在scr中具有改进的nox还原效果的沸石催化剂的制作方法

文档序号:5021939阅读:198来源:国知局

专利名称::在scr中具有改进的nox还原效果的沸石催化剂的制作方法在SCR中具有改进的NOX还原效果的沸石催化剂相关申请的交叉引用本申请要求2005年12月14日提交的名为"ZeoliteCatalystWithImprovedNOxReductionInSCR"的美国临时申请No.60/750,261的优先权。发明背景1.发明领域本发明涉及一种使用沸石催化剂,尤其是金属促进的沸石催化剂,用氨催化氮氧化物还原,尤其是在氧存在下用氨催化氮氧化物选择性还原的方法。本发明还涉及水热稳定的沸石催化剂及其制造方法。2.相关技术许多年来,例如来自内燃机(例如汽车和卡车)、来自燃烧装置(例如天然气、油或煤加热的发电站)和来自硝酸生产厂的废气中所含的氮氧化物(NOx)的有害组分已经造成大气污染,并因此已经研究了各种减少来自这类废气的氮氧化物的方法。已经使用各种方法处理含NOx的气体混合物。一种处理类型涉及氮氧化物的催化还原。作为通过催化还原从烟道气中除去氮氧化物的典型方法,可以提到两种方法(l)非选择性还原法,其中使用一氧化碳、氢气或低级烃作为还原剂,和(2)选择性还原法,其中使用氨作为还原剂。在后一方法(用氨的选择性还原法)中,可以用少量还原剂实现氮氧化物的高度去除。因此,这种方法获得大量关注并已经提出几种变动形式。选择性还原法(2)被称作SCR法(选择性催化还原)。SCR法在大气氧存在下用氨催化还原氮氧化物,主要形成氮气和水蒸气<formula>formulaseeoriginaldocumentpage5</formula>迄今已经提出的用氨作为还原剂催化还原氮氧化物的方法可以大致分成两类(l)使用其中活性成分是贵金属,如铂或钯的催化剂的方法和(2)使用其中活性成分是贱金属的化合物,特别是非贵过渡金属,如铜、铁、钒、铬和钼的化合物的催化剂的方法。这些催化剂的活性成分通常负载在氧化铝上。贵金属催化剂较不理想,因为(l)活性的温度范围非常窄并在高温下受到NH3氧化成NOx的限制,和(2)因为具有形成大量N20的趋势。另一方面,贱金属催化剂在低温下对氮氧化物催化还原的活性较低。因此,要求升高反应温度和降低空速。在现代柴油机应用中,要处理的废气量大且废气温度一般较低。因此,需要开发可以在低温和高空速反应条件下使用的高活性催化剂。因此本领域表明,已经认识到采用金属促进的沸石催化剂,尤其包括铁促进和铜促进的沸石催化剂用于用氨选择性催化还原氮氧化物。需要制备提供改进的水热耐久性的材料,其中要求这些催化剂在800'C的温度下在水蒸气存在下稳定。800'C水热稳定性是对在烟炱过滤器存在下用在柴油机废气中的SCR催化剂唯一的要求,其中高温暴露是烟炱再生循环的一部分。当高硅沸石材料暴露在高温水热条件下时更耐脱铝。此外,含钠的沸石在高温下促进脱铝,因此与高硅沸石相关的低钠含量提供了更大的水热耐久性但具有较低的离子交换容量,这取决于沸石的煅烧史。通常,这类高硅材料具有较低的金属载量和较低的活性。此外,高硅材料已经证明在与高含量的所需金属交换方面更成问题。与铜交换的沸石Y是已用于此领域的材料,尽管这种材料过去由于沸石骨架的脱铝以及铜迁移而具有差的水热耐久性问题。一些美国专利和大量非专利文献涉及Cu沸石的形成及其在SCR中的用途。美国专利的实例包括U.S.4,748,012,其教导了一种通过使含氮氧化物的废气与耐热表面结构接触以通过用氮催化还原来降低燃烧装置废气中的氮氧化物含量的方法,该耐热表面结构用一种或多种八面沸石类结晶铝硅酸盐沸石、作为粘合剂的硅溶胶和/或硅酸盐,和铜化合物的混合物涂布至0.1至2毫米厚度,并且催化还原在大约100至大约250X:的温度范围内进行。美国专利No.4,052,337描述了使用不同的沸石型催化剂,特別是沸石Y用于用NHb还原NOx。