专利名称:低温气体分离的系统和方法
技术领域:
本发明涉及气体分离技术,并且特别是低温气体分离的系统和方法。
背景技术:
从气体混合物中低温分离目标组分的现有方法基于气体混合物冷冻、目标组分冷凝,以及随后从气体混合物中分离出包含目标组分的冷凝物。在此方法中气体混合物的冷冻传统上以节流阀和膨胀机中的气体膨胀为代价进行,或者应用冷冻装置来进行。在低温气体分离的方案中,使用同流式热交换器和精馏塔作为附加的辅助设备。
例如,在专利US 6182468B1和RU 2047061C1中描述了从气体混合物中低温分离目标组分的典型方法。专利US 6182468B1的方法基于以在Joule-Thompson阀中的气体混合物的节流为代价的气体冷冻,而在专利RU2047061C1中将涡轮膨胀机的涡轮机用于气体冷冻。
专利US 6182468B1的方法包括混合物的冷却、不用做机械功的混合物膨胀、在其膨胀期间混合物的部分冷凝、在精馏塔中分离混合物或其一部分来获得液相和气相产物。在此情况中,使用同流式热交换器和冷冻器实施混合物的冷却,而混合物则通过在Joule-Thompson阀中进行节流来实现混合物膨胀。
专利RU 2047061C1的方法包括冷却混合物,及将所述混合物分成蒸气相和液相、一部分蒸气相不用做机械功而膨胀,而另一部分则通过做机械功来膨胀、在精馏塔中分离膨胀的混合物以获得气相和液相产物。
这些低温气分离体的根本缺点是在低温气体分离过程中显著的混合物压力损失和高的能耗。
发明内容
根据本发明的一个方面,提供了冷却混合物、不用做机械功地膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相中的产物,其中混合物的膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋,在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流则缺乏这些组分;使富集料流部分或全部地通向精馏塔,以及使在精馏塔中获得的气相产物部分或全部地通向膨胀前的混合物。
根据本发明实施方案的一个方面,提供了适于分离烃气体混合物组分的低温气体混合物分离的方法,其包括冷却气体混合物方法;冷凝气体混合物产生液流和气体/蒸气;精馏至少一部分液流,从而产生各自的气相产物;从液流、气体/蒸气流和气相产物至少之一向气体混合物、液流、气体/蒸气流、气相产物和另一股料流中至少另一个来回传递热能,从而再循环能量。
在一些实施方案中,所述方法还包括使气体/蒸气流膨胀和打旋,以产生第一和第二料流,其中第一料流主要包括重组分的气体/蒸气流,第二料流主要包括较轻组分的气体/蒸气流;并且从液流、气体/蒸气流、气相产物和所述第一和第二料流的至少之一向气体混合物、液流、气体/蒸气流、气相产物、另一股料流和所述第一和第二料流中的至少另一个来回传递热能,从而再循环能量。
在一些更具体的实施方案中,所述方法还包括连同液流一起精馏至少一部分所述第一料流。
在一些更具体的实施方案中,冷却气体混合物包括至少部分地使气体混合物与液流、气体/蒸气流、气相产物、所述另一股料流和所述第一和第二料流中的至少一种的至少一部分进行混合。
在一些更具体的实施方案中,冷却气体混合物包括至少部分地从气体混合物向液流、气体/蒸气流、气相产物、所述另一股料流和所述第一和第二料流中至少一种的至少一部分进行传热。
在一些更具体的实施方案中,所述方法还包括压缩至少部分气相产物。
在一些更具体的实施方案中,所述方法还包括冷却至少部分气体/蒸气流。
在一些更具体的实施方案中,所述方法还包括压缩至少部分第一料流。
在一些更具体的实施方案中,所述方法还包括压缩至少部分第二料流。
在一些更具体的实施方案中,所述方法还包括冷却至少部分第一料流。
在一些更具体的实施方案中,所述方法还包括冷却至少部分第二料流。
在一些更具体的实施方案中,所述热能传递包括混合在其间进行传热的所述至少两股物流或料流的至少一部分。
在一些更具体的实施方案中,所述热能传递包括交换热能而不混合在其间进行传热的所述至少两股物流或料流的至少一部分。
在一些更具体的实施方案中,所述方法还包括使至少一部分气体/蒸气流通过涡轮机。
在一些更具体的实施方案中,所述方法还包括使至少部分所述第二料流通过涡轮机。
在一些更具体的实施方案中,所述方法还包括冷凝至少部分气相产物。
在一些更具体的实施方案中,所述方法还包括进一步冷凝至少部分液流。
在一些更具体的实施方案中,所述方法还包括冷凝至少部分气体/蒸气流。
在一些更具体的实施方案中,所述方法还包括使至少一部分气相产物膨胀并且打旋。
根据本发明实施方案的一个方面,提供了一种适于分离烃气体混合物组分的低温气体混合物分离的系统,其包括第一气/液分离器,用于将进入的气体混合物分成液流和气体/蒸气流;第一膨胀机,用于产生第一和第二料流,连接所述第一气/液分离器来接收气体/蒸气流,第一膨胀机还包括打旋装置,用于使气体/蒸气流打旋,从而分离气体/蒸气流的重组分与气体/蒸气流的轻组分,其中重组分主要包括第一料流,轻组分主要包括第二料流;精馏塔,用于产生至少气相产物,与所述第一气/液分离器连接起来接收液流;以及至少一个热交换器,用于从液流、气体/蒸气流、气相产物及第一和第二料流中的至少一种向气体混合物、液流、气体/蒸气流、气相产物、另一股料流及第一和第二料流中的至少另一种来回传递热能,从而在系统内再循环能量。
在一些实施方案中,所述第一膨胀机与精馏塔连接,从而向精馏塔提供至少部分第一料流。
在一些更具体的实施方案中,所述系统还包括混合进入的气体混合物与回输料流的第一混合器,所述回输料流包含液流、气体/蒸气流、气相产物、第一和第二料流及另一股料流中至少一种的至少一部分。
在一些更具体的实施方案中,所述系统还包括压缩至少部分气相产物的第一压缩机。
在一些更具体的实施方案中,所述系统还包括压缩至少部分气体/蒸气流的第一压缩机。
在一些更具体的实施方案中,所述系统还包括压缩至少部分第一料流的第一压缩机。
在一些更具体的实施方案中,所述系统还包括压缩至少部分第二料流的第一压缩机。
在一些更具体的实施方案中,所述系统还包括冷却至少部分第一料流的第一冷冻器。
在一些更具体的实施方案中,所述系统还包括冷却至少部分第二料流的第一冷冻器。
在一些更具体的实施方案中,所述热能传递包括混合在其间进行传热的所述至少两股物料或料流的至少一部分。
在一些更具体的实施方案中,所述热能传递包括交换热能,而不混合在其间进行传热的所述至少两股物料或料流的至少一部分。
在一些更具体的实施方案中,所述系统还包括涡轮机,用于膨胀至少部分气体/蒸气流,并与第一气/液分离器连接来接收至少部分气体/蒸气流。
在一些更具体的实施方案中,所述系统还包括至少部分第二料流所通过的涡轮机,所连接的涡轮机用来接收至少一部分第二料流。
在一些更具体的实施方案中,所述系统还包括用于在系统内分离液流或者气体/蒸气流的至少一个另外的气/液分离器。
在一些更具体的实施方案中,所述系统还包括用于进一步冷凝至少部分液流的另一个冷凝器。
在一些更具体的实施方案中,所述系统还包括用于冷凝至少部分气体/蒸气流的另一个冷凝器。
在一些更具体的实施方案中,所述系统还包括用于使至少部分气相产物膨胀和打旋的另一个膨胀机。
另外,在以下情况下建议了如下的方法实施方案使富集料流部分或全部地通向精馏塔,以及使来自精馏塔的气相产物部分或全部地与缺乏料流混合;使富集料流部分或全部地通向膨胀前的混合物,以及使来自精馏塔的气相产物部分或全部地与缺乏料流混合;以及使富集料流和来自精馏塔的气相产物部分或全部地通向膨胀前的混合物。
通过评阅下面本发明具体实施方案的说明书,本发明的其它方面和特征对于本领域一般技术人员将变得明显。
为了更好理解本发明,并且更清楚地表明本发明怎样付诸实践,现在通过实例参考附图,附图显示了本发明实施方案的各方面,其中图1是本发明第一实施方案的低温气体混合物分离系统的示意图;图2是图1中所示的低温气体分离装置的示意图;
