专利名称:用于fcc工艺的no的制作方法
背景技术:
一大主要工业问题涉及开发有效方法来降低由于处理和燃烧含硫、碳和氮燃料而产生的废气流中空气污染物,例如一氧化碳、氧化硫和氧化氮的浓度。将这些废气流以常规操作中一氧化碳、氧化硫和氧化氮经常出现的浓度排放到大气中是环境上不期望的。在催化裂化含硫和氮的烃给料中由于焦炭沉积而已失活的裂化催化剂的再生是可能产生含有较高含量一氧化碳、氧化硫和氧化氮的废气流的典型工艺实例。
重质石油馏分的催化裂化是粗石油转化到例如内燃机所用燃料的有用产品中所采用的一种主要精炼操作。在流化催化裂化工艺中,高分子量的液态烃和气态烃在流化床反应器或在加长提升管反应器中与精细分散的热固体催化剂颗粒接触,并在升高温度下保持流化或分散态过一段时间,从而以期望程度裂化为发动机汽油和馏分燃料中典型存在的那种低分子量烃。
在烃的催化裂化中,某些非挥发性含碳物质或焦炭沉积到催化剂颗粒上。焦炭包括高度缩合的芳烃,一般含有约4-约10wt%的氢。当烃给料含有有机硫和氮化合物时,焦炭也含有硫和氮。当焦炭堆积在裂化催化剂上时,该催化剂的裂化活性和用于生成汽油混合料的选择性都减小。
将由于焦炭沉积已变得基本失活的催化剂从反应区连续释放。将该催化剂输送到气提区,在该区挥发性沉积物在升高的温度下被惰性气体带走。接着,在合适的再生工艺中通过充分脱除焦炭沉积物而使催化剂颗粒基本恢复其原有的能力。接着使经再生的催化剂连续返回到反应区,从而重复循环。
催化剂再生是通过用含氧气体,例如空气燃烧掉催化剂表面的焦炭沉积物来实现的。这些焦炭沉积物的燃烧可以简单地视为是碳的氧化,并且产物是一氧化碳和二氧化碳。
当在催化裂化工艺中使用含硫和氮的给料时,沉积到催化剂上的焦炭含有硫和氮。在焦炭化失活催化剂的再生过程中,从催化剂表面燃烧掉焦炭会随后导致硫转化为氧化硫,氮转化为氧化氮。
催化剂在流化催化裂化(FCC)单元中经历的状况非常苛刻。催化剂在反应器侧的还原氛围与再生器侧的氧化氛围之间连续循环。这两个区之间的温度不同,所以催化剂会经历热骤变。而且再生器含有约15-25%的水蒸汽。所有这些因素都导致催化剂活性明显下降,需要连续加入新鲜催化剂以维持裂化活性。
已利用各种方案来减少有害气体形成或在其形成后进行处理。最典型地,已使用添加剂作为FCC催化剂颗粒的构成部分或作为单独颗粒与FCC催化剂混合。
迄今已获得最广泛接受的用于降低FCC单元(FCCU)中氧化硫释放的添加剂是基于氧化镁/铝酸镁/二氧化铈技术。载Pt粘土或矾土最普遍用作用于降低一氧化碳释放的添加剂。遗憾的是用于控制CO释放的添加剂通常造成再生器的NOx释放急剧增加(例如>300%)。
已利用各种方案来处理FCCU中的氧化氮气体。例如,US 5,037,538描述了通过向FCC再生器中加入脱NOx催化剂而减少FCC再生器中氧化氮(NOx)释放,其中脱NOx催化剂在FCC再生器内保持隔离。
US 5,085,762描述了通过将含有具有所定义X射线衍射图案特性结构的载铜沸石材料的单独添加剂颗粒结合到裂化催化剂循环料流中而用流化催化裂化装置再生器的废气减少有害氧化氮释放。
US 5,002,654描述了在利用锌基脱NOx催化剂使NOx释放最小的同时,再生裂化催化剂的方法。
US 5,021,146描述了在利用第IIIb族基脱NOx添加剂使NOx释放最小的同时,再生裂化催化剂的方法。
US 5,364,517描述了利用尖晶石/钙钛矿添加剂来减少FCC再生器废气的NOx含量。
