专利名称::固体酸催化剂及其使用方法
技术领域:
:本发明涉及一种用于烃类转化工艺的催化剂,更特别地涉及阴离子改性的固体酸催化剂的制备。
背景技术:
:固体酸催化剂广泛用于石油炼制和石油化学工业中的化学转化工艺。特别地,阴离子改性的氧化物,例如W03/Zr02、S04-2/Zr02、Mo03/Zr02、SO4^VTiO2和S04-2/Sn02,都是较强的固体酸,并表现出在烃类转化工艺中值得期待的性能,所述工艺例如异构化、催化裂化、烷基化和烷基转移化工艺,参见例如美国专利6,107,235和6,080,904。美国专利申请公布号2003/0069131公开了一种包含掺杂有金属离子的阴离子改性金属氧化物的化合物的固体酸催化剂和一种使用该催化剂进行烷烃异构化的方法。依照现有技术制备的催化剂为粉末状,不适用于装载到多数商业反应器中,商业反应器需要具有良好的机械强度且同时保持高活性的颗粒状、球状或挤出物状的催化剂。上述的固体酸催化剂可以混合有粘结剂,例如氧化铝、粘土或二氧化硅,为成形的催化剂颗粒提供良好的机械强度。然而,粘结成形的催化剂与未粘结的粉末状催化剂相比,对于烷烃异构化(特别是正庚烷的异构化)的反应活性明显降低。因此,需要一种具有较高的机械强度和较好的催化性能的催化剂/粘结剂组合物。发明概述在此提供了一种催化剂组合物,包含一种选自元素周期表中IVB族或IVA族元素的氧化合物;一种选自元素周期表中VIB族或VIA族元素的氧化合物;和基于催化剂总重量至少约Iwt.%的热解法二氧化硅颗粒。该催化剂组合物有利地用于烃类转化工艺,例如异构化、催化裂化、烷烃化和烷基转移化工艺。优选实施方式详述本发明使用热解法二氧化硅作为粘结剂组分,用于粉末状混合氧化物催化剂的成形,以实现具有优良的物理强度和对于烷基异构化改进的催化性能的成形催化剂。催化剂的最终形状可以是,例如挤出物、球状或片状。更特别地,本发明的催化剂包含一种选自元素周期表中IVA或IVB族(CAS符号)的一种或多种元素的氧化合物。IVB族元素包括钛(Ti)、锆(Zr)和铪(Hf)。IVA族元素包括碳(C)、硅(Si)、锗(Ge)、锡(Sn)和铅(Pb)。该催化剂进一步包括一种选自元素周期表中VIB或VIA族的元素的氧化合物。VIB族元素包括铬(Cr)、钼(Mo)和钨(W)。VIA族元素包括硫(S)、硒(Se)和碲(Te)。IVB或IVA族化合物和VIB或VIA族化合物的质量比范围通常为约0.0011000,优选为0.12约100,更优选为约1约10。优选的催化剂组合物包括,例如W03/&02、S(V2/Zr02、Mo03/Zr02、S04_2/Ti02和S(V2/Sn02。该催化剂可以通过加入掺杂剂进行改性,所述掺杂剂选自铝、镓、铈、锑、钪、镁、钴、铁、铬、钇和/或铟的化合物。在优选的实施方式中,该催化剂包含铝掺杂的氧化锆结合氧化钨,表示为WO3/AI-&O2。该催化剂也可包含VIII族贵金属组分,例如钼、钯或铱。本发明的粘结剂包含热解法二氧化硅。热解法二氧化硅是由卤代硅烷(例如四氯化硅)在氢-氧焰中汽相分解而制成的。燃烧过程生成的二氧化硅分子浓缩形成颗粒。颗粒碰撞并烧结在一起。一次粒子的直径范围为约9nm约30nm。然而,一次粒子熔合在一起形成了粒度为约0.2微米约0.3微米的聚集体(最小的可分散单元)。该聚集体又容易卷在一起形成粒度为约30微米约44微米的烧结块。热解法二氧化硅是无定形态的。单独的颗粒没有孔隙。然而,烧结块具有非常高的空隙率(>98%)。热解法二氧化硅的BET表面积范围为约160m2/g约200m2/g。适用于本发明的热解法二氧化硅可以获自DegussaCo.的商品AEROSIL,或者获自CabotCorporation的商品CAB-0-SIL。如下所示,热解法二氧化硅与其它二氧化硅或氧化铝粘结剂相比,对烷烃异构化提供了惊人的优良结果。将至少约Iwt.%的热解法二氧化硅加入到最终混合的氧化物/粘结剂催化剂组合物中,优选为至少约5%,更优选地为至少约10%。如下所述,作为粘结剂,热解法二氧化硅要比胶体二氧化硅更加令人惊奇地优良。