这种催化剂预计在相对高温下使用以还原含^L的氮氧化物,其只有通过进行沸石与碱土离子的预先交换然后用金属离子,特别是铜离子浸渍的方法制备时才有效。美国专利No.5,536,483列举了一种通过使包含NOx的氧化的流出物与催化有效量的下述组合物接触来处理该流出物以还原其中所含的氮氧化物的方法,该组合物包含70至卯%比表面积为750至950平米/克的与铜离子交换的NHU沸石Y催化剂,其中铜含量相对于沸石重量为2至12%;和10至30%粘合剂;其中用于制造沸石催化组合物的沸石材料包含超笼型沸石,其含有直径大约13埃的空腔,这些通过构成沸石晶格孔隙的直径大约8-9埃的开孔彼此连通。通常而言,尽管沸石催化剂和具体而言的Cu-沸石已用于NOx的选择性催化还原,仍然需要提供具有改进的高温("OO'C)水热耐久性,特别是用于具有烟炱过滤器的柴油机应用的这类材料。需要将充分的铜载量所提供的活性且同时提供高硅沸石稳定性与允许交换这类沸石的有效方法结合起来。发明概述本发明提供了具有改进的用NH3选择性还原NOx的新型金属促进沸石催化剂的合成。该金属促进的沸石提供了良好的性能并且水热稳定,从而保持高活性。该新型金属促进沸石由低钠沸石形成并在金属离子交换后被水热处理。尽管不希望受到任何改进理论的限制,但我们相信在酸性条件下的金属交换和水热处理改进了沸石的催化性能。附图简述图1-是两种具有不同钠含量的铜沸石Y催化剂的比较。图2-是两种具有不同量的在沸石孔隙中的铝的铜沸石Y催化剂的比较。发明详述本发明涉及一种用于氮氧化物还原的方法,其中所用的催化剂和制备该催化剂的方法。更特别地,本发明涉及通过选择性催化还原来还原并由此从含氮氧化物的发动机废气或烟道气中除去氮氧化物的催化剂。本发明进一步涉及用于还原发动机废气或烟道气中的氮氧化物的催化剂及其制造方法,该催化剂包含交换到结晶铝硅酸盐载体,如沸石上的金属离子。合成结晶铝硅酸盐,例如沸石Y与含金属离子,例如铜的介质在酸性条件下接触以使合成结晶铝硅酸盐中的钠、氢和/或铵阳离子与金属进行离子交换。可以通过湿离子交换、固态交换、浸渍或沉淀将金属引入沸石。在一个实施方案中,在金属离子交换后,一些或所有金属可以作为金属氧化物存在。随后水热处理金属交换的合成结晶铝硅酸盐。已经发现,由此制成的金属-沸石与未水热处理的催化剂相比意外地具有改进的SCR活性以及改进的水热稳定性以保持并甚至提高活性。在一个实施方案中,本发明的水热处理的金属交换沸石催化剂与未通过本发明的水热处理法处理的催化剂相比,对NOx的还原具有改进的低温活性。特别地,该催化剂与未经本文公开的水热处理法处理的金属交换沸石相比,具有改进的NOx低温还原活性。本文所用的"低温"是指等于或低于大约350'C的温度。还例举了在低于大约300X:、低于大约250'C、低于大约200'C和低于大约150'C的温度下的改进的NOx还原活性。在另一实施方案中,本发明的水热处理的金属交换沸石催化剂可以在等于或低于大约250'C的温度下催化废气或烟道气流中多于50%的污染性NOx气体的转化。在又一实施方案中,本发明的水热处理的金属交换沸石催化剂可以在等于或低于大约300'C的温度下催化废气或烟道气流中多于80%的污染性NOx气体的转化。尤其优选的结晶铝硅酸盐是孔径大约3-14埃并具有大约2-150的Si(VAl2-03摩尔比的那些。例如,孔径大约7.4-9埃且Si02/Ah-03摩尔比为大约2-80和4-30的合成八面沸石,沸石Y是优选的。立方八面淬石(FAU)、六边形八面沸石EMT、立方八面沸石(FAU)与六边形八面沸石(EMT)的共生体类型的沸石也适用于本发明。此外,其它沸石材料,包括但不限于超稳定Y、ZSM-3、ZSM-20、CSZ-1、ECR-30、LZ-210、沸石L、镁碱沸石、MCM-22和钾沸石也适用于本发明。根据本发明,沸石首先通过金属离子交换用金属促进。一般而言,可以使用任何已知金属。