图3是本发明第二实施方案的低温气体混合物分离系统的示意图;图4是本发明第三实施方案的低温气体混合物分离系统的示意图;图5是本发明第四实施方案的低温气体混合物分离系统的示意图;图6是本发明第五实施方案的低温气体混合物分离系统的示意图;图7是本发明第六实施方案的低温气体混合物分离系统的示意图;图8是本发明第七实施方案的低温气体混合物分离系统的示意图;图9是本发明第八实施方案的低温气体混合物分离系统的示意图;图10是本发明第九实施方案的低温气体混合物分离系统的示意图;图11是本发明第十实施方案的低温气体混合物分离系统的示意图;图12是本发明第十一实施方案的低温气体混合物分离系统的示意图;图13是本发明第十二实施方案的低温气体混合物分离系统的示意图;图14是本发明第十三实施方案的低温气体混合物分离系统的示意图;图15是本发明第十四实施方案的低温气体混合物分离系统的示意图;图16是本发明第十五实施方案的低温气体混合物分离系统的示意图;图17是本发明第十六实施方案的低温气体混合物分离系统的示意图;图18是本发明第十七实施方案的低温气体混合物分离系统的示意图;图19是本发明第十八实施方案的低温气体混合物分离系统的示意图;图20是本发明第十九实施方案的低温气体混合物分离系统的示意图;图21是本发明第二十实施方案的低温气体混合物分离系统的示意图;图22是本发明第二十一实施方案的低温气体混合物分离系统的示意图;图23是本发明第二十二实施方案的低温气体混合物分离系统的示意图;具体实施方式
本发明的一些实施方案可以降低LTS设施中的功耗。对于这个目标,根据本发明的一些实施方案,由于如下事实可以在本发明的第一实施方案中实现该目标在用于烃气体混合物的已知LTS方法中,其包括冷却混合物、不用做机械功膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相产物,根据本发明,混合物的膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋,并且在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股则缺乏这些组分,使富集料流部分或全部地通向精馏塔,以及使在精馏塔中获得的气相产物部分或全部地通向膨胀前的混合物。
参照图1,其显示了根据本发明第一实施方案的低温气体混合物分离系统的示意图200,以下为了简便起见称之为系统200。本领域技术人员可以理解系统200包括相关结构部件、机械系统、硬件、固件和用来支持系统200的功能和操作的软件的适当组合;但是显示的只是表示出描述本实施方案方面所必需的那些元件的系统200。
系统200包括分别串联的第一混合器30、第一热交换器32、第一冷冻器34和气/液分离器36。在一些实施方案中,可以使用所述热交换器作为冷冻器。第一混合器30包括单独的第一和第二输入30a和30b。第一输入30a用作向整个系统200的输入以及向第一混合器30的输入。第二输入30b用作回输输入,下面将更详细地说明它的目的。气/液分离器36具有单独的第一和第二输出36a和36b。第一输出36a是气体/蒸气出口,第二输出36b是液体(或者混合相)输出。在一些实施方案中,气/液分离器36是冷凝器。
所述系统还包括混合物膨胀装置40和精馏塔38。连接混合物膨胀装置40以从气/液分离器36的第一输出36a接收气体/蒸气料流,而连接的气/液分离器36的第二输出36b向精馏塔38输送液体(或者混合相)。
混合物膨胀装置40具有单独的第一和第二输出40a和40b。第一输出40a被连接至精馏塔38以输送主要包含重组分的第一料流。第二输出40b被连接回作为第一热交换器32的输入,以冷却进入第一混合器30的气体混合物。
精馏塔38具有单独的第一和第二输出38a和38b。第一输出38a回连到混合器30的第二输入30b。系统200还包括在精馏塔第一输出38a和混合器30的第二输入30b之间串联连接的压缩机42和第二冷冻器44。
在描述系统200的操作前,还参照图2给出混合物膨胀装置40的更多细节。混合物膨胀装置40具有管状体,输入端和输出端一般性分别用A和B表示。混合物膨胀装置40包括在输入端附近的打旋装置41和接着打旋装置41的收敛-扩张形喷嘴段43。在一些实施方案中,打旋装置41非限制地包括至少一个轮叶(vane)。收敛-扩张形喷段43向通向输出端B的锥形段45张开。在锥形段45内于输出端B处提供分流器47,以便于通向各第一和第二输出40a和40b的输出流的分离。
可以将混合物膨胀装置40制成具有位于如图2中所示的喷嘴通道入口的料流打旋装置(例如在现有技术文献EP1131588和US6372019中所讨论)以及在喷嘴通道内的料流打旋装置(例如在现有技术文献EP0496128和WO99/01194中所讨论)。
参照图1和2,系统200的操作如下天然气(或者其它气体混合物)的进料混合物201借助混合器30进入系统,在那里它与包含来自精馏塔38的压缩并冷却过的气相产物的回输料流混合。输入天然气和回输气体的混合物进一步在第一热交换器32中冷却。根据本发明的广义方面,第一热交换器32促进热能的再循环,或者相反,在这种特殊情况下,再循环的能量被用来冷却系统中的各种料流。即,通过将热量从天然气混合物转移到来自混合物膨胀装置40的第二输出40b的回输料流,第一热交换器32使进料天然气混合物冷却,从而降低天然气混合物的温度。
天然气混合物在进入气/液分离器36前在第一冷冻器34中进一步冷却。在气/液分离器36内,天然气混合物分成气体/蒸气流和液(或者混合相)流。气体/蒸气流借助第一输出36a流出气/液分离器36,直接进料混合物膨胀装置40。液流借助第二输出36b从气/液分离器36流向精馏塔38。
精馏塔38通过第一输出38a输出气相产物,通过第二输出38b输出液相产物。如上所述,气相产物在与进料混合物201混合前在压缩机42中压缩,在第二冷冻器44中冷却。
具体参照图2,在混合物膨胀装置40内,进料气体/蒸气流被分成第一料流和第二料流。天然气混合物进料混合物膨胀装置40、由打旋装置41产生漩涡,并且通过收敛-扩张喷嘴段43膨胀。当漩涡气体混合物膨胀时,混合物的较重组分漂离中心轴,而较轻的组分保留在中心轴附近。就此气体混合物料流被分成至少第一和第二料流,以至第一料流主要包括较重组分,而第二料流主要包括较轻组分。第一料流通过第一输出40a离开混合物膨胀装置40。第二料流通过第二输出40b离开混合物膨胀装置40。
更具体地说,在一些实施方案中,在膨胀过程期间,降低气体/蒸气流的温度至足以诱导混合物部分冷凝,从而形成冷凝物。冷凝物滴在离心力场中,向混合物膨胀装置40的壁移动,在壁附近收集成两相流。当气体混合物是天然气时,第一料流包含比甲烷重的组分,而第二料流包含基本上更多的甲烷气体。
另外,由于混合物在混合物膨胀装置40内漩涡状运动期间的膨胀,混合物的静压力低于混合物膨胀装置40的输出端压力,并且混合物在喷嘴内的分离是在温度低于通过输出端的混合物的温度下发生。在一些实施方案中,由于在系统200中进一步处理混合物前来自精馏塔38的气相产物被送回到输入混合物201中,所以提供了更深度的混合物分离。
在混合物膨胀装置中料流分离后,其中至少一股料流经由穿过扩散器而被压缩。图2显示了当在混合物膨胀装置中在喷嘴通道出口处混合物料流被分成两股料流,然后在扩散器中每股料流被压缩时的实例。这使得能够减少膨胀装置上的压力损失。
在膨胀前,混合物或其一部分可以在喷射器中与来自精馏塔的气相产物混合。实现的实例在图1中显示,其中喷射器被用作混合器30。
在本发明的烃气体混合物低温分离方法的下一个实施方案中,其包括冷却混合物、不用做机械功膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相产物,根据本发明,混合物的膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋,并且在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股则缺乏这些组分,以及使富集料流部分或全部地通向精馏塔,而来自精馏塔中的气相产物部分或全部地与缺乏料流混合。图3显示了根据本发明第二实施方案的低温气体混合物分离系统的示意图300,以下为了简便起见称之为系统300。图3中显示的系统300与图1中显示的系统200相似,并因此两者共同的元件共用共同的附图标记。另外,为了简便起见,对图3不再重复对图1描述的部分。同样,本领域技术人员可以理解系统300包括相关结构部件、机械系统、硬件、固件和用来支持系统300的功能和操作的软件的适当组合;但是所示仅为描述本实施方案方面所必需的那些元件的系统300。
