废气净化催化剂的制作方法

文档序号:5053682阅读:202来源:国知局

专利名称::废气净化催化剂的制作方法
技术领域
:本发明涉及废气净化催化剂;特别是保持高水平的将煤燃烧废气中所含的元素汞(Hg)氧化的活性以及用氨还原该气体中所含的氮氧化物的活性并将该气体中所含的S02氧化成S03的活性抑制至极低水平的废气净化催化剂。本发明还涉及使用该催化剂的废气处理法和制造该催化剂的方法。
背景技术
:近年来,在美国和欧洲,对由例如发电站、各种类型的工厂和汽车排放的烟道气中所含Hg、Pb、F和其它痕量组分以及这类烟道气中所含的N0X、SOx等引起的健康问题的预防给予极大的关注。因此,政府现在正考虑强加限制以将这类组分的排放量降至极低水平。具体而言,如已知的那样,燃煤锅炉排放的汞大多以具有高蒸气压的金属汞形式释放到大气中,随后转化成有机汞化合物,并通常被鱼、贝类和类似有机体摄入,由此对人类健康产生有害影响。也如已经报道的那样,考虑到汞对发育中的嬰幼儿的神经系统造成严重损害,20%的美国嬰幼儿神经受损案例被怀疑由汞引起。如上所述,由于汞对人类而言高度有毒,在各种领域中已试图降低汞的排放量。这类尝试的一个典型已知实例是如下方法在脱NOx催化剂或其改进产物存在下使废气中所含的N0x被NH3还原,同时将高挥发性金属汞(元素汞Hg)氧化成汞化合物(例如氯化汞);随后借助在废气处理系统下游提供的电动集尘器或脱硫装置将由此氧化的汞化合物与燃烧灰烬或石青一起除去(专利文献1)。该方法使用含有二氧化钛和充当活性组分的金属(例如钒或鴒)的氧化物的催化剂。同时,在使用高硫含量煤(例如在美国东部生产的煤)作为燃料的锅炉排出的废气的NOx脱除情况下,高的S02氧化百分率可能导致位3于锅炉下游的空气预热器中沉淀的酸性硫酸铵的量增加,从而提高压力损失,或可能造成S03通过烟自排出,造成烟尘或二次污染。因此,近年来,特别需要实现低S02氧化百分率的脱N0x催化剂。一般而言,这类脱NOx催化剂含有少量的作为该催化剂的活性组分的钒。专利文献l:日本专利申请公开No.2005-125211
发明内容本发明要解决的问题在上述传统催化剂中,Hg氧化活性主要由氧化钒(其是活性组分)提供,因此可以通过提高钒含量(V含量)来增强氧化元素汞(Hg)的活性。但是,由于氧化钒不仅具有高Hg氧化活性,还具有S02氧化活性,V含量的提高促进S02氧化,且所得S03加剧烟尘污染。因此,面临Hg氧化活性与S02氧化活性之间的折衷的这种传统催化剂没有满足近来对脱NO,催化剂的要求;即实现高Hg氧化活性和低S02氧化活性。考虑到前述情况,本发明的目标是克服传统催化剂的折衷问题并提供符合关于Hg氧化活性和S02氧化活性的上述要求的废气净化催化剂;即在使Hg氧化百分率保持高水平的同时特别降低S02氧化百分率的废气净化催化剂。解决问题的手段为了实现上述目标;即在不损失作为活性组分的钒(V)化合物的Hg氧化活性的情况下降低S02氧化活性,本发明人已经进行了广泛的研究,并因此已经发现,当使氧化钒作用于特定量的磷化合物(例如磷酸或磷酸盐)时,获得下列合意特性(1)几乎防止Hg氧化活性的损失;(2)脱NOx活性降低,但保持在所需最低程度下;和(3)S02氧化活性基本降至0。基于这一发现实现了本发明。可以以另一方式阐述上述发现;即,通过使V化合物在磷酸或磷酸盐上反应而得的V-P化合物表现出(a)极低的S02氧化活性,(b)适中的脱NOx活性,和(c)极高的Hg氧化百分率。