例如,本发明的沸石可以与选自由钒(V)、铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)和铈(Ce)组成的组的金属离子进行离子交换。在一个实施方案中,沸石Y和铜的使用是优选的。但是,本领域技术人员会认识到,可以使用上述其它金属离子和其它沸石代替铜和沸石Y。本发明的氮氧化物还原催化剂的第一特征在于,可以处理结晶铝硅酸盐以减少沸石中碱金属的量,从而增强与金属,例如铜的进一步离子交换。由此,首先,形成的沸石可以通过本领域公知的方法酸处理或在铵阳离子交换下处理以降低沸石中的钠含量。具体而言,在酸或铵交换过程中将结晶铝硅酸盐中的碱金属,即钠减至通常低于5重量%。所有钠含量以金属氧化物为基础报告。结晶铝硅酸盐沸石中低于3重量%的钠含量可用于提高随后与金属离子,例如铜离子的阳离子交换。在一个实施方案中,可优选大于0.4重量%的钠含量。在另一实施方案中,低于0.4重量%的钠含量对于催化剂的高温耐久性(〉700。C)可以优选。用于将铜加栽到沸石中的离子交换可以通过使沸石与含铜离子的水溶液接触来实现。一般而言,可以使用任何铜盐提供铜离子,包括硝酸铜、乙酸铜、硫酸铜等。交换溶液的pH值控制被认为有益于在制成的催化剂中的改进的活性和稳定性。太酸性的pH值(〈2.5)会造成沸石骨架的显著脱铝,而太高的pH值^5)限制了Cu2+阳离子的溶解度。通过使用低钠沸石并调节交换溶液中的沸石固含量,可以控制溶液pH值。如果沸石的钠含量升高,可能需要添加酸来降低pH值。通过调节交换溶液中的沸石固体浓度,可以容易地实现低于5.0的pH值。还例举了大约2.0至大约3.5,大约2.5至大约3.5,和大约3.0至大约3.5的交换溶液pH值。在离子交换中,将具有所需低钠含量的铝硅酸盐浸在含铜盐的搅拌水溶液中。沸石与交换溶液的接触通常保持大约0.5至2小时。选择水溶液中的铜阳离子浓度、接触时间和用于离子交换的铝硅酸盐的量以使沸石上的铜载量为至少1.0重量%。还例举了基于阳离子交换的沸石重量为大于3.5重量%,大约4.0至大约14.0重量%,和大约4.0至大约6.0重量%的铜载量。所有铜载量表示为基于无挥发物的金属氧化物的重量%。铜交换可以在一个步骤或多个步骤中进行,其中沸石在溶液中交换、洗涤、干燥并在含铜的交换溶液中再制浆。在另一实施方案中,可以在金属离子交换之间进行一次或多次煅烧以改进离子交换效率。例如,在金属交换后,可以将沸石在大约300-800X:煅烧1至20小时,然后进行后继或二次金属离子交换步骤。此外,钠被认为是可移动的阳离子并会在水热处理过程中不利地增强脱铝。从沸石骨架中显著除去铝位点会不利地降低其中的铜载量,从而损失结构完整性和SCR活性。然而,低钠含量是重要的,因为其可以提高沸石的热稳定性。本发明是独特的,因为其允许相对较高的骨架铝含量、低钠含量、高交换容量和高水热稳定性。相应地,铜交换后的钠含量通常应该低于3.0重量%(以钠计)。还例举了低于2.4重量%,低于1.0重量%和低于0.4重量%的钠含量。所有钠含量均表示为基于无挥发物的Na20重量0/。。钠的最少化造成在老化过程中较低的脱铝水平,因此使得由催化剂老化引起的去活化最小化。洗涤与铜离子进行了离子交换的铝硅酸盐以除去未交换到沸石中的过量铜离子,然后在低于IOO'C的低温下干燥。在干燥后,将Cu-淬石在空气中在大约300-850。C,优选大约350-600。C下煅烧1至20小时。重要地,在煅烧后,水热处理Cu-沸石,例如Cu-Y。水热处理经证实造成铝与所结合的铜移向沸石表面。这种向沸石表面的迁移可能解释了催化剂甚至在SCR水热条件下的持续活性。蒸汽处理的温度为至少540。C,例如大约540'C至大约1000。C和700-800。C的温度范围。空气中通常的水蒸气浓度可以为大约1%至大约100%,通常大约5%至大约50%水蒸气,还例如10。/。水蒸气,余量为空气。在另一实施方案中,水热处理包括至少大约10%水蒸气、至少大约15%水蒸气、至少大约20%水蒸气、或至少大约25%水蒸气。