系统200和300间的差异如下系统300不包括第一混合器30、第一冷冻器34、第二冷冻器44和第一压缩机42。系统300包括第二混合器48和第一(节流)阀50。第一阀50连接在气/液分离器36的第二输出36b和精馏塔38之间。第二混合器48包括各自的单独的第一和第二输入,其被连接以从混合物膨胀装置40和精馏塔38中接收并混合气体/蒸气输出物。第二混合器48还包括连接来向第一热交换器32输送气体混合物的输出。
操作中,进料混合物301在直接进入分离器36之前在第一热交换器32中冷却。然后使来自分离器36的液流通过节流阀50流向精馏塔38。来自精馏塔38的气相产物与第二混合器48中来自混合物膨胀装置40的第二料流(主要包括分离过程的较轻组分)混合,产生混合的回输流。然后使混合的回输流通过第一热交换器32,其中热量从进料混合物301传递给回输流,从而在不用向系统300添加能量下冷却进料混合物301。
这种方法可以降低低温分离设施中所需的混合物压力的损失。
在本发明的烃气体混合物低温分离方法的另一个实施方案中,其包括冷却混合物、不用做机械功膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相产物,根据本发明,混合物膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋,在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流则缺乏这些组分,使富集料流部分或全部地通向膨胀前的混合物,以及使来自精馏塔中的气相产物部分或全部地与耗尽流混合。参照图4,其显示了根据本发明第三实施方案的低温气体混合物分离系统的示意图400,以下为了简便起见称之为系统400。图4中显示的系统400与图1和3中显示的各个系统相似,每个共同的元件共用共同的附图标记。另外,为了简便起见,对图4不再重复对图1和3描述的部分。本领域技术人员可以理解系统400包括相关结构部件、机械系统、硬件、固件和用来支持系统400的功能和操作的软件的适当组合;但是所显示的只是表示出描述本实施方案方面必需的那些元件的系统400。
对系统400具体布置显示如下系统400包括如图1所示的第一混合器30。系统400还包括第二冷冻器44和第一压缩机42。但是,第一压缩机42和第二冷冻器44连接在第一热交换器32和第一混合器30的第二输出30b(即回输输入)之间。另外,混合物膨胀装置40的第一输出40a与第一热交换器32连接,以代替与如图1所示的与精馏塔38连接。
操作中,使进料混合物401与第一料流(即主要包括在混合物膨胀装置40中分离的混合物的较重组分的料流)在第一混合器30中混合。即,使来自混合物膨胀装置40的第一输出40a的第一料流与进料混合物401混合。然后,使从第一混合器30输出的混合物通过第一热交换器32,以进一步调节进料气体混合物的温度。连接第一热交换器32来接收混合物膨胀装置40的第一输出40a作为调节入流。通过使用回输,系统能量再次守恒,并且效率可以得到提高。
在一些实施方案中,从精馏塔38输出的气相产物在第二混合器48中与从混合物膨胀装置40的第二输出40b输出的第二料流混合,并且结合后的混合物不从系统400输出。
在本发明的烃气体混合物低温分离方法的一个实施方案中,其包括冷却混合物、不用做机械功地膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相产物,根据本发明,混合物膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋,在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流则缺乏这些组分,以及使富集料流和来自精馏塔中的气相产物部分或全部地通向膨胀前的混合物。参照图5,其显示了根据本发明第四实施方案的低温气体混合物分离系统的示意图500,以下为了简便起见称之为系统500。图5中显示的系统500与图1和3-4中显示的各个系统相似,每个共同的元件共用共同的附图标记。另外,为了简便起见,对图5不再重复对图1和3-4描述的部分。本领域技术人员可以理解系统500包括相关结构部件、机械系统、硬件、固件和用来支持系统500的功能和操作的软件的适当组合;但是显示了只是表示出描述本实施方案方面所必需的那些元件的系统500。
对系统500具体布置显示如下系统500包括第二热交换器52。第二混合器48和第二热交换器52连接在气/液分离器36的第一输出36a和混合物膨胀装置40的输入之间。如参照图4所描述,还连接第二热交换器52在使第一料流通过第一热交换器32之前接收来自混合物膨胀装置40的第一输出40a的第一料流。
操作中,使来自分离器36的蒸气流在第二混合器48中与精馏塔38的气相输出物混合。使第二混合器48的输出物在通过混合物膨胀装置40之前在第二热交换器52中冷却。首先,将来自混合物膨胀装置40的第一料流(来自第一输出40a)通过第二热交换器52送去冷却第二混合器48的输出物,然后通过第一热交换器32送去进一步冷却第一混合器30的输出物。然后,在压缩机42中压缩相同的第一料流,其后在与进料气体混合物501混合之前在第二冷冻器44中将其冷却。可以从系统500中直接输出第二料流(来自混合物膨胀装置40的第二输出40b)。通过使用回输,系统能量再次守恒,并且效率可以得到提高。
在一些实施方案中,系统500促进了来自混合物膨胀装置40的第二料流(即主要包括气体混合物中较轻组分的料流)的深度纯化。即,在考虑天然气处理时,因为第一料流与进料料流501混合,所以第二料流可能显著耗尽比甲烷重的蒸气组分。
在膨胀过程前和/或在其后,可以从通过节流阀的混合物或其一部分中分离出液相,并且使所得产物通向精馏塔。参照图6,其显示了作为实例的根据本发明第五实施方案的低温气体混合物分离系统的示意图600,以下为了简便起见称之为系统600。图6中显示的系统600与图1和3-5中显示的各个系统相似,每个共同的元件共用共同的附图标记。另外,为了简便起见,对图6不再重复对图1和3-5描述的部分。本领域技术人员可以理解系统600包括相关结构部件、机械系统、硬件、固件和用来支持系统600的功能和操作的软件的适当组合;但是显示了只表示出描述本实施方案方面必需的那些元件的系统600。
对系统600具体布置显示如下系统600包括第二气/液分离器60。第二气/液分离器60包括分别与第二混合器48和精馏塔38连接的单独的第一和第二输出60a和60b。系统600还包括在第二输出60b和精馏塔38输入之间的第二(节流)阀66。连接混合物膨胀装置40的第一输出40a将来自混合物膨胀装置40的第一料流输送到第二气/液分离器60。
操作中,因为有两个气/液分离器36和60,所以进行两次液体分离在混合物膨胀装置40中膨胀各种形式的混合物的前和后。更具体地说,将来自混合物膨胀装置40的第一料流送到第二分离器60,这就提供了第二蒸气流和第二液流。第二液流通过第二节流阀66并进入精馏塔38。第二蒸气流与来自混合物膨胀装置40的第二料流在第二混合器48中混合。然后,使在第二混合器48中产生的混合物48通过如上所述的第一热交换器32。