US 5,750,020和US 5,591,418描述了利用崩溃组合物(collapsedcomposition)从FCC工艺的气体混合物中脱除氧化硫或氧化氮的方法,该组合物基本由均为下式的微晶组成M2m2+Al2-pMp3+TrO7+r-s其中M2+是二价金属,M3+是三价金属,T是钒、钨或钼。
US 6,165,933描述了包含含有(i)酸性氧化物载体、(ii)碱金属和/或碱土金属或其混合物、(iii)具有储氧能力的过渡金属氧化物和(iv)钯的组分的组合物,在使NOx形成最小的同时,其促进FCC工艺中CO燃烧。
US 6,129,834和US 6,143,167描述了包含含有(i)酸性氧化物载体、(ii)碱金属和/或碱土金属或其混合物、(iii)具有储氧能力的过渡金属氧化物和(iv)选自周期表第Ib族和/或IIb族过渡金属的组分的组合物,其控制FCC工艺中NOx的性能。
共同待审、共同转让的美国专利申请No.10/001,485,公开号为US20030098259描述了包含含有(i)酸性氧化物载体、(ii)二氧化铈、(iii)至少一种除二氧化铈以外的镧系元素的氧化物和(iv)选自第Ib族或IIb族,例如Cu和Ag等过渡金属氧化物的组分的组合物,其控制FCC工艺中NOx的性能。
所有添加到FCC单元中的添加剂必须具有充分的热液稳定性,以忍受FCCU的苛刻环境。对于用在FCC中具有改进热液稳定性的NOx添加剂,仍有一种需要。
发明内容
本发明提供了适用于FCC工艺的新型组合物,其能够提供改进的NOx控制性能。
一方面,本发明提供了用于减少FCC工艺中NOx释放的组合物,该组合物包含铈和锆的混合氧化物和任选的至少一种非铈稀土元素的氧化物。该组合物还可以包含至少一种选自周期表第Ib和IIb族过渡金属的氧化物。优选地将该混合氧化物喷雾干燥成适合用在FCC工艺中的微球,并且在微球形成之前或之后浸渍作为选定金属的盐的过渡金属氧化物。
另一方面,本发明包括FCC工艺,该工艺使用本发明的NOx减少组合物作为FCC催化剂颗粒的构成部分或作为与FCC催化剂混合的单独颗粒。
下面详细描述本发明的这些和其它方面。
发明详述本发明涉及这一发现某些类的组合物对于减少FCC工艺中的NOx气体释放非常有效。而且,这种组合物意外地具有比现有组合物更好的热液稳定性。
本发明NOx减少组合物的特征在于包含铈和锆的混合氧化物和任选的除铈以外的其它稀土元素氧化物。优选的除铈以外的其它稀土元素氧化物是La、Nd和Pr的氧化物。此外,至少一种选自周期表第Ib和IIb族金属或其混合的过渡金属氧化物可以包含在本发明的组合物中。该混合氧化物应该包含至少20wt%铈和至少15wt%锆。该NOx减少添加剂组合物包含至少20wt%、一般至少60wt%的二氧化铈-氧化锆和至多约20wt%非铈稀土元素的氧化物。该NOx减少添加剂组合物一般包含至少40wt%、一般至少55wt%的(i)、(ii)和(iii)。
已发现铈和锆的混合氧化物和其它任选的稀土元素氧化物在汽车废气应用领域中使用广泛。例子描述在共同转让的美国专利No.4,624,940和No.5,057,483以及美国专利申请公开号2003/0100447中。美国专利No.5,057,483描述了可以通过任何合适技术,例如共沉淀、共胶凝等制得共成形的稀土氧化物-氧化锆组合物。一种合适技术列举在文章Luccini,E.,Mariani,S.和Sbaizero,O.,“Preparation of Zirconia Ceium Carbonate in Water with Urea”,Int.J.ofMaterials and Product Technology,4,167-175(1989)中,其公开内容包含于此。如该文章从第169页开始公开的,制备一定比例的二氯氧化锆和硝酸铈的稀蒸馏水溶液(0.1M),并加入硝酸铵作为控制pH的缓冲剂,以形成最终产物ZrO2-10mol%CeO2。在持续搅拌2小时下,溶液沸腾;并且在任何阶段保持pH不超过6.5,实现完全沉淀。