蒸汽处理优选在大气压下进行。水热处理的持续时间通常为大约5分钟至大约250小时。还例如在上述条件下的水热处理的持续时间为i至少l小时,大于2小时,大于5小时和大于10小时。还例如大约l小时至大约50小时,大约2小时至大约20小时和大约2小时至大约10小时的水热处理。已经发现,本发明的水热处理导致制成或形成非骨架铝和该非骨架铝在沸石晶体结构内的迁移。非骨架铝是指不是四面体沸石骨架的组成部分的铝(即其是非骨架的)。非骨架铝可留在沸石孔隙内或留在沸石晶体外表面上。本文所用的沸石晶体"外表面"是指在晶体外表面的20至100纳米内。非骨架铝据说堵塞沸石的微孔并遮蔽活性金属位点。因此,本发明的重要发现是,当根据本发明水热处理金属交换沸石时,所形成的非骨架铝从沸石孔隙移向沸石外表面。在一个实施方案中,大部分非骨架铝从孔隙中除去。本文所用的从孔隙中除去"大部分"是指大于65。/。的总铝量被从沸石孔隙中除去。在另一实施方案中,非骨架铝总量中少于7.5重量%留在孔隙内。在又一实施方案中,总铝量中少于35。/。留在沸石孔隙内。此外,已经发现,本发明的金属促进沸石的煅烧有助于促进非骨架铝移向沸石晶体外表面。除了非骨架铝迁移外,也可看到离子交换金属的迁移。在一个实施方案中,以金属氧化物表示并基于金属交换沸石总重量,沸石外表面上的金属(例如铜)载量可以为大约1重量%至大约10.0重量%。还例举了以金属氧化物表示大约1重量%至大约5重量%的在外表面上的金属载量。可以结合几种技术评估沸石中的铝位置。由x-射线衍射获得的晶胞数据可用于确定作为沸石骨架一部分的铝的量。在将此信息与本体(bulk)化学分析结合时,则可以计算非骨架铝的量。参见例如实施例6的表1。可以增加反映非骨架铝从沸石孔隙移除到外表面上的表面敏感技术来差示非骨架铝的位置。可以通过x-射线光电子能语法(XPS)研究脱铝Y沸石的表面组成以评测表面铝的增加。尽管XPS通常可以看出所研究材料的本体组成,其可用于追踪与骨架铝含量相比由于铝从沸石孔隙中迁移而引起的铝的表面富集。因此,表面上的任何净变化可以用来定量仍留在孔隙内的非骨架铝的量。在脱铝法造成表面富集时可以使用该技术,但不能用于从沸石中完全除去非骨架铝的方法。这种情况的实例是通过溶解非骨架铝而进行的铝的酸萃取。在这种情况下,用化学分析比较晶胞可足以测定留在孔隙内的非骨架铝的最大量。与非骨架铝从孔隙移除到外表面相关的另一特征是介孔性。合成的沸石具有微孔结构,这是其沸石结构的特征。例如,沸石Y具有12元环微孔,其直径为约0.74納米。可以经由将铝从骨架和微孔中萃出并最终经结构坍塌造成介孔性的不同处理在沸石材料中引入介孔。介孔材料是含有直径为2至50纳米且孔体积为至少0.07立方厘米/克的孔隙(在本文中称作介孑L)的材料。还例举大约0.07立方厘米/克至大约0.22立方厘米/克的介孔体积。从沸石晶格中萃出的铝造成骨架最终部分坍塌,由此非骨架铝更容易移向外表面。在另一实施方案中,可以在金属离子交换之前处理沸石以使沸石脱铝。一般而言,可以使用任何已知的脱铝方法。例如,沸石可以通过已知的酸脱铝法,如化学脱铝,如用(NH4)2SiF6处理脱铝,蒸汽脱铝或通过用络合剂如乙二胺四乙酸(EDTA)萃取非骨架铝来脱铝。这些处理还可以导致产生可能堵塞孔隙并从而堵塞沸石的金属活性位点的非骨架铝。本发明的结晶铝硅酸盐可以与大约1-30重量%的至少另一耐火材料,即无机氧化物,例如氧化铝、氧化镁、二氧化钛、氧化锆、二氧化铪、二氧化硅或硅藻土结合。在模制催化剂产品的制备中,可以以合适的量,如大约2-40重量%添加粘合剂,如氧化铝或珪溶胶。Cu-沸石可以通过本领域已知的方法沉积或涂布到基底上,例如固体整体式栽体上并用于处理含NOx的废气流。通常最方便的是作为薄膜或沉积在为催化剂提供结构支承的惰性载体材料上的涂层应用Cu-沸石。惰性载体材料可以是任何耐火材料,例如陶瓷或金属材料。或者,如本领域中已知的那样,催化剂可以以位于流通型滤罐中的丸片或珠粒形式供应以提供催化剂床,废气流经该催化剂床。