因此,如已经发现的那样,在使用含有这种V-P化合物的催化剂的情况下,当允许S024氧化百分率升至与上述传统催化剂相当的水平时,该V-P化合物催化剂的V含量可增加至传统催化剂的几倍,因此该V-P化合物催化剂实现与传统催化剂的情况下相当的NOx脱除百分率,和明显高于传统催化剂情况下的Hg氧化百分率。已基于上述发现实现的本发明提供了一种脱NOx催化剂,其实现低SO,氧化活性和高Hg氧化活性并包含含有金属氧化物的组合物,其中(i)Ti、(ii)Mo和/或W,和(iii)V的原子比例为85至97.5:2至10:0.5至10。在脱NOx催化剂中,调节添加到该组合物中的P化合物的量以满足上述特性(a)、(b)和(c);具体而言,在考虑P化合物相对于V化合物和相对于Mo或W化合物(即可以与磷酸或磷酸化合物反应的另一催化剂组分)的量的情况下添加P化合物(即磷酸或磷酸化合物),从而使P/(V和Mo和/或W的总量)的原子比落在特定范围(0.5至1.5)内。本文要求保护的发明如下。(1)包含含有(i)钛(Ti)、(ii)钼(Mo)和/或钨(W)、(ni)钒(V)和(iv)磷(P)的氧化物的组合物的废气净化催化剂,其中该催化剂含有原子比例为85至97.5:2至10:0.5至10的Ti、Mo和/或W、和V,并具有0.5至1.5的P/(V和Mo和/或W的总量)的原子比。(2)废气净化法,包括使含有氮氧化物(N0X)和金属汞(Hg)的废气在作为还原剂的氨存在下暴露于如上文(1)所述的催化剂,由此进行废气中所含的NOx的还原和废气中所含的金属汞(Hg)的氧化。(3)制造如(1)所述的催化剂的方法,包括将水添加到二氧化钛、钼酸和/或钨酸的可溶铵盐、可溶钒化合物和正磷酸或磷酸铵盐中;捏合所得混合物以产生糊料;将该糊料施加到金属栽体上;和煅烧该载体。(4)制造如(1)所述的催化剂的方法,包括将二氧化钛、式(NH3)3Mo2V3015所示的化合物和正磷酸或磷酸铵盐与水混合;捏合所得混合物以产生糊料;将该糊料施加到金属栽体上;和煅烧该载体。5(5)制造如(1)所迷的催化剂的方法,包括用二氧化钛、式(NH3)3Mo2V3015所示的化合物和正磷酸或磷酸铵盐的水性混合物浸渍含二氧化钛作为主要组分的催化剂载体。根据如(1)中所述的本发明,可以提供使Hg氧化百分率和N0X脱除百分率保持在高水平并降低S02氧化百分率的废气净化催化剂。根据如(2)中所述的本发明一其涉及使用如(1)中所述的催化剂的废气净化法,可以将金属汞高度氧化并防止其排放到该系统外部,且不会由于S02氧化产生的S03而造成问题(例如烟尘)。如(3)或(4)所述的本发明涉及如(1)中所述的催化剂的高度实用的制造方法,且如(5)中所述的本发明涉及另一通过浸渍技术制造本发明的催化剂的方法。发明效果用于废气净化处理的本发明的催化剂可以显著降低S02氧化活性,同时保持高的汞氧化活性和显著的NOx脱除活性。在实践中在催化剂装置中使用该催化剂的情况下,当允许S02氧化百分率升至传统水平时,可以增加其中所用的催化剂的量,因此所得催化剂装置表现出优异的性能;即极高的汞氧化性能和NOx脱除性能。即使当该催化剂以与传统用量相同的量使用时,由于该催化剂实现极低的SO,氧化百分率,可以提高催化剂的钒含量。因此,所得催化剂装置符合近来对脱NOx催化剂的要求;即可以解决传统催化剂的折衷问题以实现传统催化剂未能实现的低S02氧化百分率和高的汞氧化百分率。具体实施方式为了制造本发明的催化剂,要点是确定催化剂组分的组成比例以使Ti、Mo和/或W、和V的原子比例为85至97.5:2至10:0.5至10,且P/(V和Mo和/或W的总量)的原子比为0.5至1.5。P/(V和Mo和/或W的总量)的原子比特别重要。