一种聚合物微滤膜的制备方法

文档序号:5023018阅读:170来源:国知局

专利名称::一种聚合物微滤膜的制备方法
技术领域
:本发明涉及一种聚合物微滤膜的制备方法,特别是环氧树脂基微滤膜的制备方法。
背景技术
:微滤膜主要是从气相和液相中截留微粒、细菌以及其它污染物,以达到净化、分离、浓縮的目的。由于微滤膜分离技术高效、节能、环保、绝对过滤及过滤过程简单、易于控制等特征,己广泛应用于医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。目前,已商品化用于制备微滤膜的聚合物材料主要有聚砜类、纤维素酯类、含氟类、聚酰胺类、聚酯类、聚烯烃类等。制备聚合物微滤膜的方法,主要有烧结法、拉伸法、热致相分离法、核径迹刻蚀法和相转化法。烧结法主要用于精度较低的粗(预)过滤;拉伸法主要是结晶态聚合物,如聚丙烯、聚四氟乙烯膜的制备,拉伸设备投资大,膜的厚度、孔径分布不易控制;核径迹蚀刻法制得的膜如聚碳酸酯核径迹微滤膜孔径分布均匀,但孔为圆柱形毛细管,不贯通,孔隙率很低,很难大规模实用。目前应用最广泛的高分子微滤膜制备方法是相转化法。相转化法是以特定控制方式使聚合物从均相液态中沉淀转变为固态的过程。在沉淀过程中形成液膜的聚合物溶液分为两相,富聚合物的固相形成膜的骨架,富溶剂的液相形成膜孔。常用的相转化法根据制膜过程中溶剂与添加剂去除方法的不同,可分为四种,如溶剂蒸发凝胶法、浸入凝胶法、温差凝胶法和溶出法。但溶剂蒸发凝胶法制备的膜,其孔径大小、孔隙率、均匀性等受相转化过程分散相的液滴大小、数量、均匀程度影响,而这又受制于铸膜液的组成和制膜工艺如温度、湿度、环境气氛等。这些因素的控制非常困难,而且其波动将导致制膜的重复性不好,孔径分布变宽。浸入凝胶法制备的膜是非对称结构,且易产生微小的缺陷〔针孔〕,往往不能满足要求高的医药、食品等行业的绝对过滤要求。温差凝胶法只能用于在温度较高时能互溶的聚合物和增塑剂铸膜体系,适用的膜材料较少,且孔的大小、分布不易控制。溶出法制备的微滤膜通常孔隙率和孔径均匀性都较差。此外,在这些相转化成膜方法中,为了获得较好的孔结构,往往采用大量的溶剂和有机致孔剂复配。混合溶剂在聚合物成膜后难以回收,处理困难。除了制膜工艺的不足外,这些聚合物材料往往不能同时满足亲水性、耐化学溶剂性、耐温性等物化特性要求。随着应用领域的拓展,对微滤膜的材料及制备技术提出了更高的要求,如环境友好性要求,不使用有可能对环境及聚合物基体造成污染的添加剂,微孔结构的可控性等,要满足这些要求,必须开发新的聚合物微滤膜及其制备方法。
发明内容本发明所要解决的技术问题是针对现有
背景技术
而提供一种聚合物微滤膜的制备方法,它制备条件简单温和,孔径可调,可重复性好,绿色环保。本发明解决上述技术问题所采用的技术方案,其特征在于步骤为首先将环氧树脂与胺类如二乙烯三胺或三乙烯四胺以一定的重量比在聚乙二醇介质中完全溶解,得到澄清溶液,脱除气泡,之后将溶液浇铸或流延在金属或塑料带等支撑材料上,在35-85。C保温4小时以上,单体溶液粘度不断增大,发生聚合的同时产生相分离,凝胶固化成白色的环氧树脂基初生态膜,最后将初生态膜浸入水中,除去介质聚乙二醇,获得环氧树脂基微滤膜。制膜温度以45-60。C为优,温度低了,成膜缓慢,温度高了,膜的机械强度变差,甚至不能成膜。所述的微滤膜的制备原料为可聚合的单体,而不同于通常相转化制膜法中使用聚合物为制膜原料。所述制备方法获得的微滤膜,厚度在10-300微米,孔隙率在50-90%,平均孔径在微米至亚微米级,尤以膜厚度在100-120微米,孔隙率在75-88%,平均孔径在0.11.0微米为优。所述的制备方法获得的微滤膜,可以是自支撑,也可以用无纺布、涤纶布等材料进行增强。