胶体二氧化硅包含通常尺寸小于约100微米的无定形二氧化硅颗粒。聚集体粒度可以与一次粒子的直径一样小。胶体二氧化硅颗粒的表面通常包括带有结合到硅原子上的羟基的硅烷醇(例如Si-(OH)x)或硅氧烷(例如Si-O-Si-O)。胶体二氧化硅通常是通过调节硅酸钠溶液的PH值制备的,例如通过阳离子交换,形成硅溶胶。然后用阳离子(例如钠或铵)稳定该溶胶。胶体二氧化硅是以水溶液形式提供的,而不是粉末形式。本工艺的原料可以是包含大量C5+直链的和/或少量支链的链烷烃。另外,原料可以包含单环芳香族化合物和/或环状烷烃,例如环己烷。本催化剂可用于异构C4-C8链烷烃,作为纯化合物或混合物。在精练操作中,链烷烃将通常存在于混合物中,除C4-C8M料,其可以包含沸点超出该范围的烃类。也可存在环烷烃和芳香烃。因此,原料可包含C4-C8链烷烃,例如丁烷、戊烷、己烷,其可存在于精制蒸汽中,例如来自溶剂萃取单元的萃余液馏分和重整原料。该原料也可包含环烃类,例如以c6+石脑油的形式。在催化剂及其相关金属组分的存在下,这种原料中的环状物质会发生开环和异构化反应形成链烷烃,然后该链烷烃经过异构化作用形成异链烷烃,其可通过分馏从环状化合物中分离出来,而环状化合物可被回收消光(extinction)。例如,环己烷可转化为甲基环戊烷。除了纯的链烷烃原料(C4-C8)之外,也可使用包含大量烯烃的混合链烷烃-烯烃原料。异构化反应是在催化剂存在下进行的,优选在氢气存在下进行。适宜的反应温度范围为约77°F800°F(约25°C425°C)。超出此范围的温度也可以采用,尽管它们通常是较为非优选的。通常的温度范围为约200°F600°F(约43°C316°C)。通常的压力范围为约Ipsig约500psig(约7000kPa),尽管也可以采用更高的压力。可以尽量采用较低的压力,范围为约50500psig(约350kPa3500kPa),为了能够使用低压装置,使用在该范围内相对较低的压力通常是优选的。异构化反应通常发生在有氢气存在的情况下,通常氢气与原料的摩尔比为0.01101,通常为0.5121。空速通常为0.110LHSV,通常为0.55.0LHSV。当在催化剂中添加了另外的酸性物质(路易斯酸或布朗斯台德酸(Bronstedacid))时,可以采用较低的操作温度,有利于异构化程度多于较为不希望发生裂化反应的程度。下面提供了实施例和对比例,用于描述本发明及其优点。实施例对本发明进行了描述,对比例不用于描述本发明,但提供对比例以对比的方式描述本发明与非本发明的催化剂相比所达到的意料不到的优点。依照下面的过程制备了包含钼组分的铝掺杂混合氧化物催化剂。混合锆-铝氢氧化物是通过将13重量份的&0C12·SH2O和0.75份的Al(NO3)3·9H20与80份的14%氢氧化铵水溶液进行共沉淀而制备的。混合的氢氧化物沉淀用去离子水洗涤4次,随后过滤。在100120°C下干燥该沉淀物,然后将滤饼研磨成细粉。然后将混合氢氧化物粉末用8.4份的偏钨酸铵溶液(NH4)6H2W12O4tl浸渍,然后将混合物在100120°C下干燥,然后在800°C煅烧3小时。产品为钨酸盐铝掺杂氧化锆的淡黄色粉末,表示为W03/A1_&02,用于所有的实施例。通过将钨酸盐铝掺杂的氧化锆与粘结剂粘合形成成形催化剂,如上所示进行成形,然后煅烧。为将贵金属加入到该材料中,将钨酸盐铝掺杂的氧化锆用(NH3)4Pt(NO3)2水溶液浸渍。将该混合物干燥并在350°C煅烧3小时,于是钼盐分解为氧化钼Pt02。该催化剂表示为Pt/W03/Al-&02。在一些测试中,在与粘结剂成形之前添加钼。在另一些测试中,在与粘结剂成形之后添加钼。在固定床反应器中进行正庚烷异构化反应对催化剂的性能进行评价。该成形催化剂被粉碎以适应实验室反应器。催化剂/粘结剂样品的量根据粘结剂的量发生变化,但在所有实施例中活性W03/Al-&02的总量保持在约500mg。将催化剂装载到外径(o.d.)为1/2英寸的石英管反应器中,该反应器带有位于催化剂床下部的热电偶。