在所有描述的实施方案的方法中,可以另外冷却来自精馏塔的气相产物。参照图7,其显示了作为实例的根据本发明第六实施方案的低温气体混合物分离系统的示意图700,以下为了简便起见称之为系统700。图7中显示的系统700与图1和3-6中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图7不再重复对图1和3-6描述的部分。本领域技术人员可以理解系统700包括相关结构部件、机械系统、硬件、固件和用来支持系统700的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统700。
对系统700具体布置显示如下在第一节流阀50和精馏塔38的输入之间连接第二热交换器52。在精馏塔38和第二热交换器52之间连接第二冷冻器44。更具体地说,连接第二冷冻器44来接收并且冷却来自精馏塔38第一输出36a的气相产物。第二热交换器52还与第一混合器30连接来提供来自精馏塔38的冷却的气相产物,作为向第一混合器30的回输输入。
操作中,进料混合物701与如图1中所示的精馏塔38的气相产物混合,但是气相产物在与进料混合物701混合前首先通过第二冷冻器44和第二热交换器52冷却。接下来,第二热交换器52在将第二料流输送到精馏塔38中之前加热来自气/液分离器36的第二料流。这种布置有助于在低温分离过程中提供更合理的质量和熵流分布。
在一些实施方案中,将来自精馏塔的至少部分气相产物与通过使从混合物分离的液体经过节流阀而获得的部分产物一起供应给膨胀前的混合物。参照图8,其显示了作为实例的根据本发明第七实施方案的低温气体混合物分离系统的示意图800,以下为了简便起见称之为系统800。图8中显示的系统800与图1和3-7中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图8不再重复对图1和3-7描述的部分。本领域技术人员可以理解系统800包括相关结构部件、机械系统、硬件、固件和用来支持系统800的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统800。
对系统800具体布置显示如下在混合物膨胀装置40中膨胀前两次促进通过冷凝的液体分离。为了这个目的,连接第二气/液分离器60来接收来自第一气/液分离器36的液体(或者两相输出)和来自精馏塔38的气相产物的混合物。另外,首先通过也接收第二分离器60的液相(或者两相)输出的第二热交换器52,连接来自精馏塔38的气相产物,从而可以在两者之间传递热能,因而冷却一个且加热另一个,从而在系统800内再循环能量。
在第一热交换器32中冷却进料混合物801,并且在进入第一气/液分离器36前在第一冷冻器34中进一步将其冷却。使来自分离器36的液流通过节流阀50并且在进入第二气/液分离器60前与精馏塔38的气相产物混合。第二气/液分离器60还提供了穿过第二热交换器52,因而冷却气相产物并且加热所述第二液流的的第二液流。在通过所述第二热交换器52后,所述第二液流进入精馏塔38中。在系统别处,来自第一和第二气/液分离器36和60的气体/蒸气流在被输送入混合物膨胀装置40中,在其中经历上面对图1和2所述的过程来产生第一和第二料流之前在第二混合器48中合并。通过在加工天然气时除去更大比例比甲烷重的组分,这种方法能够更深度地纯化气流。
在一些实施方案中,使从混合物分离的一部分液体通过节流阀,并且通过使其通过冷却混合物的热交换器的加热通道,将所得的产物用于其它混合物的冷却,然后使这些产物通向膨胀前的混合物。参照图9,其显示了作为实例的根据本发明第八实施方案的低温气体混合物分离系统的示意图900,以下为了简便起见称之为系统900。图9中显示的系统900与图1和3-8中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图9不再重复对图1和3-8描述的部分。本领域技术人员可以理解系统900包括相关结构部件、机械系统、硬件、固件和用来支持系统900的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统900。
对系统900具体布置显示如下第一冷冻器34在第一热交换器32之前。在第一热交换器32和第一气/液分离器36之间串联连接第三热交换器62。还连接第三热交换器62接收来自第一气/液分离器36的部分液(或者两相)流。为此,在第二输出36b和第三热交换器62之间连接第二节流阀66,以防止逆流并且维持通过第三热交换器62的向前的压力。另外,与图5中所示的系统500相似,来自精馏塔38的气相产物在膨胀前与来自第一气/液分离器36的气体/蒸气流在混合器48中合并。为此,与图8相似,在精馏塔38的第一输出38a和第二混合器48之间连接第二热交换器52。第二热交换器52也接收来自第一气/液分离器36的气体/蒸气流,并且在其间连接第一节流阀50。
操作中,使用部分来自第一气/液分离器36的液流冷却进料混合物901。进料混合物901通过第一冷冻器34冷却,然后与部分来自第一气/液分离器36的液流混合,如下面更详细地说明。所得混合物在进入第一气/液分离器36前进一步在第一热交换器32中以及在第三热交换器62中冷却。现在应当理解,第一气/液分离器36产生气体/蒸气流和液(或者两相)流。气体/蒸气流在第二混合器48中与来自精馏塔38的气相产物混合,并且如上述对图1和2所述,所得气体/蒸气混合物膨胀并且分成第一和第二料流。第一料流进入精馏塔38中,第二料流返回到第一热交换器32。同样,就以上所描述的系统而言,热交换器促进了能量在系统900中的再循环,因而提高了系统900的效率。
在一些实施方案中,可以在混合物膨胀前或膨胀后使用涡轮膨胀机。参照图10,其显示了作为实例的根据本发明第九实施方案的低温气体混合物分离系统的示意图1000,以下为了简便起见称之为系统1000。图10中显示的系统1000与图1和3-9中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图10不再重复对图1和3-9描述的部分。本领域技术人员可以理解系统1000包括相关结构部件、机械系统、硬件、固件和用来支持系统1000的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1000。
对系统1000具体布置显示如下系统1000包括在混合物膨胀装置40的第二输出40b和第一热交换器32之间连接的涡轮机70。系统1000还包括在第一压缩机42和第一混合器30的第二输出36b之间串联连接的第二压缩机64。
操作中,与混合物膨胀装置40的第二输出40b连接的第二料流经过涡轮机70,然后经过第一热交换器32。在一些实施方案中,在混合物通过混合物膨胀装置40之前或者之后,可以使用用于混合物膨胀的涡轮装置提供附加的膨胀。另外,进料混合物1001与包括第一气/液分离器36的部分液流和第二气/液分离器60的部分气体/蒸气流的回输气体/蒸气流混合。然后,使所得混合物在进入第一气/液分离器36前在第一热交换器32中冷却。第一气/液分离器36的液流分成第一部分和第二部分。第一部分穿过节流阀50并且进入精馏塔58。第一液流的第二部分在与第二气/液分离器60的气体/蒸气流混合之前通过第二节流阀66。与此形成对照,第一气/液分离器36的气体/蒸气流通过第二热交换器52,并在进入第二混合器48中之前在其中冷却。第二混合器还从精馏塔38接收气相产物。然后,将第二混合器48的输出物连接到如上所述的混合物膨胀装置40中。将来自混合物膨胀装置40的第一料流通入第二气/液分离器60中。第二分离器60还使由它产生的液流直接通向精馏塔38。
通过使用与来自混合物膨胀装置40的第二料流一起描述的涡轮机70,因为降低了叶片上流动的冷凝物(液滴)的量,从而导致更少的磨损,所以延长了涡轮机叶片(未显示)的使用寿命。
在一些实施方案中,在混合物中压力不足的情况下,可以将压缩机用于另外的混合物压缩,以便为涡轮膨胀机提供高效的操作。参照图11,其显示了作为实例的根据本发明第十实施方案的低温气体混合物分离系统的示意图1100,以下为了简便起见称之为系统1100。图11中显示的系统1100与图1和3-10中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图11不再重复对图1和3-10描述的部分。本领域技术人员可以理解系统1100包括相关结构部件、机械系统、硬件、固件和用来支持系统1100的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1100。