为了在废气中所含的氮氧化物的还原中使用本发明的催化剂,丸片或珠粒可以采用任何形状,例如具有大接触表面(其中气体流动容易)的圆柱形、球形或拉西环形。在另外的实施方案中,催化剂可以被挤出或另外制成整体形式并置于废气流中。用于SCR的催化剂的量可以根据包括废气的具体组成、具体的沸石和粘合剂组合和浓度、含NOx的料流的条件等的因素变化。通常,Cu-沸石催化剂组合物以具有5至50,优选10至40重量%固体的水淤浆形式用于涂布整体料,例如蜂窝体。所得整体料优选用该催化剂组合物涂布并优选具有以沸石催化剂化合物的量为基础0.3至5.0克/立方英寸,优选1.5至3.0克/立方英寸的涂料。本发明的催化剂在除去来自固定源如锅炉等和来自移动源如机动车,和特别是柴油机动力车辆的烟道气中的氮氧化物方面表现出显著效果。更特别地,可以通过将含氮氧化物、硫氧化物和氧气的发动机废气或烟道气化物。用氨还原氣氧化物包括如上述方程式(1)、(2)和(3)所示将氮转化成无害氮。因为特别优选的还原剂是氨,本发明的催化剂可以与任何分解成氨的还原剂,例如脲一起使用。作为还原剂添加到废气中的氨的量应该多于将氮氧化物还原成完全无害的氮所需的化学计量的大约0.7倍。在大部分氮氧化物是一氮氧化物(NO)的情况下,每摩尔氮氧化物需要大约l.O摩尔氨。理论上理想的是,在SCR法中以过量所需化学计量的量提供氨以使存在的氮氧化物完全反应,这既有利于驱动反应完成,又有助于克服氨在气态料流中的充分混合。但是,在实践中,通常不提供相对化学计量显著过量的氨,因为未反应的氨从催化剂中排出本身会造成空气污染问题。由于氨在气态料流中的不完全反应和/或差的混合,未反应氨的这种排出即使在氨仅以化学计量或低于化学计量存在的情况下也会发生。由于混合差,在气态料流中形成具有高氨浓度的通道,并在使用包含整体式蜂窝体型载体(包含具有许多贯穿其中的细的平行气体流路的耐火体)的催化剂时特别成问题,因为与使用微粒催化剂床的情况不同,在通道之间没有气体混合的机会。因此,同样理想地,用于催化氮氧化物选择性催化还原的催化剂有效地催化氧和氨的反应,以将过量或未反应的氨氧化成N2和H20。一般而言,使一定量的含氮氧化物的废气和还原剂的气态混合物与例如作为固定床或被覆整体料的催化剂在包括大约150X:至6S0。C,优选大约250'C至500'C的温度和大约2,000-100,000V/H/V,优选大约10,000-60,000和更优选大约15,000至45,000V/H/V的气体空速的反应条件下接触。因此,与传统催化剂相比,当用在要求烟炱过滤器活性再生的排气系统中时,本的活性维持。本发明经由实施例进行说明。实施例1催化剂A.铜沸石Y的合成。铵形式的低钠Y(Na20<2.4重量%)如下用铜促进A.将507.3克沸石Y在搅拌下添加到2523.77克含有0.24重量%Cu(0.04MCu)的五水合硫酸铜(II)水溶液中以使固体悬浮并将团块分散在4升Pyrex烧杯中。B.在连续搅拌下,将步骤A的浆料加热至80'Cl小时,然后冷却。不调节溶液pH值,但在整个反应中为2.75至3.5。C.将步骤B的冷却浆料真空过滤以从液体中分离出固体,将固体用与分离出的液体体积相等的去离子水洗涤。D.将步骤C的粉末在卯'C下在空气中干燥4小时以提供铜促进的沸石Y粉末(CuY)。E.将步骤D的CuY在与步骤A相同的铜溶液中再制浆(在连续搅拌下),然后再进行步骤B至D总共5次交换。在各个反应中,每次交换的pH值为2.75至3.5。F.在最终交换后,将粉末在卯。C下在空气中干燥16小时以提供铜促进的沸石Y粉末(CuY)。G.然后将步骤F的CuY在640X:下煅烧16小时。化学分析表明CuY粉末含有4.89重量。/。Cu(以基于无挥发物的金属氧化物表示)和0.41重量%Na20。H.煅烧的CuY随后在800'C下用在空气中的10%水蒸气和指定的催化剂A水热处理50小时。实施例2催化剂B.