在流动氦气中将催化剂以10°C/min的速率加热到350°C,并保持60分钟。然后用氢气取代氦气流,在350°C下催化剂在氢气中被还原2小时。在还原结束时,将反应器的温度降低到200°C。然后将含3摩尔%正庚烷的氢气的原料气引入到反应器中,使用带有FID监测器和50mm长、0.53微米氧化铝毛细管柱的在线气相色谱仪对反应产物进行分析。在原料被引入15分钟之后采集第一次产物样品。随后,间隔45分钟再次分析样品。通过对产物和反应物峰面积的求和,依照以下的方程1和2分别计算催化剂活性和选择性转化率%=100ΣPa/Σ(PA+PB)[1]和选择性%=100ΣPc/ΣPa[2]其中Pa是所有产物的峰面积;Pb是未转化的Ii-C7的峰面积;和Pc是支链庚烷的峰面积。对比例1该对比例描述了添加钼的钨酸盐铝掺杂氧化锆的制备和性能测试。没有使用粘结齐U。将18份获自实施例1的材料用6.21份的1.74衬%的(NH3)4Pt(NO3)2水溶液浸渍。在350°C煅烧3小时后,钼盐分解为氧化钼。该样品表示为0.6%Pt/W03/Al-Zr02,使用如上所述的性能试验,结果如表1中所示。对比例2该对比例描述了胶体氧化铝粘合的混合氧化物催化剂的制备和性能特征。依照对比例1制备Pt/W03/Al-&02,只是将钼含量调整为1.Owt%。通过将8.0份的依照对比例1制备的Pt/W03/Al-&02和10.0份的Nyacol胶体氧化铝(20%氧化铝在含水介质中)混合在一起,制备具有80%混合氧化物/20%氧化铝的成形催化剂。将该混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持1小时,以5°C/min的速率升温到400°C,保持3小时。将得到的材料粉碎成细粉,以如上方式用于正庚烷异构化的测试。结果如表1所示。对比例3该对比例描述了胶体二氧化硅粘合的混合氧化物催化剂的制备和异构化性能特征。依照对比例1制备Pt/W03/Al-&02催化剂,以提供0.6%的Pt。在含水介质中包含40wt%SiO2WJK体二氧化硅源(Nalco-2327)获自ONDEONalcoCompany,Chicago,IL0将2份依照对比例1制备的0.6%Pt/W03/Al-Zr02和1.2份Nalco-2327进行混合。将混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持12小时,以5°C/min的速率升温到400°C,保持3小时,冷却到室温。将催化剂粉碎成细粉,以如上方式用于异构化性能测试。结果如表1所示。对比例4该对比例描述了伯姆石(Boehmite)氧化铝粘合的混合氧化物催化剂的制备和异构化性能特征。在成形后添加钼。Catapal“D”氧化铝(Boehmite)获自SASOLNorthAmericanInc。将272份依照前述制备的W03/A1_&02和117份的Catapal“D”氧化铝、135份的去离子水和3.13份的70%硝酸混合。将混合物在混合装置中完全混合,然后转移到液压式挤出机(LoomisRamExtruder,Model232-16)的圆筒中,接着挤压成1/16”直径的挤出物。将挤出物在如下条件下进行煅烧静态空气,90°C保持1小时,120°C保持1小时,以5°C/min的速率升温到500°C,保持5小时,然后冷却到室温。根据ASTMD4179(TestMethodforSinglePelletCrushStrengthofFormedCatalystShapes)的测试发现该挤出物的压碎强度为2.91b/mm。然后依照对比例1中的工艺将0.6wt%的钼负载到该挤出物上。将该挤出物粉碎成细粉,然后装载到反应器中。异构化试验结果如表1中所示。对比例5该对比例描述了沉淀二氧化硅粘合的混合氧化物催化剂的制备和异构化性能特征。依照对比例1制备Pt/W03/Al-&02,以提供0.6%的Pt。沉淀二氧化硅(Hi-Sil233)获自PPGIndustriesInc.,Pittsburg,PA。