其孔结构为开放连通的海绵状网络结构,孔径大小和孔隙率可以通过聚乙二醇(PEG)的分子量、含量或聚乙二醇的复配等进行调控。聚乙二醇的分子量在400-2000之间较合适,如可选PEG400、PEG600、PEGIOOO、PEG2000,尤以PEG1000为优。聚乙二醇与环氧树脂的重量比在2.5:l6d范围。所述的制备方法获得的微滤膜,其孔径大小和孔隙率可以通过胺的种类及环氧树脂/胺的比例来调控。胺的选择以二乙烯三胺或三乙烯四胺为优。环氧树脂/胺的重量比在2.5:15:1为优。所述的微滤膜可广泛应用于仪器分析、水处理、生物医药等行业的分离和精密过滤。同时由于含有大量可反应的官能团,如羟基,适合对孔道进行多种化学修饰以功能化。如制备智能膜、重金属吸附去除分离膜、亲和膜、酶膜反应器、生物膜反应器、药物缓释膜、化学传感器用膜等。本发明的优点在于与现有相转化制备聚合物微滤膜制备技术不同,本发明的相转化过程伴随着聚合过程。与现有相转化制备聚合物微滤膜制备技术相比,优点在于-(1)铸膜溶液不是釆用聚合物溶液,而是单体溶液,因而针对应用的需要,易于对微滤膜材料的化学结构进行设计,选择不同的聚合单体,得到不同特性的微滤膜,避免聚合物微滤膜成膜后再化学改性反应影响膜的孔结构及物化特性。(2)制备条件温和、可控,成膜工艺简单,易规模化生产。相对于现有聚合物微滤膜制备工艺对成膜气氛、湿度、温度以及凝胶工艺条件需要的严格控制,本发明的微滤膜的制备条件温和,没有严格要求,操作方便,成型简单,有利于规模化生产需。(3)本发明的微滤膜孔径分布均匀,对称性结构,孔径可调,重复性好。与现有聚合物微滤膜制备的相分离相比,本发明中聚合反应推动相分离的这一特点,使得整个制备过程受外界因素影响极小,孔径大小及分布容易控制,而且对称性好。(4)本发明制备的微滤膜亲水性好的同时物化性能稳定。与现有聚合物微滤膜如聚砜类膜、纤维素酯类膜、聚偏氟乙烯膜、聚酰胺膜等微滤膜相比,本发明制备的微滤膜材料结构中的大量羟基使得膜的亲水性强,聚合后形成交联结构使得膜的化学兼容性好,具有优越的抗酸、碱及有机溶剂的特性,可用于有机溶剂过滤,并且可在12(TC高温灭菌处理而不破坏膜的结构。(5)使用的原料成本非常低,而且制备过程除添加聚乙二醇外,不使用其它有机溶剂,并且聚乙二醇可以回收利用,因而相对于传统相分离法微滤膜的制备过程大量使用有毒、易燃有机溶剂相比,膜的制备成本低而且绿色环保。(6)本发明的微滤膜可作为制备功能化、智能化膜的一个平台载体膜。本发明的微滤膜由于聚合物材料化学结构中存在大量可反应的官能团,如羟基,适合对孔道表面进行多种化学修饰以功能化。如制备智能膜、重金属吸附去除分离膜、亲和膜、酶膜反应器、生物膜反应器、药物缓释膜、化学传感器用膜等,可广泛应用于仪器分析、水处理、生物医药等行业。图l制备本发明的微滤膜过程中单体的聚合反应方程式示意图2本发明的微滤膜成孔过程与机理示意图;图3实施例18中形成的微滤膜结构的扫描电镜图。具体实施例方式以下实施例对本发明作进一步详细描述。实施例l6克环氧树脂与1.5克二乙烯三胺在15克聚乙二醇1000介质中溶解,得到澄清溶液,脱除气泡,之后将溶液浇铸在不锈钢板上,静置,在50°C保温5小时,初始溶液发生相分离,凝胶固化成白色的环氧树脂初生态膜,最后将初生态膜浸入水中,除去介质聚乙二醇,获得微滤膜。膜厚12(^m,平均孔径和水通量如表1所示。实施例2~5固定环氧树脂与二乙烯三胺的重量不变,改变聚乙二醇1000与环氧树脂重量比,其余条件及操作与实施例l相同,制得相应的微滤膜,平均孔径和水通量如表1所示。表l:<table>tableseeoriginaldocumentpage6</column></row><table>实施例6固定环氧树脂的重量为6克、聚乙二醇1000的重量为18克,改用三乙烯四胺,胺的重量为2克,其余条件及操作与实施例l相同,获得微滤膜,平均孔径和水通量如表2所示。