对系统1100具体布置显示如下同样,第一混合器30的第一输入30a用作系统1100的输入以及第一混合器30的输入。在第一混合器30和第一冷冻器34之间串联连接第一压缩机42,冷冻器接着与第一热交换器32串联连接。第一热交换器32的第一和第二输出分别与第一气/液分离器36和第二压缩机64相连。第一气/液分离器36的第二输出36b与第一和第二节流阀50和66的并联组合连接,它们接着分别与精馏塔38和第二热交换器52连接。即,来自第一气/液分离器的液(两相)流在第二热交换器52和精馏塔之间分开。还连接第二热交换器52,以便在气体/蒸气流进入混合物膨胀装置之前接收第一气/液分离器的气体/蒸气流输出。
当在操作中进料混合物1101在较低的不同差压下进入时,系统1100是特别有用的。更具体地说,进料混合物1101与在混合物膨胀装置中分离的第二料流混合。然后,将所得合并的混合物在第一冷冻器34和第一热交换器32中冷却之前在第一压缩机42中压缩。
来自第一气/液分离器36的液流分成穿过第一节流阀50进入精馏塔38的第一部分及穿过第二节流阀66进入第二热交换器52的第二部分。在通过第二热交换器52后,所述第二部分进入第二混合器48,其中它与精馏塔38的气相产物混合。然后,将混合物回输到第一混合器30与进料混合物1101混合,如以上所描述的。将来自第一分离器36的气体/蒸气流36送到混合物膨胀装置40,并且经历上面对图1和2所描述的过程。
在另一个非常特殊的实施方案中,在初始混合物与返回到初始混合物的产物混合后,所述混合物在压缩机中另外压缩。参照图12,其显示了作为实例的根据本发明第十一实施方案的低温气体混合物分离系统的示意图1200,以下为了简便起见称之为系统1200。图12中显示的系统1200与图1和3-11中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图12不再重复对图1和3-11描述的部分。本领域技术人员可以理解系统1200包括相关结构部件、机械系统、硬件、固件和用来支持系统1200的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1200。
对系统1200具体布置显示如下第一气/液分离器36的气体/蒸气流分成两股料流。第一料流连接到混合物膨胀装置40中。第二料流连接到与混合物膨胀装置40平行布置的涡轮机70中。混合物膨胀装置40的第一输出40a和涡轮机70的输出在第二混合器48相遇,其接着与精馏塔38连接。混合物膨胀装置40的第二输出40b和精馏塔的第一输出38a在第三混合器68相遇,其接着与第二热交换器52和第二压缩机64串联连接。系统1200适用于需要在系统内提供增加的压力来提高混合物分离效果的情况。
在操作中,在进料混合物1201与来自第一气/液分离器36的部分液流混合后,所得混合物在压缩机42中压缩,并且在第一冷冻器34和第一热交换器32中冷却。使来自第一气/液分离器36的另一部分液流通过节流阀50并且进入精馏塔38。第一气/液分离器36的气体/蒸气流也分成两个部分。第一部分通入涡轮机70中,第二部分通入混合物膨胀装置40中。混合来自混合物膨胀装置40的第一料流和涡轮机70的输出物,并且将其输送到精馏塔38。第二料流与来自精馏塔38的气相产物混合,并且在离开系统前通过第二热交换器52和压缩机64。
在一个非常特殊的实施方案中,冷却并且膨胀来自精馏塔的气相产物,并且分离富集有比甲烷重的组分的产物部分,使它们部分或全部地通向精馏塔。参照图13,其显示了作为实例的根据本发明第十二实施方案的低温气体混合物分离系统的示意图1300,以下为了简便起见称之为系统1300。图13中显示的系统1300与图1和3-12中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图13不再重复对图1和3-12描述的部分。本领域技术人员可以理解系统1300包括相关结构部件、机械系统、硬件、固件和用来支持系统1300的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1300。
对系统1300具体布置显示如下系统1300包括在设计和功能上与上述对图2描述的混合物膨胀装置40相似的第二混合物膨胀装置80。与第一混合物膨胀装置40类似,混合物膨胀装置80具有单独的第一和第二输出80a和80b。连接的第一输出80a将较重组分的第一料流输送到第二气/液分离器60,连接的第二输出40b将较轻组分的第二料流与第二气/液分离器60的气体/蒸气流合并。系统1300还包括在第二气/液分离器60的液(或者两相)流(即第二输出60b)和第三热交换器62之间串联连接的泵72和第三节流阀74,第三热交换器接着与精馏塔38连接。还通过第三热交换器62连接来自精馏塔38的气相产物。
在操作中,冷却、膨胀(在第二混合物膨胀装置80中)并且分离来自精馏塔38的气相产物,并且使来自第二混合物膨胀装置80的所得第二料流部分或全部地流回精馏塔38。
因此,在一些实施方案中,在压缩机中另外压缩来自精馏塔的气相产物。参照图14,其显示了作为实例的根据本发明第十三实施方案的低温气体混合物分离系统的示意图1400,以下为了简便起见称之为系统1400。图14中显示的系统1400与图1和3-13中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图14不再重复对图1和3-13描述的部分。本领域技术人员可以理解系统1400包括相关结构部件、机械系统、硬件、固件和用来支持系统1400的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1400。
对系统1400具体布置显示如下系统1400包括在精馏塔38的第一输出38a和第二气/液分离器60输入之间连接的冷却和压缩回路,包括串联连接的第三热交换器76、第二压缩机64和第二冷冻器44。然后,第二冷冻器44的输出通过第三热交换器76连接在回输回路中。第二气/液分离器60的第一输出60a(即气体/蒸气输出)与第二混合物膨胀装置80连接。混合物膨胀装置80的第一输出80a(包含来自膨胀和分离过程的较重的分离组分)与精馏塔38连接,第二输出80b与混合物膨胀装置40的第二输出40b结合。
在操作中,在上述冷却和压缩回路中冷冻并且压缩来自精馏塔38的气相产物。具体地说,在热交换器76中冷却、在压缩机64中压缩、在冷冻器44中冷却来自精馏塔38的气相产物,并且在进入第二气/液分离器60前进一步在第二热交换器62中冷却。来自第二气/液分离器60的液流在进入精馏塔38中之前还通过第二热交换器62。系统1400的其余操作与图13中所示的系统1300类似。
在另一个非常特殊的实施方案中,膨胀来自精馏塔38的气相产物,获得富集比甲烷重的组分的产物;使后者部分或全部地通向精馏塔,或者在其膨胀之前返回气相产物料流中。参照图15,其显示了作为实例的根据本发明第十四实施方案的低温气体混合物分离系统的示意图1500,以下为了简便起见称之为系统1500。图15中显示的系统1500与图1和3-14中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图15不再重复对图1和3-14描述的部分。本领域技术人员可以理解系统1500包括相关结构部件、机械系统、硬件、固件和用来支持系统1500的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1500。
对系统1500具体布置显示如下在系统1500中,精馏塔38的第一输出38a经由第二冷冻器44与第二混合物膨胀装置80连接。混合物膨胀装置80的第一输出80a与第二气/液分离器60连接。接着,还如图14中所示,使分离器60的液流(或者两相)输出通入精馏塔38中。
