素以及选择的催化剂加载量,即空速。
本发明的方法可特别在硝酸生产过程中,在发电站的废气方面或在燃气涡轮机方面使用。在这些工艺中产生包含氮氧化物的工艺气体和废气,其可以通过此处公开的方法便宜地脱除氮氧化物。本发明的方法有利地用于在吸收塔下游来自硝酸生产的尾气。
可以对于本发明的目的自由设计催化剂床的配置。例如,可以将催化剂布置在一个或多个容器中放置的气体轴向流经或优选气体径向流经的催化剂床中。
本发明进一步提供一种降低气体中,特别是工艺气体和废气中NOx和N2O含量的设备,该设备包括A)两个串联的各包含一种或多种负载铁的沸石的催化剂床,含NOx和N2O的气体流经所述催化剂床,B)置于两个催化剂床之间的用于向含NOx和N2O的气体流中引入气态还原剂的设备,其中C)含NOx和N2O的气体沿径向流经至少一个催化剂床。
在优选的实施方案中,在一个容器中布置两个催化剂床,这明显降低了设备成本。
根据本发明,要纯化的气体沿径向流经至少一个催化剂床,优选两个催化剂床,这导致明显降低的压力损失。
气体沿径向流经的催化剂床例如设计为中空圆筒的形状,但也可具有其它形状。气体沿径向流经的催化剂床可以上下重叠布置,或可以选择气体沿轴向流经和气体沿径向流经的催化剂床的组合。在此通过催化剂床之间合适布置的分离面规定气体的通路,使得气体首先流经第一催化剂床并然后流经第二催化剂床。
在气体沿径向流经的催化剂床的情况下,这些也可以是在彼此中同心布置的中空圆筒形状。也在此实施方案中应当保证,气体通路由催化剂床之间合适布置的分离面规定,使得气体首先流经第一催化剂床并然后流经第二催化剂床。
径向筛板反应器中气体的流动方向可以从内部向外部或从外部向内部走向。
在优选的实施方案中,存在气体沿径向流经的具有不同尺寸的两个催化剂床,例如两个中空圆筒形式,其中一个催化剂床的外部尺寸小于另一个催化剂床的内部尺寸并彼此同心布置两个催化剂床,以及其中气体通路由催化剂床之间合适布置的分离面规定,使得气体首先流经第一催化剂床并然后流经第二催化剂床。
在本发明设备的另外优选的实施方案中,将流经第一催化剂床的气体导入优选位于设备中心的混合器中,并在该设备中提供有还原剂进料管线,该还原剂进料管线通向在第一催化剂床下游并在混合器上游的空间或优选通向混合器中,并且其中要纯化的气体在离开混合器之后导过第二催化剂床。
混合器用于在气体流中充分分布还原剂。对于本发明的目的,可以将混合器自由设计,例如为具有适当内部结构的静态混合器或为动态混合器。优选最简单的气体湍流流经的管子的形式也可以视为用于本发明目的的混合器。
图1-6以纵截面显示本发明设备的优选实施方案。
图1表示带有气体入口(1)和气体出口(2)的根据本发明的设备。在朝向气体入口(1)的上部内部空间中,第一催化剂床以中空圆筒(4)的形式布置并位于分隔壁之上,该分隔壁将设备空间分成两半。此外,中空圆筒(4)的上侧面由分隔壁封闭。要纯化的气体流过气体入口(1),经过第一催化剂床的进口的环形间隙(7),流入第一催化剂床的出口的环形间隙(8),径向流过第一催化剂床。从那里它流入混合器(6)中,向该混合器入口端通有用于还原剂的入口管线(3)。混合器(6)通过分隔壁导过并且气体然后通过置于第一催化剂床(4)下方的第二催化剂床(5)的进口的环形间隙(9),流入第二催化剂床(5)的出口的环形间隙(10),径向流过第二催化剂床。从那里,纯化的气体通过气体出口(2)离开设备。
图2显示与图1相似的实施方案,改变在于第一催化剂床(4)置于第二催化剂床(5)的下方并且气体入口(1)和气体出口(2)在设备中侧向布置。其余参考符号具有图1描述中给出的意义。