实施例7~10固定环氧树脂与三乙烯四胺的重量不变,改变聚乙二醇1000与环氧树脂重量比,其余条件及操作与实施例6相同,制得相应的微滤膜,平均孔径和水通量如表2所示。表2:<table>tableseeoriginaldocumentpage7</column></row><table>实施例ll~13固定环氧树脂的重量为6克、聚乙二醇1000的重量为15克,环氧树脂:二乙烯三胺重量比分别为5:1、3:1、2.5:1,其余条件及操作与实施例1相同,制得相应的微滤膜,平均孔径和水通量如表3所示。表3:<table>tableseeoriginaldocumentpage7</column></row><table>从实施例1113及实施例1可以看出,改变环氧树脂和胺的比例就是调节交联密度。提高交联密度有利于微球的缔合与聚集,但不利于相分离的进行,导致孔径变小。实施例14~156克环氧树脂与1.5克二乙烯三胺在15克聚乙二醇1000介质中溶解,得到澄清溶液,脱除气泡,之后将溶液分别浇铸在无纺布及涤纶布上,其余条件同实施例l,制得相应的微滤膜,平均孔径和水通量如表4所示。实施例16~176克环氧树脂、18克聚乙二醇1000,2克三乙烯四胺,之后将溶液分别浇铸在无纺布及涤纶布上,其余条件同实施例6,制得相应的微滤膜,平均孔径和水通量如表4所示。表4:<table>tableseeoriginaldocumentpage8</column></row><table>从实施例1417及实施例1、实施例6可以看出,使用增强材料无纺布或涤纶布对制备的微滤膜的平均孔径及水通量影响较小。实施例18-216克环氧树脂与1.5克二乙烯三胺在18克聚乙二醇1000和聚乙二醇2000的混合介质中溶解,得到澄清溶液,脱除气泡,之后将溶液浇铸在不锈钢板上,静置,在55°C保温5小时,溶液发生相分离,凝胶固化成白色的环氧树脂初生态膜,将初生态膜浸入水中,除去聚乙二醇,获得微滤膜。平均孔径和水通量如表5所示。表5:<table>tableseeoriginaldocumentpage8</column></row><table>微滤膜的制备过程中,采用合适比例的聚乙二醇1000和聚乙二醇2000的混合介质,比单一使用聚乙二醇IOOO效果更佳,相分离过程的调控更为精细。得到的微滤膜是三维网络结构,不存在松散的球状堆积结构,膜的机械强度良好。本发明所釆用的各个参数计算式为(1)微孔膜过滤速率测定条件在压力0.1MPa下,过滤膜有效面积为9.0cm2。式中,Jw为水通量(过滤速率),ml/(cm2.min);F为液体透过总量,ml;^为膜的有效面积,cm2;t为过滤时间,min。(2)孔隙率微孔膜的孔隙率可由下式求得式中,Po为微孔膜的表观密度,g/,Pt为膜材料的真密度,g/cm3,f为孔隙率,即滤膜中微孔总体积与微孔膜体积的百分比。(3)平均孔径微孔膜的平均孔径可由下式求得-式中,4为膜的面积,cm2,L为膜厚度,m,2为流量,ml/s,P为压差,MPa,f为孔隙率。本发明的微滤膜制备方法中,相分离伴随着聚合反应过程进行。其聚合反应方程式如图1所示。与现有微滤膜相转化成孔机理相比,本发明的微滤膜成孔过程与机理如图2所示,其成孔机理同样是相分离机理,但伴随原位聚合反应过程。在一定温度下发生的聚合反应,生成的聚合物不溶于反应混合物,导致聚合物沉淀,发生相分离。介质聚乙二醇除了作为聚合反应的溶剂外,还可以推迟体系凝胶点的出现,使体系得以充分聚合并保持亲水/疏水平衡,而在甲醇介质体系中凝胶点为环氧树脂/二乙烯三胺=1.5:1,反应快,一部分胺还没有参与反应的情况下体系已经凝胶化。当聚合反应进行到一定程度时,溶剂转变成沉淀剂,迫使体系在聚合到一定程度后产生相分离现象,为膜的孔道结构形成提供了保证。