在操作中,在第二混合物膨胀装置80内膨胀来自精馏塔38的气相产物,从而如上面对图2所描述的彼此分离重和轻的组分。来自第二混合物膨胀装置80的第一输出80a(包含较重组分)流入第二气/液分离器60。将液体(或者两相)输出通过泵72和第三节流阀74泵入精馏塔38中。使混合物膨胀装置80的第二输出80b与来自第二分离器60的气体/蒸气流输出及混合物膨胀装置40的第二输出40b混合。使所得混合物回输到第一热交换器32来冷却进料混合物1501。如前面所述已经与回输料流混合的进料混合物1501也在进入第一气/液分离器36之前被压缩。其余操作与前面所描述的系统相似。
在另一实施方案中,使来自精馏塔的气相产物膨胀后获得的富集料流通向膨胀前的初始混合物。参照图16,其显示了作为实例的根据本发明第十五实施方案的低温气体混合物分离系统的示意图1600,以下为了简便起见称之为系统1600。图16中显示的系统1600与图1和3-15中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图16不再重复对图1和3-15描述的部分。本领域技术人员可以理解系统1600包括相关结构部件、机械系统、硬件、固件和用来支持系统1600的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1600。
对系统1600具体布置显示如下与系统1500不同,系统1600只包括第一气/液分离器36。在精馏塔38的第一输出38a和第二混合物膨胀装置80的输入之间串联连接第三热交换器62。混合物膨胀装置80的第一输出80a回输,并借助于第三节流阀74连接通过第三热交换器62,以及连接穿过第二热交换器52,其接下来回连至第一混合器30。
在操作中,第二混合物膨胀装置80中分离的第一料流在与进料混合物1601合并之前分别流过第三和第二热交换器62和52。来自第一气/液分离器36的液体(或者两相)输出流也在第二热交换器52之前与第二混合物膨胀装置80中分离的第一料流混合。第二节流阀66降低了料流输出流到第一气/液分离器36的压力。其余操作与参照图15讨论的系统相似。
在一些实施方案中,在膨胀前或者膨胀后,使混合物或其一部分通过涡轮膨胀机的涡轮机。参照图17,其显示了作为实例的根据本发明第十六实施方案的低温气体混合物分离系统的示意图1700,以下为了简便起见称之为系统1700。图17中显示的系统1700与图1和3-16中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图17不再重复对图1和3-16描述的部分。本领域技术人员可以理解系统1700包括相关结构部件、机械系统、硬件、固件和用来支持系统1700的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1700。
对系统1700具体布置显示如下系统1700包括四个气/液分离器,即第一和第二气/液分离器36和60以及附加的第三和第四气/液分离器82和84。连接第一和第二气/液分离器36和60,使得第一气/液分离器36的气体/蒸气输出连接到第二气/液分离器60中。如图17中所示,在这中间连接有涡轮机70和第二混合器48。合并第一和第二气/液分离器36和60的液体输出,并且与第三分离器82连接。第三分离器82的液体输出借助第二热交换器52与第四分离器84连接。第四气/液分离器84的液体输出与精馏塔38连接,而气体/蒸气输出通过第二混合器48与第二气/液分离器60连接。将第二气/液分离器60的气体/蒸气输出流连接到混合物膨胀装置40中。可以使用混合物膨胀涡轮装置的压缩机级作为压缩机42,而这种方案可以改善低温分离过程中的功耗。
在操作中,通过在进入第一气/液分离器36之前顺序结合的第一和第二热交换器32和52,使进料混合物1701冷却。合并来自第一和第二气/液分离器36、60的液流,并且将其与混合物膨胀装置40产生的第一料流一起通入第三气/液分离器82中。第三气/液分离器82产生在第四气/液分离器84中进一步进行加工前在第二热交换器52中用作冷却剂的液流。然后,将由第四气/液分离器84产生的液流输送到精馏塔38。合并来自第三和第四气/液分离器82和84的气体/蒸气流,并且将其与来自第一气/液分离器36的气体/蒸气流一起回输到第二气/液分离器60。
在其它实施方案中,从混合物中分离液相,使部分液相通过节流阀;使用所得产物冷却混合物,并且将其通向膨胀前的混合物中。参照图18,其显示了作为实例的根据本发明第十七实施方案的低温气体混合物分离系统的示意图1800,以下为了简便起见称之为系统1800。图18中显示的系统1800与图1和3-17中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图18不再重复对图1和3-17描述的部分。本领域技术人员可以理解系统1800包括相关结构部件、机械系统、硬件、固件和用来支持系统1800的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1800。
对系统1800具体布置显示如下使第一气/液分离器36的液流输出36b与精馏塔38和第三热交换器62连接。在第一热交换器32和第一气/液分离器36之间串联连接第三热交换器62。另外,第三热交换器62借助第一压缩机42和第二冷冻器44使液流输出36b连接回第一混合器30。
在操作中,使用来自第一气/液分离器36的部分液流冷却进料混合物1801,如图18中的实例所示。通过第一冷冻器34冷却进料混合物1801,然后与来自第一气/液分离器36的部分液流混合。但是,首先使用该部分液流作为第三热交换器62中的冷却剂,然后在加到进料混合物1801中之前压缩并且冷却。系统的其余部分按照对图3所述的操作。
根据一些实施方案,混合物在膨胀前分成至少两股料流,一股通过涡轮膨胀机的涡轮机并且通向精馏塔,并且通过使打旋的混合物料流经过喷嘴通道来膨胀另一股料流;在喷嘴通道或其一部分的出口混合物料流被分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流耗尽这些组分;然后使富集料流通向精馏塔。参照图19,其显示了作为实例的根据本发明第十八实施方案的低温气体混合物分离系统的示意图1900,以下为了简便起见称之为系统1900。图19中显示的系统1900与图1和3-18中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图19不再重复对图1和3-18描述的部分。本领域技术人员可以理解系统1900包括相关结构部件、机械系统、硬件、固件和用来支持系统1900的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统1900。
对系统1900具体布置显示如下使第一气/液分离器36的气体/蒸气流分成两股料流。第一料流与混合物膨胀装置40连接。第二料流连接到和混合物膨胀装置40平行布置的涡轮机70中。将混合物膨胀装置40的第一输出40a和涡轮机70的输出连接到精馏塔38中。混合物膨胀装置40的第二输出40b和精馏塔38的第一输出38a在第二混合器48处相遇,其接着与第一热交换器32串联连接。系统1900适用于需要在系统内提供增加的压力来改善混合物分离效果的情况。
在操作中,进料混合物1901在第一热交换器32中冷却,并且在第一气/液分离器36中分离。来自分离器36的液流通过阀50进入精馏塔18。在膨胀前,由第一气/液分离器36产生的气体/蒸气流分成至少两股料流,一股泵送经过用于混合物膨胀的涡轮装置的涡轮机70,并且通向精馏塔38,而另一股料流通过混合物膨胀装置40膨胀。将来自混合物膨胀装置40的第一料流送到精馏塔38,而第二料流与来自精馏塔38的气相产物混合,输送它们的混合物通过第一热交换器32,并在第一压缩机42中压缩后输出。该方法可以用于更深度地纯化混合物和从混合物中除去基本上较重组分。