该Hi-Sil233二氧化硅包含0.55wt%的Na。由于Na会明显降低催化剂的酸度,因此在与W03/Al-&02粉末混合之前,将该原态的Hi-Si1233进行彻底地清洗,以将Na的含量降低到低于300ppm。将2.4份W03/A1_&02和0.6份清洗过的Hi-Sil233进行混合。将混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持6小时,以5°C/min的速率升温到450°C,保持5小时,冷却到室温。由于其用手操作容易破坏,因此该煅烧颗粒的机械强度估计低于1.91b/mm。然后将该煅烧材料粉碎成粉末,按照对比例1中的工艺负载0.6衬%的Pt。结果如表1所示。表1<table>tableseeoriginaldocumentpage7</column></row><table>*Pt分散率由CO化学吸收法测定;表面积是由N2吸附-解吸数据计算出的BET表面积;孔体积来自Ρ/Ρο=0.9829时的单点总孔体积;平均孔直径来自BJH解吸平均孔直径。实施例1该实施例描述了本发明的热解法二氧化硅粘合的混合氧化物催化剂的制备和异构化性能特征。在成形前将Pt加入催化剂中。AEROSIL牌热解法Si02(AER0SIL200)获自DegussaCorporation。将2.4份如对比例1制备的0.6%Pt/W03/Al-Zr02与0.11份AEROSIL200以及0.28份的去离子水混合。将该混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,90°C保持1小时,120°C保持1小时,以5°C/min的速率升温到450°C,保持5小时,冷却至室温。将该材料粉碎成细粉,依照上述工艺用于异构化性能评估试验。结果如表2所示。实施例2该实施例描述了本发明的热解法二氧化硅粘合的混合氧化物催化剂的制备和异构化性能特征。在成形后将钼添加到催化剂中。AEROSILSiO2(AEROSIL200)获自DegussaCorporation。将7·2份W03/Al_Zr02与0·33份AEROSIL200以及2.75份去离子水混合。将该混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持1小时,以5°C/min的速率升温到450°C,保持5小时。然后将煅烧材料粉碎成粉末,按照对比例1的工艺负载0.6衬%的Pt。异构化性能评估试验的结果如表2所示。实施例3该实施例描述了本发明的热解法二氧化硅粘合的混合氧化物催化剂的制备和异构化性能特征。在成形后添加钼。AEROSILSiO2(AEROSIL200)获自DegussaCorporation。将8.0份W03/Al_Zr02与2.0份AEROSIL200以及5.25份去离子水混合。将该混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持1小时,以5°C/min的速率升温到450°C,保持5小时。然后将煅烧材料粉碎成粉末,按照对比例1的工艺负载0.6衬%的Pt。性能评估试验的结果如表2所示。实施例4该实施例描述了本发明的热解法二氧化硅粘合的混合氧化物催化剂的制备和异构化性能特征。在成形后添加钼。AEROSILSiO2(AEROSIL200)获自DegussaCorporation。将8.0份W03/Al_Zr02与2.0份AEROSIL200以及5.25份去离子水混合。将该混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持1小时,以5°C/min的速率升温到550°C,保持5小时。然后将煅烧材料粉碎成粉末,按照对比例1的工艺负载0.6衬%的Pt。异构化性能评估试验的结果如表2所示。实施例5该实施例描述了本发明的热解法二氧化硅粘合的混合氧化物挤出物催化剂的制备和异构化性能特征。在成形后添加钼。AEROSILSiO2(AEROSIL200)获自DegussaCorporation。