图3表示带有气体入口(1)和气体出口(2)的本发明设备的另一种实施方案。在此,将第一催化剂床(4)和第二催化剂床(5)设计为在彼此中同心布置的两个中空圆筒形状。第一催化剂床(4)位于同心分隔壁(11)的外部,该同心分隔壁(11)封闭第一催化剂床(4)的下侧面,环形间隙(7)和(8)以及设备内部空间和第二催化剂床(5)的上侧面。要纯化的气体通过气体入口(1)进入设备并从进口环形间隙(7)流经第一催化剂床从外部向内部径向流入出口环形间隙(8)。从那里它流入混合器(6),向该混合器入口端通有用于还原剂的入口管线(3)。混合器(6)通向第二催化剂床(5)的内部空间,第二催化剂床(5)向底部由分隔壁封闭。然后气体通过第二催化剂床(5)的进口的环形间隙(9),流入第二催化剂床(5)的出口的环形间隙(10),向外部径向通过第二催化剂床。从那里,纯化的气体通过气体出口(2)离开设备。
图4显示与图3相似的实施方案,改变在于第一催化剂床(4)形成内部中空圆筒和第二催化剂床(5)形成外部中空圆筒。其余参考符号具有图3描述中给出的意义。
图5显示一种实施方案,其中提供气体轴向流经的一个催化剂床和气体径向流经的一个催化剂床。气体通过气体入口(1)轴向流经第一催化剂床(4)并流入混合器(6)。设备中存在有分隔壁,该分隔壁将设备的空间分成两半。向混合器(6)的入口端通有用于还原剂的入口管线(3)。从混合器(6),气体流入第二催化剂床(5)的进口的环形间隙(9)并通过此催化剂床径向流入出口的环形间隙(10)。从那里,纯化的气体通过气体出口(2)离开设备。
图6显示与图5相似的实施方案,改变在于气体径向流经第一催化剂床(4)和轴向流经第二催化剂床(5)。其余参考符号具有图3描述中给出的意义。
由如下实施例阐明本发明的方法。
使用的催化剂是ZSM-5类型的负载铁的沸石。从以铵形式的市售沸石(ALSI-PENTA,SM27)为原料,通过固态离子交换制备Fe-ZSM-5催化剂。关于制备的详细说明可以取自M.Rauscher,K.Kesore,R. Mnnig,W.Schwieger,A.Tiβler,T.Turek“通过固态离子交换制备N2O催化分解用高度活性Fe-ZSM-5催化剂的方法”,Appl.Catal.184(1999)249-256。
将催化剂粉末在空气中在823K下煅烧6小时,洗涤并在383K下干燥过夜。在加入适当粘结剂之后,挤出粉末以形成圆柱形催化剂体。
作为用于降低NOx和N2O含量的设备,使用两个串联的管式反应器,其每个装有这样量的上述催化剂使得在每种情况下得到15,000h-1的空速,基于流入的气体流。在两个反应区之间加入NH3气体。通过加热调节反应区的操作温度。通过FTIR气体分析仪进行进入和离开反应器的气体流的分析。
在1500ppm N2O,350ppm NOx,3000ppm H2O和在N2中1.2体积%O2的入口浓度下并采用中间加入NH3,在425℃的均一操作温度和6.5巴的操作压力下,获得下表中列出的N2O,NOx和NH3的转化率结果。
表
*)在第一反应器和第二反应器之间加入
权利要求
1.一种降低气体中,特别是工艺气体和废气中NOx和N2O含量的方法,该方法包括如下措施a)将含N2O和NOx的气体导过两个催化剂床的序列,所述催化剂床包含一种或多种负载铁的沸石,b)在两个催化剂床之间加入用于NOx的还原剂,c)在第一催化剂床和第二催化剂床中调节低于500℃的温度,d)在两个催化剂床中调节至少2巴的气体压力,e)选择第一和第二催化剂床中的空速,使得在第一催化剂床中,气体中N2O含量降低最高至90%,基于第一催化剂床进口处的N2O含量,和在第二催化剂床中,气体中N2O含量进一步降低至少30%,基于第二催化剂床进口处的N2O含量。