相应地,在一些实施方案中,在喷射器中混合膨胀期间富集的料流和通过涡轮膨胀机的涡轮机的混合物部分。参照图20,其显示了作为实例的根据本发明第十九实施方案的低温气体混合物分离系统的示意图2000,以下为了简便起见称之为系统2000。图20中显示的系统2000与图1和3-19中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图20不再重复对图1和3-19描述的部分。本领域技术人员可以理解系统2000包括相关结构部件、机械系统、硬件、固件和用来支持系统2000的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统2000。
对系统2000具体布置显示如下除了不包括压缩机42外,系统2000几乎与系统1900相同。在操作中,该系统2000以及系统1900都可以促进用于混合物膨胀的涡轮装置的涡轮机70的效率提高,从而在涡轮机70中提供了更深度的气体冷却,并且允许更大的压缩比。
在其它的实施方案中,膨胀前的混合物料流被分布至少三股料流,一股料流通过控制质量流速的阀,并且通向精馏塔或者与来自塔的气相产物混合。参照图21,其显示了作为实例的根据本发明第二十实施方案的低温气体混合物分离系统的示意图2100,以下为了简便起见称之为系统2100。图21中显示的系统2100与图1和3-20中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图21不再重复对图1和3-20描述的部分。本领域技术人员可以理解系统2100包括相关结构部件、机械系统、硬件、固件和用来支持系统2100的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统2100。
对系统2100具体布置显示如下第一气/液分离器36的第一输出36a在涡轮机70、混合物膨胀装置40和第三混合器68之间分开。第三混合器68还接收来自混合物膨胀装置40的第一料流和来自精馏塔38的气相产物。
在操作中,由第一分离器36产生的气体/蒸气流分成分别通过涡轮机70、混合物膨胀装置40和第三混合器68的三部分。其余部件按照对图19和20所讨论的操作。这种方法在进料混合物2101中变化的情况中可以通过用于混合物膨胀的涡轮装置的涡轮机70来稳定质量流速。
根据一些实施方案,从混合物分离液相,使混合物的一部分通过节流阀,并且所得产物的一部分用于冷却混合物,并且通向膨胀前的混合物。参照图22,其显示了作为实例的根据本发明第二十一实施方案的低温气体混合物分离系统的示意图2200,以下为了简便起见称之为系统2200。图22中显示的系统2200与图1和3-21中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图22不再重复对图1和3-21描述的部分。本领域技术人员可以理解系统2200包括相关结构部件、机械系统、硬件、固件和用来支持系统2200的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统2200。
对系统2200具体布置显示如下将第一气/液分离器的第二输出(即液体输出)和混合物膨胀装置40的第一输出40a连接到第二混合器48中,其接着与第一热交换器32连接。
在操作中,使用第一气/液分离器36的液体输出和来自混合物膨胀装置40的第一料流的所得混合物在第一热交换器32内冷却进料混合物2201,以及加入第一混合器30内的进料混合物2201中。在由精馏塔38产生的气相产物中包含来自进料混合物2201的较轻组分的情况下,这种方法可能是有效的。例如,当加工天然气时,由精馏塔38产生的气相产物可能具有非常少量的比甲烷重的组分。
在另一实施方案中,从通过节流阀的混合物中分离液相,并且将所得的产物用于冷却混合物。参照图23,其显示了作为实例的根据本发明第二十二实施方案的低温气体混合物分离系统的示意图2300,以下为了简便起见称之为系统2300。图23中显示的系统2300与图1和3-22中显示的各个系统相似,因此每个共同的元件共用共同的附图标记。另外,为了简便起见,对图23不再重复对图1和3-22描述的部分。本领域技术人员可以理解系统2300包括相关结构部件、机械系统、硬件、固件和用来支持系统2300的功能和操作的软件的适当组合;但是显示的只是描述本实施方案方面所必需的那些元件的系统2300。
对系统2300具体布置显示如下连接第一气/液分离器36的第二输出36b和混合物膨胀装置40的第一输出40a的一部分,并且与第二和第三热交换器52和62连接。精馏塔38的第一输出38a也与第三热交换器62的相应输出连接,然后连接到第一压缩机42中。然后,第一压缩机42串联地与第二冷冻器44至也接受进料混合物2301的第一混合器30连接。
在操作中,使第一气/液分离器36的液流输出与混合物膨胀装置40产生的第一料流结合。这种混合物被用来在第二热交换器52中冷却来自第一气/液分离器36的气体/蒸气流,并且在混合物器30中与进料混合物2301结合之前在第三热交换器62中冷却进料混合物2301。系统2300适于加工目标组分浓度在进料混合物中校低的气体混合物。
已经说明的内容只是本发明原理应用的示例性说明。根据上面的教导,本发明的许多修改和变化都是可能的。因此,要理解在下面权利要求书的范围内,可以在本文具体描述以外实践本发明。
权利要求
1.一种低温分离烃气体混合物的方法,其包括冷却混合物、不用做机械功地膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相中的产物,其中混合物的膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋,在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流则缺乏这些组分;使富集料流部分或全部地通向精馏塔,以及使在精馏塔中获得的气相产物部分或全部地通向膨胀前的混合物。
2.权利要求1的方法,其中在料流分离后通过使其中的至少一股经过扩散器而压缩该料流。
3.权利要求1的方法,其中在膨胀前使所述混合物或其一部分在喷射器中与来自精馏塔的气相产物混合。
4.权利要求1的方法,其中在膨胀前和/或膨胀后,从通过节流阀的混合物或其一部分中分离出液相,并且将在所述阀后获得的产物部分或全部地通向精馏塔。
5.权利要求1的方法,其中另外冷却来自精馏塔的气相产物。
6.权利要求4的方法,其中使来自精馏塔的至少部分气相产物与在节流阀后获得的部分产物一起通向膨胀前的混合物。
7.权利要求4的方法,其中分离自混合物的至少部分液相被用于另外冷却所述混合物或其一部分,并且通向膨胀前的混合物。
8.权利要求6或7的方法,其中在膨胀前或者膨胀后使混合物或其一部分通过涡轮膨胀机的涡轮机。
9.权利要求8的方法,其中在膨胀前在压缩机中额外压缩混合物。
10.权利要求1的方法,其中在与通向膨胀前的初始混合物的产物混合后,在压缩机中另外压缩所得的混合物。
11.权利要求10的方法,其中冷却并膨胀来自精馏塔的气相产物,分离富集有比甲烷重的组分的部分产物,并将其部分或全部地通向精馏塔。
12.权利要求11的方法,其中在冷却前在压缩机中另外压缩来自精馏塔的气相产物。
13.权利要求12的方法,其中膨胀来自精馏塔的气相产物,获得富集有比甲烷重的组分的产物,将后者部分或全部地通向精馏塔,或者返回膨胀前的气相产物料流中。
14.权利要求13的方法,其中将在气相产物膨胀后获得的富集有比甲烷重的组分的部分产物返回膨胀前的初始混合物中。
15.权利要求5的方法,其中在膨胀前或膨胀后使混合物或其一部分通过涡轮膨胀机的涡轮机。