铜沸石Y的合成。铵形式的低钠Y(Na2O<0.2重量%)如下用铜促进A.将4.375千克沸石Y在搅拌下添加到33.5千克含有1重量%Cu(0.16MCu)的五水合硫酸铜(II)水溶液中以使固体悬浮并将团块分散在4升Pyrex烧杯中。B.在连续搅拌下,将步骤A的浆料加热至80'Cl小时,然后冷却。不调节溶液pH值,但在整个反应中为3至4。C.将步骤B的冷却浆料真空过滤以从液体中分离出固体,将固体用与分离出的液体相等体积的去离子水洗涤。D.将步骤C的粉末在卯'C下在空气中干燥4小时以提供铜促进的沸石Y粉末(CuY)。E.将步骤D的CuY在与步骤A相同的铜溶液中再制浆(在连续搅拌下),然后再进行步骤B至D总共2次交换,各1小时。在整个反应中,每次交换的pH值为3至4。F.在最终交换后,将粉末在卯t:下在空气中干燥16小时以提供铜促进的沸石Y粉末(CuY)。G.然后将步骤F的CuY在640'C下煅烧16小时。化学分析表明CuY粉末含有4.75重量。/cCu(以基于无挥发物的金属氧化物表示)和0.1重量%Na20。H.煅烧的CuY随后在80(TC下用在空气中的10%水蒸气和指定的催化剂B水热处理50小时。实施例3使用实施例1和2的铜沸石催化剂以大约2-2.5克/立方英寸的量涂布蜂窝体。随后在实验室反应器中测试所述催化剂用于NOx的NH3SCR还原。进料气体含有500ppm以NO形式添加的NOx;500ppmNH3;5体积%水和在氮气中的10体积%02。以GHSV表示的空速为80,000h人图1显示了钠含量对铜沸石Y催化剂的水热稳定性的重要性,其中低钠含量导致水热老化后改进的NOx还原效率。这两种新鲜催化剂具有类似的铜载量(~4.8重量。/。CuO)和类似的非骨架铝含量,但钠含量不同。实施例4催化剂C.铜沸石Y的合成。铵形式的低钠Y(Na2O<0.2重量%)如下用铜促进A.将609.9克沸石Y在搅拌下添加到2531.7克含有0.3重量%Cu(0.05MCu)的五水合硫酸铜(II)水溶液中以使固体悬浮并将团块分散在4升Pyrex烧杯中。B.在连续搅拌下,将步骤A的浆料加热至80。Cl小时,然后冷却。不调节溶液pH值,但在整个反应中为2.75至3.5。C.将步骤B的冷却浆料真空过滤以从液体中分离出固体,将固体用与分离出的液体相等体积的去离子水洗涤。D.将步骤C的粉末在90。C下在空气中干燥4小时以提供铜促进的沸石Y粉末(CuY)。E.将步骤D的CuY在与步骤A相同的铜溶液中再制浆(在连续搅拌下),然后再进行步骤B至D总共5次交换,各1小时。在各个反应中,每次交换的pH值为2.75至3.5。F.在最终交换后,将粉末在90。C下在空气中干燥16小时以提供铜促进的沸石Y粉末(CuY)。G.然后将步骤F的CuY在640'C下煅烧16小时。化学分析表明CuY粉末含有4.4重量。/。Cu(以基于无挥发物的金属氧化物表示)和0.1重量%Na20。H.煅烧的CuY随后在800'C下用在空气中的10%水蒸气和指定的催化剂C水热处理50小时。实施例5催化剂D.铜沸石Y的合成。低钠Y(Na2O<0.2重量%)的铵形式如下用铜促进A.将12.6千克沸石Y在搅拌下添加到93.65千克含有1重量%Cu(0.16MCu)的五水合硫酸铜(II)水溶液中以使固体悬浮并将团块分散在150升反应器中。B.在连续搅拌下,将步骤A的浆料加热至80。Cl小时,然后冷却。不调节溶液pH值,但在整个反应中为3至3.5。C.将步骤B的冷却浆料通过压滤器过滤以从液体中分离出固体,将固体用与分离出的液体相等体积的去离子水洗涤。D.将步骤C的粉末在90。C下在空气中干燥4小时以提供铜促进的沸石Y粉末(CuY)。E.将步骤D的CnY在与步骤A相同的铜溶液中再制浆(在连续搅拌下),然后再进行步骤B至D总共2次交换。在各个反应中,二次交换的pH值为3至3.5。F.在最终交换后,将粉末在卯。C下在空气中干燥16小时以提供铜促进的沸石Y粉末(CuY)。G.