当该比率过低时,未充分获得添加P的效果,而当该比率过高时,催化剂组分可能被P化合物覆盖,导致不能实现高的初始性能。特别是当P/(V和Mo和/或W的总量)的原子比确定为1或其附近(0.7至1.2)时,容易获得更有利的效果。6盐,但在催化剂制备中,P化合物必须与Mo或W化合物和V化合物反应。因此,当各化合物的可溶盐(例如相应元素的含氧酸的铵盐)在二氧化钛和水存在下混合在一起时,容易获得有利效果。具体而言,优选地,将水添加到二氧化钛、钼酸和/或鴒酸的可溶铵盐、可溶钒化合物、和正磷酸或磷酸铵盐中;捏合所得混合物以产生糊料;将该糊料施加到基底材料上,然后煅烧该基底材料,由此荻得板状催化剂。当许多由此获得的板状催化剂通过已知方法堆叠然后经过模制以具有预定形状时,所得催化剂结构可用作催化剂装置,其在来自燃煤锅炉的废气的处理中造成较少堵塞。可以向含催化剂组分的糊料中加入增强剂(例如无机纤维)或微粒粘合剂(例如硅溶胶)。无须说,这种改进/变型落在本发明的范围内。当使用日本专利申请公开No.2000-308832中公开的式(NH3)3Mo2VA5所示的复合氧化物作为V-Mo化合物并与磷酸或磷酸铵混合时,可以制备稳定混合物(糊料)。可以通过将由此制成的糊料施加到催化剂载体上然后煅烧来制造本发明的催化剂。或者,可以通过用如上制成的混合物浸渍二氧化钛(Ti02)载体来制造本发明的催化剂。实施例接着通过实施例详细描述本发明。实施例1将二氧化钬(比表面积290平方米/克,IshiharaSangyoK.K.的产品)(900克)、钼酸铵(107克)、偏钒酸铵(28.3克)、85%磷酸(68.3克)、珪溶胶(商品名OSSol,NissanChemicalIndustries,Ltd.的产品)(404克)和水(50克)置于捏合机中,然后捏合60分钟。此后,在将二氧化珪-氧化铝陶资纤维(ToshibaFineFlexK.K.的产品)(151克)逐渐添加到该混合物中的同时,将该混合物捏合30分钟,由此产生水含量为27%的催化剂糊料。将该糊料施加到通过对SUS430不锈钢板(厚度0.2毫米)施以金属板条加工而制成的基底材料(厚度G.7毫米)上;将该基底材料夹在两个聚乙烯板之间;并使由此夹合成的基底材料通过一对压紧辊以使金属板条的网孔被糊料填充。将糊料填充的基底材料风干,然后在50(TC下煅烧2小时,由此获得本发明的催化剂。实测该催化剂具有93/5/2的Ti/Mo/V(原子比例)和0.5的P/(Mo+V)(原子比)。实施例2重复实施例l的程序,只是将钼酸铵换成等摩尔的偏鴒酸铵,由此获得本发明的催化剂。实测该催化剂具有93/5/2的Ti/W/V(原子比例)和0.5的P/(Mo+V)(原子比)。对比例1和2重复实施例1或2的程序,只是不加入砩酸,由此制备催化剂。实施例3至7将二氧化钬(比表面积290平方米/克,IshiharaSangyoK.K.的产品)(900克)、钼酸铵U07克)、偏钒酸铵(28.3克)、85%磷酸(分别为88克、123克、177克、212克或265克)、硅溶胶(商品名OSSol,NissanChemicalIndustries,Ltd.的产品)(404克)置于捏合机中,然后捏合60分钟。此后,在将二氧化硅-氧化铝陶瓷纤维(ToshibaFineFlexK.K.的产品)(151克)逐渐添加到该混合物中的同时,将该混合物捏合30分钟,由此获得水含量为27%的催化剂糊料。将该糊料施加到通过对SUS430不锈钢板(厚度0.2毫米)施以金属板条加工而制成的基底材料(厚度0.7毫米)上;将该基底材料夹在两个聚乙烯板之间;并使由此夹合成的基底材料通过一对压紧辊以使金属板条基底中的网孔被糊料填充。