相对致孔剂而言,单体是聚合物的良溶剂,因此在沉淀的聚合物(核)中,单体的浓度高于整个聚合体系,其反应速率加快,即核长大的速度加快。不同尺寸的核间发生交联就构成了初生态膜孔结构的骨架。图3是所制备的微滤膜的扫描电镜图(其中白色的部分为聚合物,黑色的部分为孔隙),可以看出该微滤膜是海绵状网络结构。致孔剂聚乙二醇的分子量、含量及组成对凝胶孔结构的影响可以用相分离机理解释,即致孔剂中所含聚合物的弱溶剂的量增大,相分离提前,易形成大孔,良溶剂的量增大,相分离滞后,不易形成大孔。通过调节聚乙二醇,可以使得膜的骨架结构从较为松散<formula>formulaseeoriginaldocumentpage9</formula>的球状堆积结构转变成机械强度好的三维网络结构。总之,微滤膜的孔径可通过改变聚乙二醇在体系中含量、环氧树脂/胺的比例、介质的分子量及混合介质组成和含量来控制及调节微滤膜的平均孔径及孔隙率。这在实施例中已经进一步阐述了。权利要求1.一种聚合物微滤膜的制备方法,其特征在于步骤为首先将环氧树脂与胺类如二乙烯三胺或三乙烯四胺以一定的重量比在聚乙二醇介质中完全溶解,得到澄清溶液,脱气泡,之后将溶液浇铸或流延在金属或塑料带支撑材料上,在35-85℃保温4小时以上,单体溶液粘度不断增大,发生聚合的同时产生相分离,凝胶固化成白色的环氧树脂基初生态膜,最后将初生态膜浸入水中,除去介质聚乙二醇,获得环氧树脂基微滤膜。2.根据权利要求l所述的制备方法,其特征在于所述的微滤膜厚度在10-300微米,孔隙率在50-90%,平均孔径在微米至亚微米级。3.根据权利要求2所述的制备方法,其特征在于所述的微滤膜厚度在100-120微米,孔隙率在75-88%,平均孔径在O.11.O微米。4.根据权利要求l所述的制备方法,其特征在于所述的微滤膜可以是自支撑,也可以用无纺布、涤纶布材料进行增强。5.根据权利要求l所述的制备方法,其特征在于所述的保温温度为45-60C。。6.根据权利要求l所述的制备方法,其特征在于所述的微滤膜孔径大小通过聚乙二醇的分子量、含量、不同聚乙二醇比例,以及胺的种类或环氧树脂与胺的比例来调控。7.根据权利要求6所述的制备方法,其特征在于所述的聚乙二醇PEG与环氧树脂的重量比在2.5:16:1。8.根据权利要求6所述的制备方法,其特征在于所述的胺选择为二乙烯三胺或三乙烯四胺,环氧树脂/胺的重量比在2.5:l5:l。9.根据权利要求6所述的制备方法,其特征在于所述的聚乙二醇的分子量在400-2000之间,以PEG1000及PEG2000为优。10.根据权利要求6所述的制备方法,其特征在于所述的聚乙二醇将PEG1000与PEG2000共混使用,聚乙二醇PEG1000和PEG2000对应质量比例5:19:1。全文摘要本发明涉及一种环氧树脂基微滤膜的制备方法。首先在一定温度下,将环氧树脂与胺类如二乙烯三胺或三乙烯四胺以一定的重量比在聚乙二醇介质中完全溶解,脱气泡,之后将溶液浇铸或流延在金属或塑料带等支撑材料上,保持合适温度。经过一定时间后,单体溶液发生聚合的同时产生相分离,凝胶固化成白色的环氧树脂基初生态膜,最后将初生态膜浸入水中,除去介质聚乙二醇,获得微滤膜。制备过程不需要添加其它有机溶剂,绿色环保。制备的微滤膜,机械强度好,孔径分布均匀、大小可调,亲水性强,耐酸耐碱耐溶剂,并且可在120℃高温灭菌处理而不破坏膜的结构,具有优良的特性。可广泛应用于仪器分析、水处理、生物医药等行业的分离、过滤。文档编号B01D71/00GK101274227SQ20071006782公开日2008年10月1日申请日期2007年3月28日优先权日2007年3月28日发明者肖通虎申请人:宁波大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1