16.一种低温分离烃气体混合物的方法,其包括冷却混合物、不用做机械功地膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相产物,其中混合物的膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋、在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流则缺乏这些组分;使富集料流部分或全部地通向精馏塔,以及使来自精馏塔的气相产物部分或全部地与缺乏料流混合。
17.权利要求16的方法,其中在料流分离后通过使其中的至少一股经过扩散器而压缩该料流。
18.权利要求16的方法,其中在膨胀前和/或膨胀后,从通过节流阀的混合物或其一部分中分离出液相,并且使在所述阀后获得的产物部分或全部地通向精馏塔。
19.权利要求16的方法,其中另外冷却来自精馏塔的气相产物。
20.权利要求18的方法,其中使来自精馏塔的至少部分气相产物与在节流阀后获得的部分产物一起通向膨胀前的混合物。
21.权利要求18的方法,其中分离自混合物的至少部分液相被用于另外冷却所述混合物或其一部分,并且通向膨胀前的混合物。
22.权利要求16的方法,其中在膨胀过程期间或者之后,从通过节流阀的混合物分离出液相,将在节流阀后获得的部分产物用于冷却混合物或其一部分,并且使其通向膨胀前的混合物。
23.权利要求16的方法,其中将混合物料流分成至少两部分,其一部分被泵送经过涡轮膨胀机的涡轮机,并且通向精馏塔,而另一部分在穿过喷嘴通道的打旋料流中膨胀,获得富集有比甲烷重的组分的料流部分,使所述富集料流通向精馏塔。
24.权利要求23的方法,其中使在膨胀过程期间获得的富集料流及穿过涡轮膨胀机的涡轮机的料流在喷射器中混合。
25.权利要求23的方法,其中将所述混合物料流分成至少三股料流,其一股料流通过控制质量流速的阀通向精馏塔,或者与来自精馏塔的气相中产物混合。
26.权利要求16或22的方法,其中在膨胀前或者膨胀后使混合物或其一部分通过涡轮膨胀机的涡轮机。
27.权利要求26的方法,其中在膨胀前在压缩机中另外压缩混合物。
28.权利要求16、22、24、25之一的方法,其中在与通向膨胀前的初始混合物的产物混合后,在压缩机中另外压缩所得混合物。
29.权利要求28的方法,其中冷却并膨胀来自精馏塔的气相产物,分离富集有比甲烷重的组分的部分产物,并将其部分或全部地通向精馏塔。
30.权利要求29的方法,其中在冷却前在压缩机中另外压缩来自精馏塔的气相产物。
31.权利要求30的方法,其中膨胀来自精馏塔的气相产物,获得富集有比甲烷重的组分的产物,将后者部分或全部地通向精馏塔,或者返回膨胀前的气相产物料流中。
32.权利要求31的方法,其中将在气相产物膨胀后获得的富集有比甲烷重的组分的部分产物返回膨胀前的初始混合物中。
33.权利要求19的方法,其中在膨胀前或膨胀后使混合物或其一部分通过涡轮膨胀机的涡轮机。
34.一种低温分离烃气体混合物的方法,其包括冷却混合物、不用做机械功地膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相产物,其中混合物的膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋、在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流则缺乏这些组分;使富集料流部分或全部地通向膨胀前的混合物,以及使来自精馏塔的气相产物部分或全部地与缺乏料流混合。
35.权利要求34的方法,其中在料流分离后通过使其中的至少一股经过扩散器而压缩该料流。
36.权利要求34的方法,其中在膨胀前或膨胀后,从通过节流阀的混合物或其一部分中分离出液相,并且使在所述阀后获得的产物部分或全部地通向精馏塔。
37.权利要求34的方法,其中另外冷却来自精馏塔的气相产物。
38.权利要求36的方法,其中使来自精馏塔的至少部分气相产物与在节流阀后获得的部分产物一起通向膨胀前的混合物。
39.权利要求36的方法,其中分离自混合物的至少部分液相被用于另外冷却所述混合物或其一部分,并且通向膨胀前的混合物。
40.权利要求34的方法,其中在冷却过程期间或者之后,从通过节流阀的混合物中分离出液相,将在节流阀后获得的部分产物用于冷却混合物,并且通向膨胀前的混合物。
41.权利要求34或40的方法,其中在膨胀前或者膨胀后,使混合物或其一部分通过涡轮膨胀机的涡轮机。
42.权利要求41的方法,其中在膨胀前在压缩机中另外压缩混合物。
43.权利要求34或40的方法,其中在与通向膨胀前的初始混合物的产物混合后,在压缩机中另外压缩所得混合物。
44.权利要求43的方法,其中冷却并且膨胀来自精馏塔的气相产物,分离富集有比甲烷重的组分的部分产物,并将其部分或全部地通向精馏塔。
45.权利要求43的方法,其中在冷却前在压缩机中另外压缩来自精馏塔的气相产物。
46.权利要求45的方法,其中膨胀来自精馏塔的气相产物,获得富集有比甲烷重的组分的产物,将后者部分或全部地通向精馏塔,或者返回膨胀前的气相产物料流中。
47.权利要求46的方法,其中将在气相产物膨胀后获得的富集有比甲烷重的组分的部分产物返回膨胀前的初始混合物中。
48.权利要求37的方法,其中在膨胀前或膨胀后使混合物或其一部分通过涡轮膨胀机的涡轮机。
49.一种低温分离烃气体混合物的方法,其包括冷却混合物、不用做机械功地膨胀混合物或其一部分、在其膨胀期间部分冷凝混合物、在精馏塔中分离混合物或其一部分来获得液相和气相产物,其中混合物的膨胀过程通过以下步骤实现使混合物穿过喷嘴通道,从而在喷嘴通道中和/或在喷嘴通道入口使混合物料流打旋、在喷嘴通道或其一部分的出口使混合物料流分成至少两股料流,一股料流富集比甲烷重的组分,而另一股料流则缺乏这些组分;使富集料流和来自精馏塔的气相产物部分或全部地通向膨胀前的混合物。
50.权利要求49的方法,其中在料流分离后通过使其中的至少一股经过扩散器而压缩该料流。
51.权利要求49的方法,其中在膨胀前使所述混合物或其一部分在喷射器中与来自精馏塔的气相产物混合。
52.权利要求49的方法,其中在膨胀前和/或膨胀后,从通过节流阀的混合物或其一部分中分离出液相,并且使在所述阀后获得的产物部分或全部地通向精馏塔。
53.权利要求49的方法,其中另外冷却来自精馏塔的气相产物。
54.权利要求49的方法,其中使来自精馏塔的至少部分气相产物与在节流阀后获得的部分产物一起在节流前通向混合物。
55.权利要求52的方法,其中分离自混合物的至少部分液相被用于另外冷却所述混合物或其一部分,并且通向膨胀前的混合物。
56.权利要求49的方法,其中在膨胀前或膨胀后,从通过节流阀的混合物中分离出液相,并且将在节流阀后获得的产物用于冷却混合物或其一部分。
57.权利要求49或56的方法,其中在膨胀前或膨胀后,使混合物或其一部分通过涡轮膨胀机的涡轮机。
58.权利要求56的方法,其中在膨胀前在压缩机中另外压缩混合物。
59.权利要求49或56的方法,其中在与通向膨胀前的初始混合物的产物混合后,在压缩机中另外压缩所得混合物。
60.权利要求59的方法,其中冷却并且膨胀来自精馏塔的气相产物,分离富集有比甲烷重的组分的部分产物,并将其部分或全部地通向精馏塔。
61.权利要求60的方法,其中在冷却前在压缩机中另外压缩来自精馏塔的气相产物。
62.权利要求61的方法,其中膨胀来自精馏塔的气相产物,获得富集有比甲烷重的组分的产物,将所述产物部分或全部地通向精馏塔,或者返回膨胀前的气相产物料流中。
63.权利要求62的方法,其中将在气相产物膨胀后获得的富集有比甲烷重的组分的部分产物返回膨胀前的初始混合物中。
64.权利要求53的方法,其中在膨胀前或膨胀后,使混合物或其一部分通过涡轮膨胀机的涡轮机。
全文摘要
本发明涉及天然气加工的方法和装置,即低温分离气体组分(LTS)的方法。
文档编号B01D5/00GK101069055SQ200580040268
公开日2007年11月7日 申请日期2005年9月23日 优先权日2004年9月24日
发明者V·I·阿尔费罗夫, L·A·巴吉罗夫, V·I·费金, S·Z·伊迈夫, L·M·德米特里耶夫 申请人:特兰斯朗科技有限公司