将糊料填充的基底材料风干,然后在50(TC下煅烧2小时,由此获得本发明的催化剂。实测该催化剂具有O.5、0.7、1.0、1.2和1.5的P/(Mo+V)(原子比),它们分别对应于上述磷酸量。对比例3重复实施例3的程序,只是不加入磷酸,由此制备催化剂。8实施例8在搅拌和在4(TC下加热的同时,将三氧化钼(41克)和偏钒酸铵(41克)添加并溶解在水(360克)中,由此制备含示构式(NH3)3Mo2V30)5所示的化合物的溶液。向由此制成的溶液中加入85%磷酸(55克),由此获得均匀溶液。将二氧化钛(比表面积290平方米/克,IshiharaSangyoK.L的产品)(900克)、珪溶胶(商品名OSSol,NissanChemicalIndustries,Ltd.的产品)(404克)和二氧化硅-氧化铝陶资纤维(ToshibaFineFlexK.K.的产品)(151克)相继添加到如上获得的溶液中的同时,借助捏合机捏合所得混合物,由此获得糊料。将该糊料施加到通过对SUS430不锈钢板(厚度0.2毫米)施以金属板条加工而制成的基底材料(厚度0.7毫米)上;将该基底材料夹在两个聚乙烯板之间;并使由此夹合成的基底通过一对压紧辊以使金属板条中的网孔被糊料填充。将糊料填充的基底材料风干,然后在500°C下煅烧2小时,由此获得本发明的催化剂。实测该催化剂具有95/2/3的Ti/Mo/V(原子比例)和0.8的P/(Mo+V)(原子比)。实施例9在搅拌和在40。C下加热的同时,将三氧化钼(41克)和偏钒酸铵(41克)添加并溶解在水(360克)中,由此制备含示构式(NH3)3Mo2V30i5所示的化合物的溶液。向由此制成的溶液中加入85%磷酸(55克),由此获得均匀溶液。单独地,借助捏合机捏合二氧化钛(比表面积290平方米/克,IshiharaSangyoK.K.的产品)(900克)、硅溶胶(商品名OSSol,NissanChemicalIndustries,Ltd.的产品)(404克)和7JC(360克),由此获得糊料。在将二氧化硅-氧化铝陶瓷纤维(ToshibaFineFlexK.K.的产品)(151克)添加到由此获得的糊料中的同时,捏合所得混合物,由此获得糊料。将该糊料施加到通过对SUS430不锈钢板(厚度Q.2毫米)施以金属板条加工而制成的基底材料(厚度0.7毫米)上;将该基底夹在两个聚乙烯板之间;并使由此夹合成的基底材料通过一对压紧辊以使金属板条中的网孔被糊料填充。将糊料填充的基底材料风干,然后在50(TC下煅烧2小时,由此获得Ti02催化剂栽体。将该载体浸在如上制成的溶液中,然后源千,然后在12(TC下干燥,随后在450'C下煅烧,由此获得本发明的催化剂。该催化剂据估计具有95/3/4.5的Ti/Mo/V(原子比例)和0.8的P/(Mo+V)(原子比)。对比例4和5重复实施例8或9的程序,只是不加入磷酸,由此制备催化剂。实施例10至12重复实施例1的程序,只是将钼酸铵的量从107克分别换成117克、44克和231克;将偏钒酸铵的量从28克分别换成155克、101克和61克;并将磷酸(68克)换成磷酸二氢铵(分别为228克、128克和210克),由此获得催化剂。实测该催化剂分别具有85/5/10、91/2/7和86/10/4的Ti/Mo/V和1.0的P/(Mo+V)(原子比)。对比例6至8重复实施例11至12的程序,只是不加入磷酸,由此制备催化剂。应用例将实施例1至12和对比例1至8中制成的各催化剂切成各自具有20毫米宽度和100毫米长度的试样。