制备二氧化铈-氧化锆与任选的其它稀土元素氧化物的混合氧化物配方的其它技术描述在美国专利No.6,528,029、6,133,194和6,576,207中,通过引用将其内容包含于此。
可以采用任何其它合适的制备共成形稀土元素氧化物-氧化锆的技术,只要所得产物包含的稀土元素氧化物完全分散在和/或以与氧化锆的固溶液形态在最终产品中。因此,对于上述共沉淀方法,锆盐和铈盐(或其它稀土金属盐)可以包括氯化物、硫酸盐、硝酸盐、乙酸盐等。该共沉淀物在洗涤后可以经喷雾干燥除去水分,接着在约500℃下在空气中将其煅烧,以形成共成形稀土元素氧化物-氧化锆的混合氧化物组合物。
第Ib和/或IIb族过渡金属可以是选自周期表中这些族的任何金属或金属组合。优选地,该过渡金属选自Cu、Ag、Zn或其混合。过渡金属的存在量优选为至少约100重量份(根据金属氧化物测得的)每百万份NOx减少添加剂,更优选为至少约0.1-约5重量份每百万份NOx减少添加剂。
当该混合氧化物作为单独颗粒用在NOx减少组合物中时,可以通过常规方法将该氧化物形成为可用在FCC工艺中的微球。因此,本发明的组合物可以与填料(例如高岭土、粘土、硅石-矾土、硅石和/矾土颗粒)和/或粘合剂(例如硅溶胶、铝溶胶、硅铝溶胶等)结合,优选通过喷雾干燥,并且如果需要,随后进行煅烧而形成适合用在FCC工艺中的颗粒。优选地,任何加入的粘合剂或填料不会明显不利地影响NOx减少组分的性能。添加剂颗粒的尺寸优选要适合随催化剂总料流在FCC工艺中循环。该包含混合氧化物组合物的微球一般为20-200微米,并可以有效地用在FCC工艺中。该添加剂颗粒优选具有磨耗特性,以使它们能够忍受FCCU的苛刻环境。50-100微米的微球尺寸可能在FCC应用中更典型。
当NOx减少组合物用作添加剂颗粒时(而不是作为FCC催化剂颗粒的构成部分),NOx减少组分在添加剂颗粒中的量优选为至少30wt%,更优选为至少55wt%。希望的是使NOx减少活性成分在添加剂颗粒中的量最大。但是,一般需要少量的填料和/或粘合剂以使混合氧化物的组合物形成为微球。二氧化铈在最终形成的NOx减少组合物中的量可以相当大地变化。优选地,NOx减少组合物包含至少约0.5重量份二氧化铈每100重量份最终形成的添加剂,更优选地至少1-约20重量份二氧化铈每100重量份最终添加剂组合物。
如前面提到的,本发明的NOx减少组合物可以本身是FCC催化剂颗粒的构成部分。这种催化剂颗粒一般包括沸石裂化催化剂,例如合成八面沸石,包括沸石Y或X,或其它已知的沸石裂化催化剂,例如ZSM-5系列的那些。在这种情况下,任何常规FCC催化剂颗粒组分可以与本发明的NOx减少组合物结合使用。如果作为FCC催化剂颗粒的构成部分,则本发明的NOx减少组合物优选为FCC催化剂颗粒的至少约0.02wt%,更优选为约0.1-10wt%。可以通过任何已知技术将NOx减少组合物直接结合到FCC催化剂颗粒中。用于此目的的合适技术的例子公开在美国专利No.3,957,689、No.4,499,197、No.4,542,188和No.4,458,623中,通过引用将其公开内容结合于此。