将320.0份WO3Al-ZrO2与80.0份AEROSIL200以及约180份去离子水混合。将该混合物在混合装置中充分混合,然后转移到液压式挤出机(LoomisRamExtruder,Model232-16)的圆筒中,接着挤出成1/16”直径的挤出物。将挤出物在如下条件下进行煅烧静态空气,120°C,以10°C/min的速率升温到450°C,保持5小时。该煅烧挤出物的压碎强度为1.91b/mm(根据ASTMD4179TestMethodforSinglePelletCrushStrengthofFormedCatalystShapes)。然后依照对比例1中的工艺将0.6wt%的钼负载到该挤出物上。将该挤出物粉碎成细粉,然后装载到反应器中。试验结果如表2中所示。表2<table>tableseeoriginaldocumentpage9</column></row><table>*Pt分散率由CO化学吸收法测定;表面积是由N2吸附-解吸数据计算出的BET表面积;孔体积来自Ρ/Ρο=0.9829时的单点总孔体积;平均孔直径来自BJH解吸平均孔直径。实施例6该实施例描述了本发明的混合粘结剂——热解法二氧化硅/胶体二氧化硅粘合的混合氧化物催化剂的制备和异构化性能特征。在成形后添加钼。AEROSILSiO2(AER0SIL200)获自DegussaCorporation。在含水介质中包含40wt%SiO2的胶体二氧化硅源(Nalco-2327)获自ONDEONalcoCompany,Chicago,IL。将2·40份WO3Al-ZrO2与0.48份AEROSIL200,0.30份Nalco-2327和适当量的去离子水混合。将该混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持6小时,以5°C/min的速率升温到450°C,保持5小时。然后将该煅烧材料粉碎成粉末,按照对比例1的工艺负载0.6wt%的Pt。性能评估试验结果如表3所示。实施例7该实施例描述了本发明的另一种混合粘结剂一热解法二氧化硅/Catapal“D”氧化铝粘合的混合氧化物催化剂的制备和异构化性能特征。在成形后添加钼。AEROSILSiO2(AEROSIL200)获自DegussaCorporation。Catapal“D”氧化铝(Boehmite)获自SASOLNorthAmericanInc。将2.40份W03/Al_Zr02与0.48份AEROSIL200、0·12份Catapal“D”氧化铝和适当量的去离子水混合。将该混合物挤压成“捏塑体”的形态,然后进行煅烧。煅烧条件为静态空气,120°C保持6小时,以5°C/min的速率升温到450°C,保持5小时。然后将该煅烧材料粉碎成粉末,按照对比例1的工艺负载0.6wt%&Pt。性能评估试验结果如表3所示。表3<table>tableseeoriginaldocumentpage10</column></row><table>*Pt分散率由CO化学吸收法测定;表面积是由N2吸附-解吸数据计算出的BET表面积;孔体积来自Ρ/Ρο=0.9829时的单点总孔体积;平均孔直径来自BJH解吸平均孔直径。上述结果显示本发明的热解法二氧化硅粘合的混合氧化物催化剂(实施例1-5)与对比例1中未粘合的催化剂相比,具有较高的n-C7转化率,而对比例2-4中的胶体二氧化硅和氧化铝粘合的催化剂的性能比对比例1未粘合的催化剂更差(即,更低的n-c7转化率和选择性)。使用沉淀二氧化硅作为粘结剂的成形催化剂具有较低的机械强度,但表现出较好的异构化活性(对比例5)。而且,优选在成形后添加钼,用以防止煅烧过程中贵金属的烧结。例如,对比例4中成形后负载钼的催化剂,与比较例2和3中在成形前负载钼的催化剂相比,在Ii-C7转化率方面的性能更好。然而,惊奇地发现当使用热解法二氧化硅作为粘结剂时,在成形前添加钼(实施例1)提供的催化剂甚至比实施例2、3和4的n-C7转化率更高。