然后将步骤F的CuY在64(TC下煅烧16小时。化学分析表明CuY粉末含有4.3重量。/。Cu(以基于无挥发物的金属氧化物表示)和0.1重量%Na20。H.煅烧的CuY随后在80(TC下用在空气中的10%水蒸气和指定的催化剂D水热处理50小时。实施例6使用实施例4和5的铜沸石催化剂以大约2-2.5克/立方英寸的量涂布蜂窝体。随后在实验室反应器中测试所述催化剂用于NO,的NH3SCR还原。进料气体含有500ppm以NO形式添加的NOx;500ppmNH3;5体积%水和在氮气中的10体积%02。以GHSV表示的空速为80,000h"。图2显示了从沸石孔隙中除去非骨架铝的重要性。在没有除去非骨架铝时,我们在水蒸气老化时看到催化剂去活化,而在从沸石孔隙中除去非骨架铝时,看到了催化性能改进。已经使用由实施例7和8产生的数据定量留在沸石孔隙内的不理想的非骨架铝含量。表l显示了x-射线衍射(XRD)和x-射线光电子能语(XPS)数据,其显示了对于非骨架铝就催化剂水热稳定性的限度。沸石Y具有Nas6Al56Siu40384的化学组成,其中所有铝都是沸石骨架的一部分。这提供了0.42的骨架Al/Si。使用"DeterminationofframeworkaluminumcontentinzeolitesX,Y,anddealuminatedYusingunitcellsize"(用晶胞确定沸石X、Y和脱铝Y中的骨架铝含量)GeorgeT.Kerr,Zm似m,1989,巻9,第350-351页(1989年7月)中公开的方法由晶胞计算所有其它NHU-材料的骨架铝含量,该文献在此参考引入,FAL=112.4*(晶胞-24.233),其中FAL是每晶胞的骨架铝。我们现在可以经由如下关系式计算多少Al/Si归于非骨架铝(EFA):EFA=(NaY的Al/Si晶胞值-所研究的材料的Ai/Si晶胞值)。由我们的低NaCuY产品上去活化的与改进的性能比较清楚看出,XPSAl/Si>0.5提供了具有改进的水热稳定性的材料。这种XPSAl/Si比率意味着小于65%的非骨架铝总量在孔隙内。该值也意味着<7.5重量%入1203是留在孔隙内的非骨架的。因此,可以使用XPS描述经由使Al在沸石晶体表面上富集的方法,如目前公开的水热处理法制备的低钠CuY材料的属性。从沸石中完全除去EFA的方法不能使用XPS定量测定留在沸石微孔内的非骨架铝。因此,这些材料通过晶胞数据与化学分析结合表征。如表l中我们的XPS实施例所列出的<7.5重量%的EFA的量对于提高的稳定性和因此在水蒸气老化中改进的性能可能是必要的。表1-显示了对于非骨架铝就催化剂水热稳定性的限度的x-射线衍射(XRD)和x-射线光电子能谱(XPS)数据<table>tableseeoriginaldocumentpage18</column></row><table>如果XPSAl/Si大于0.5,则多于65%的总铝量留在孔隙外,或少于7.5重量。/。EFA(Ah03)留在孔隙内。后一值可用作在没有表面富集的情况下从沸石中除去EFA的任何处理的最大限度(即少于7.5重量%EFA(A1203))。实施例7沸石Y的水热预处理。低钠Y(Na2O<0.2重量%)水热脱铝以从微孔中除去非骨架铝。该方法制成XPSAl/Si=0.58且EFA计算值为5重量%入1203的样品。A.将2千克低钠沸石Y在760X:下在40o/。水蒸气中蒸汽处理4小时。这在大的蒸汽立管反应器中进行。B.然后将冷却的样品从反应器中取回。实施例8沸石Y的酸浸预处理。低钠Y(Na2O<0.2重量%)酸浸脱铝以除去非骨架铝。在无挥发物的基础上,由化学分析确定的本体入1203为22.72重量%A1203。在无挥发物的基础上,24.53A的晶胞将骨架铝含量限定为14.8ff%Al203。该方法产生EFA计算值为2.08重量%入1203的样品,其低于通过XPS实施例确定的上限。A.将310克低钠Y添加到3.1升去离子水中。