虽然本发明不限于任何特定的制备方法,但本发明的NOx减少组合物优选通过下面步骤制得(I)(a)喷雾干燥浆料,该浆料包含含有二氧化铈的混合氧化物,任选的作为填料的高岭土和作为粘合剂的硅溶胶、铝溶胶或硅铝溶胶,以及第Ib或IIb族元素的硝酸盐;(b)煅烧经喷雾干燥的微球。
(II)(a)喷雾干燥浆料,该浆料包含含有二氧化铈的混合氧化物,任选的作为填料的高岭土和作为粘合剂的硅溶胶、铝溶胶或硅铝溶胶;(b)煅烧经喷雾干燥的微球;(c)用第Ib或IIb族元素的硝酸盐浸渍经喷雾干燥的微球;(d)煅烧经浸渍和喷雾干燥的微球。
(III)(a)喷雾干燥浆料,该浆料包含含有二氧化铈的混合氧化物,例如沸石Y的裂化催化剂,任选的作为填料的高岭土和作为粘合剂的硅溶胶、铝溶胶或硅铝溶胶;(b)向(a)浆料中加入第Ib或IIb族元素的硝酸盐;(c)煅烧经浸渍和喷雾干燥的微球。
显然,本领域技术人员已知或建议的其它可替换的制备方法可以用来形成本发明的NOx减少组合物。
本发明的组合物可以用在任何常规FCC工艺中。典型FCC工艺在450-650℃的反应温度,600-850℃的催化剂再生温度下进行。本发明的组合物可以用在任何典型的烃给料FCC处理中。优选地,本发明的组合物可以用在包括裂化烃给料的FCC工艺中,该烃给料包含的氮高于平均值,特别是那些氮含量至少为0.1wt%的残余给料或给料。根据特定的FCC工艺,本发明NOx减少组分的用量可以变化。优选地,NOx减少组分(在循环料流中)的用量为基于循环催化剂料流中FCC催化剂重量的约0.1-15wt%。本发明组合物在FCC工艺催化剂再生步骤过程中的存在显著降低了再生过程中释放的NOx量,同时热液稳定性得到改善。
下面的实施例用来说明本发明,不应视为是将本发明严格限定在所示实施方案中。
实施例120%二氧化铈-80%氧化锆将由20%二氧化铈和80%氧化锆组成的混合氧化物造粒,并粉碎筛分到所有颗粒都可以通过40目并且不能通过170目的尺寸。
实施例220%二氧化铈-80%氧化锆将由60wt%如实施例1中、包含20%二氧化铈-80%氧化锆的混合氧化物的商用混合氧化物组成的水性浆料与20%高岭土填料和20%铝溶胶粘合剂混合,并喷雾干燥成微球。在1200下将微球煅烧2小时。最终的添加剂组合物包含12wt%二氧化铈。
实施例3将由60wt%实施例1和2中使用的商用混合氧化物、(基于盐)2wt%氧化铜组成的浆料与18%高岭土填料和20%铝溶胶粘合剂混合,并喷雾干燥成微球。在1200下将微球煅烧2小时。最终的添加剂组合物包含12wt%二氧化铈和2wt%氧化铜。
实施例420%CeO2/6%La2O3/6%Nd2O3/68%氧化锆将由20wt%CeO2、6wt%La2O3、6wt%Nd2O3和68wt%氧化锆组成的混合氧化物造粒,并粉碎筛分到所有颗粒都可以通过40目并且不能通过170目的尺寸。
实施例529.5%CeO2/0.9%La2O3/8%Nd2O3/8%Pr6O11/53.6%氧化锆将由29.5wt%二氧化铈、0.9%La2O3、8%Nd2O3、8%Pr6O11和余量氧化锆组成的混合氧化物造粒,并粉碎筛分到所有颗粒都可以通过40目并且不能通过170目的尺寸。
实施例670%CeO2/15%La2O3/15%氧化锆将由70wt%二氧化铈、15%La2O3和余量氧化锆组成的混合氧化物造粒,并粉碎筛分到所有颗粒都可以通过40目并且不能通过170目的尺寸。