将各催化剂的三个试样安装在催化剂装置中,并使催化剂试样在表1或2中所示的条件下暴露在废气中。表1显示了用于测定NOx脱除百分率和汞氧化百分率的废气处理条件,表2显示了用于测定S02氧化百分率的废气处理条件。结果显示在表3中。通过在催化剂层入口和出口处借助化学发光N0x分析器测量N0X浓度,测定N0x脱除百分率。通过使氧化的汞蒸气吸收在磷酸盐緩沖剂中、然后通过根据JISK-0222的分析法分析金属蒸气,测定汞氧化百分率。通过在催化剂层入口和出口处借助红外S02计测量S02浓度,测定S02氧化百分率。10[表l]项目数值1.气体组成亂300ppmNH3300ppmS021000ppmo23%co212%H2012%Hg10纳克/升HC130ppm2.气体流速3升/分钟3.温度350。C4.催化剂试样数20毫米(宽)x100毫米(全长),3件项目数值1.组成so2500ppm023%2.气体流速1.2升/分钟3.温度380°C4.催化剂试样数20毫米(宽)xl00毫米(全长),3件11<table>tableseeoriginaldocumentpage12</column></row><table>权利要求1.包含具有(i)钛(Ti)、(ii)钼(Mo)和/或钨(W)、(iii)钒(V)和(iv)磷(P)的氧化物的组合物的废气净化催化剂,其中该催化剂含有原子比例为85至97.5∶2至10∶0.5至10的Ti、Mo和/或W、和V,并具有0.5至1.5的P/(V和Mo和/或W的总量)的原子比。2,废气净化法,包括使含有氮氧化物(N0X)和金属汞(Hg)的废气在作为还原剂的氨存在下暴露于如权利要求1所述的催化剂,由此进行废气中所含的NOx的还原和废气中所含的金属汞(Hg)的氧化。3.制造如权利要求1所述的催化剂的方法,包括将水添加到二氧化钛、钼酸和/或鴒酸的可溶铵盐、可溶钒化合物、和正磷酸或磷酸铵盐中;捏合所得混合物以产生糊料;将该糊料施加到金属栽体上;和煅烧该载体。4.制造如权利要求1所述的催化剂的方法,包括将水与二氧化钛、式(冊3)^0^3015所示的化合物、和正磷酸或磷酸铵盐混合;捏合所得混合物以产生糊料;将该糊料施加到金属栽体上;和煅烧该栽体。5.制造如权利要求l所述的催化剂的方法,包括用二氧化钛、示构式(冊3)^0^3015所示的化合物、和正磷酸或磷酸铵盐的水性混合物浸渍含二氧化钛作为主要组分的催化剂载体。全文摘要提供由包含(i)钛(Ti)、(ii)钼(Mo)和/或钨(W)、(iii)钒(V)和(iv)磷(P)的各自氧化物的组合物构成的废气净化催化剂,其中Ti∶(Mo和/或W)∶V的原子比为85至97.5∶2至10∶0.5至10,且其中P/(Mo和/或W和V的总量)的原子比为0.5至1.5。此外,提供了废气净化法,其中,使含有氮氧化物(NO<sub>x</sub>)和金属汞(Hg)的废气在作为还原剂的氨存在下暴露于上述催化剂,以进行废气中所含的金属汞(Hg)的氧化和NO<sub>x</sub>的还原。打破作为传统催化剂的限制的Hg氧化与SO<sub>2</sub>氧化之间的敌对关系,实现了在使Hg氧化率保持高水平的同时仅降低SO<sub>2</sub>氧化率。文档编号B01D53/86GK101605602SQ20078005000公开日2009年12月16日申请日期2007年9月7日优先权日2007年9月7日发明者今田尚美,加藤泰良,甲斐启一郎申请人:巴布考克日立株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1