这些结果标明热解法二氧化硅确实是一种用于本发明的混合氧化物异构化催化剂的优良粘结剂。我们还研究了使用热解法二氧化硅和其它廉价粘结剂(例如胶体二氧化硅和Catapal“D”氧化铝)的混合物对W03/Al-&02粉末进行粘结。试验结果列于表3。总体的催化剂活性在单位总催化剂重量的活性方面与未粘结的催化剂相当或更高。使用纯热解法二氧化硅的挤出物(表2中的实施例5)的压碎强度为1.91b/mm。当催化剂需要较高的压碎强度时,混合粘结剂是取代纯热解法二氧化硅的一种优良的替代物。催化剂的Pt分散率、表面积、孔体积和孔径随着粘结剂和煅烧条件的不同而改变。然而,在催化剂活性/选择性与上述因素之间并没有一致的关系。一起进行比较,显然热解法二氧化硅粘结样品的较好的催化剂性能是由于粘结剂材料本身。虽然我们不希望局限于任何特定的理论,但对于这些现象的一种可能的解释与粘结剂和Pt/W03/Al-&02的活性中心的相互作用有关。热解法二氧化硅与沉淀二氧化硅和胶体二氧化硅相比,具有较低的羟基基团表面浓度,因此热解法二氧化硅和Pt/W03/Al-&02的相互作用会相对较弱。较强的作用会降低催化剂的酸度。虽然上述描述包含许多细节,但这些细节不应当被解释为对本发明的限定,而是仅仅作为其优选实施方式的例证。本领域的技术人员在所附权利要求限定的本发明范围和原理之内可以预期许多其它的实施方式。权利要求一种催化剂组合物,包含(a)选自元素周期表中IVA或IVB族一种或多种元素的氧化合物,其中的IVB族元素为锆;(b)一种选自元素周期表中VIB族或VIA族元素的氧化合物;和(c)基于催化剂总重量至少1wt.%的热解法二氧化硅颗粒,其中该催化剂组合物包含氧化钨、氧化锆、氧化铝和铂。2.一种烃的化学转化方法,包括在化学转化反应条件下使烃与催化剂组合物接触,该催化剂组合物包含(i)选自元素周期表中IVA或IVB族一种或多种元素的氧化合物;其中的IVB族元素为锆;()一种选自元素周期表中VIB族或VIA族元素的氧化合物;和(iii)基于催化剂总重量至少Iwt.%的热解法二氧化硅颗粒;其中的化学转化方法是催化裂化,并且其中的烃选自正丁烷、正戊烷、正己烷、环己烷、正庚烷、正辛烷、正壬烷和正癸烷。3.权利要求2的方法,其中的催化剂组合物包含氧化钨、氧化锆、氧化铝和钼。4.一种烃的化学转化方法,包括在化学转化反应条件下使烃与催化剂组合物接触,该催化剂组合物包含(i)选自元素周期表中IVA或IVB族一种或多种元素的氧化合物;其中的IVB族元素为锆;()一种选自元素周期表中VIB族或VIA族元素的氧化合物;和(iii)基于催化剂总重量至少Iwt.%的热解法二氧化硅颗粒;其中的化学转化方法是烷基化,并且其中的烃选自正丁烷、正戊烷、正己烷、环己烷、正庚烷、正辛烷、正壬烷和正癸烷。5.权利要求4的方法,其中的催化剂组合物包含氧化钨、氧化锆、氧化铝和钼。6.一种烃的化学转化方法,包括在化学转化反应条件下使烃与催化剂组合物接触,该催化剂组合物包含(i)选自元素周期表中IVA或IVB族一种或多种元素的氧化合物;其中的IVB族元素为锆;()一种选自元素周期表中VIB族或VIA族元素的氧化合物;和(iii)基于催化剂总重量至少Iwt.%的热解法二氧化硅颗粒;其中的化学转化方法是烷基转移化,并且其中的烃选自正丁烷、正戊烷、正己烷、环己烷、正庚烷、正辛烷、正壬烷和正癸烷。7.权利要求6的方法,其中的催化剂组合物包含氧化钨、氧化锆、氧化铝和钼。全文摘要本发明公开了固体酸催化剂及其使用方法。本发明公开了一种催化剂组合物,包含一种选自元素周期表中IVB族或IVA族元素的氧化合物;一种选自元素周期表中VIB族或VIA族元素的氧化合物;和基于催化剂总重量至少约1wt.%的热解法二氧化硅颗粒。该催化剂组合物有利地用在烃类转化工艺(例如异构化)中。文档编号B01J23/652GK101797503SQ20101010842公开日2010年8月11日申请日期2005年4月6日优先权日2004年4月14日发明者叶春渊,徐金锁,菲利普·J·安杰文申请人:路慕斯技术有限公司