实施例720%CeO2/6%La2O3/6%Nd2O3/68%氧化锆将由20wt%二氧化铈、6%La2O3、6%Nd2O3和余量氧化锆组成的混合氧化物造粒,并粉碎筛分到所有颗粒都可以通过40目并且不能通过170目的尺寸。
对比实施例实施例A100%CeO2将二氧化铈造粒,并粉碎筛分到所有颗粒都可以通过40目并且不能通过170目的尺寸。
实施例B100%氧化锆将氧化锆造粒,并粉碎筛分到所有颗粒都可以通过40目并且不能通过170目的尺寸。
实施例8如前所述,热液稳定性是FCC催化剂和添加剂的重要性质。本领域已知不同方法来加速FCC催化剂和添加剂实验规模的热液失活。用于实验规模热液失活的最普遍方法是在1300-1500的温度下在100%水蒸气的存在下将催化剂或添加剂蒸4-8小时。
下表1所列的添加剂在100%水蒸气下在1500下被蒸4小时而失活。根据标准BET方法测量新鲜添加剂和失活添加剂的表面积。在1000下用氢将其还原后,在室温下测量添加剂上的NO吸取量(uptake)。下表1示出了表面积和NO吸取量数据。剩余表面积是蒸后余下的表面积百分比。剩余NO吸取率是蒸后剩余的NO吸取能力的百分比。
由此可见,在本发明范围内的实施例1和4-7相对于对比实施例A和B,具有更大的剩余NO吸取率和表面积稳定性。测试结果特别意外的是100%氧化锆导致蒸后材料没有NO吸取能力。
表1
权利要求
1.一种用于减少流化催化裂化工艺中催化剂再生过程中NOx释放的脱NOx组合物,所述组合物包含平均尺寸约为20-200微米的微球,并且含有(i)铈和锆的混合氧化物,(ii)非必要的非铈镧系元素的氧化物,和(iii)非必要的至少一种选自周期表第Ib和IIb族过渡金属或其混合的氧化物。
2.如权利要求1的组合物,其中所述混合氧化物(i)包含至少20wt%二氧化铈和至少15wt%氧化锆。
3.如权利要求2的的组合物,其中所述混合氧化物(i)相对于总(i)、(ii)和(iii)的存在量为至少70wt%。
4.如权利要求1的组合物,其中所述至少一种过渡金属氧化物(iii)是氧化铜。
5.一种在将烃给料流化催化裂化为低分子量组分过程中降低NOx释放的方法,所述方法包括在升高温度下使烃给料与适合催化烃裂化的裂化催化剂在NOx减少组合物的存在下接触,由此形成低分子量烃组分;其中所述NOx减少组合物包含(i)铈和锆的混合氧化物,(ii)非必要的至少一种非铈镧系元素的氧化物,和(iii)非必要的选自周期表第Ib和IIb族过渡金属的氧化物,所述NOx减少组分以充分减少NOx的量存在。
6.如权利要求5的方法,其中所述裂化催化剂和NOx减少组合物是单独的颗粒。
7.如权利要求5的方法,其中所述裂化催化剂和NOx减少组合物作为裂化催化剂组分和NOx减少组合物组分整体组合的单一颗粒存在。
8.如权利要求5的方法,其中所述混合氧化物(i)包含至少20wt%二氧化铈和至少15wt%氧化锆。
9.如权利要求5的方法,其中所述NOx减少组合物包含(iii)氧化铜。
10.如权利要求5的方法,其中(ii)包括La、Nd、Pr或其混合物的氧化物。
全文摘要
用于控制FCC工艺过程中NO
文档编号B01J23/10GK1909962SQ200580003067
公开日2007年2月7日 申请日期2005年1月13日 优先权日2004年1月23日
发明者C·P·凯尔卡尔, D·M·斯托克韦尔, S·J·陶斯特 申请人:恩格哈德公司