在持续搅拌下,将步骤A的浆料加热至80X:。B.添加浓盐酸以将pH值调节至2.5。通过添加盐酸,将pH值在2.5至2.8下保持l小时。C.将浆料真空过滤以从液体中分离出固体,将固体用与分离出的液体相等体积的去离子水洗涤。D.将步骤C的粉末在90'C下在空气中干燥4小时。E.将步骤D的粉末在与步骤A相同的去离子水中再制浆(在连续搅拌下),然后再进行步骤B至E。在整个反应中,将pH值控制为2.5至2.8。实施例9沸石Y的酸浸预处理。低钠Y(Na2O<0.2重量%)室温酸浸脱铝以除去非骨架铝。在无挥发物的基础上,由化学分析确定的本体A1203为22.72重量%八1203。在无挥发物的基础上,24.53A的晶胞将骨架铝含量限定为14.8重量%八1203。该方法产生EFA计算值为2.08重量%入1203的样品,其低于通过XPS实施例确定的上限。A.将310克低钠Y添加到3.1升去离子水中。B.在持续搅拌下,添加浓盐酸以将pH值调节至2.5。通过添加盐酸,将pH值在2.5至2.8下保持24小时。C.将浆料真空过滤以从液体中分离出固体,将固体用与分离出的液体相等体积的去离子水洗涤。D.将步骤C的粉末在9(TC下在空气中干燥4小时。E.将步骤D的粉末在与步骤A相同的去离子水中再制浆(在连续搅拌下),然后再进行步骤B至E。在整个反应中,将pH值控制为2.5至2.8。实施例7-9证实从沸石微孔中除去非骨架铝的方法。在实施例7中,非骨架铝从沸石晶体微孔中移除到外表面上。在实施例8和9中,非骨架铝物类以可溶形式从沸石中被完全除去。权利要求1.一种用于NOx选择性催化还原的新型金属促进的沸石催化剂的制备方法,所述催化剂合成包括下列步骤a.将所述金属离子交换到沸石中,b.随后用水热处理法处理所述金属交换的沸石,和c.其中所述催化剂与未通过步骤b处理的金属交换沸石催化剂相比在选择性催化还原中具有改进的NOx还原活性。2.权利要求l的方法,其中所述沸石选自由沸石Y、八面沸石、超稳定Y、ZSM-3、ZSM-20、CSZ隱1、ECR-30、LZ-210、沸石L、镁碱沸石、MCM-22和钾沸石组成的组,其中所述金属选自由钒、铬、锰、铁、钴、镍、铜和铈的金属离子组成的组。3.权利要求1的方法,其中所述金属离子交换在pH值为大约2.5至大约3.5的交换水溶液中进行。4.权利要求1的方法,其中将所述金属交换沸石在大约540。C至大约IOOO'C的温度下以大约5至大约100%的水蒸气浓度水热处理大约5分钟至大约250小时。5.—种通过权利要求l的方法形成的含铜的铝硅酸盐沸石催化剂。6.—种用于氮氧化物选择性还原的水热稳定的沸石催化剂,所述催化剂包含金属促进的沸石催化剂,其中所述金属促进的沸石已经过处理以形成非骨架铝且其中大部分所述非骨架铝被从沸石孔隙中除去。7.权利要求6的沸石催化剂,其中少于65重量%的总铝量留在沸石孔隙中。8.权利要求6的金属促进的沸石催化剂,其中所述沸石是沸石Y且所述金属是铜。9.权利要求6的金属促进的沸石催化剂,其中沸石含有直径为2至50纳米的介孔且所述介孔的孔体积为至少0.07立方厘米/克。10.—种用氨和氧通过选择性催化还原法还原废气或烟道气流中的NOx的方法,所述方法包括使所述废气或烟道气流与权利要求1或权利要求6的金属促进的沸石催化剂接触。全文摘要本发明涉及一种新型的金属促进沸石催化剂、制造该催化剂的方法和使用该催化剂用于具有改进的水热耐久性的NOx选择性催化还原的方法。该新型金属促进的沸石由低钠沸石形成并在金属离子交换后进行水热处理。文档编号B01J29/14GK101336129SQ200680051790公开日2008年12月31日申请日期2006年12月14日优先权日2005年12月14日发明者A·莫伊尼,G·S·克尔莫,I·布尔,J·A·帕特切特,S·罗斯,W·M·亚格洛斯基申请人:巴斯福催化剂公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1