2.权利要求1的方法,其特征在于第一和第二催化剂床中使用相同的催化剂。
3.权利要求1的方法,其特征在于负载铁的沸石是MFI、BEA、FER、MOR、FAU和/或MEL类型。
4.权利要求3的方法,其特征在于负载铁的沸石是MFI类型。
5.权利要求1的方法,其特征在于沸石是Fe-ZSM-5。
6.权利要求1的方法,其特征在于该方法在4-25巴的压力下实施。
7.权利要求1的方法,其特征在于氨用作NOx的还原剂,其用量为1.0-1.2摩尔份数,基于每摩尔份数的要除去的NOx。
8.权利要求1的方法,其特征在于以5,000-50,000h-1的空速将含NOx和N2O的气体导过两个催化剂床,基于两个催化剂床的总催化剂体积。
9.权利要求1的方法,其特征在于第一和第二反应区中的温度是350-450℃。
10.权利要求1的方法,其特征在于在至少一个催化剂床中使用已经采用水蒸气处理的负载铁的沸石。
11.权利要求1的方法,其特征在于其中晶格外铝对晶格铝的比例是至少0.5的负载铁的沸石在至少一个催化剂床中用作催化剂。
12.权利要求1的方法,其特征在于将该方法整合入硝酸生产工艺中。
13.权利要求1的方法,其特征在于将该方法整合入燃气涡轮机的操作工艺中。
14.权利要求1的方法,其特征在于将该方法整合入发电站的操作工艺中。
15.一种降低气体中,特别是工艺气体和废气中NOx和N2O含量的设备,该设备包括A)两个串联的各包含一种或多种负载铁的沸石的催化剂床,含NOx和N2O的气体流经所述催化剂床,B)置于两个催化剂床之间的用于向含NOx和N2O的气体流中引入气态还原剂的设备,其中C)含NOx和N2O的气体径向流经至少一个催化剂床。
16.权利要求15的设备,其特征在于在一个容器中布置两个催化剂床。
17.权利要求15的设备,其特征在于含NOx和N2O的气体径向流经两个催化剂床。
18.权利要求15的设备,其特征在于将气体径向流经的催化剂床设计为中空圆筒形状。
19.权利要求15的设备,其特征在于将气体径向流经的两个催化剂床上下重叠布置,或存在上下重叠布置的气体轴向流经和气体径向流经的催化剂床的组合,其中气体通路由催化剂床之间合适布置的分离面规定,使得气体首先流经第一催化剂床并然后流经第二催化剂床。
20.权利要求15的设备,其特征在于存在气体径向流经的具有不同尺寸的两个催化剂床,其中一个催化剂床的外部尺寸小于另一个催化剂床的内部尺寸并且彼此同心布置两个催化剂床,且其中气体通路由催化剂床之间合适布置的分离面规定,使得气体首先流经第一催化剂床并然后流经第二催化剂床。
21.权利要求15的设备,其特征在于将气体在流经第一催化剂床之后导入优选置于设备中心的混合器中,并且在该设备中提供还原剂进料管线,该还原剂进料管线通向在第一催化剂床下游并在混合器上游的空间或优选通向混合器中,并且其中要纯化的气体在离开混合器之后导过第二催化剂床。
22.权利要求15的设备,其特征在于将混合器设计为静态混合器或设计为动态混合器,优选为气体流经的管子的形式。
全文摘要
本发明方法包括如下步骤将包含N
文档编号B01J29/14GK1658956SQ03813526
公开日2005年8月24日 申请日期2003年6月10日 优先权日2002年6月13日
发明者M·施韦弗, M·格罗沃斯, R·西费特, R·毛雷尔 申请人:犹德有限公司