负载钯钴合金纳米粒子的碳纳米纤维复合材料的制备方法及甲酸或甲醇的电催化氧化方法

文档序号:4910530阅读:238来源:国知局
专利名称:负载钯钴合金纳米粒子的碳纳米纤维复合材料的制备方法及甲酸或甲醇的电催化氧化方法
技术领域
本发明涉及催化剂领域,特别涉及负载钮钴合金纳米粒子的碳纳米纤维复合材料的制备方法及甲酸或甲醇的电催化氧化方法。
背景技术
直接燃料电池,特别是直接甲酸燃料电池或直接甲醇燃料电池,具有燃料来源丰富、操作温度低和比能量高等特点,适合于笔记本电脑、数码相机和电动车等小型便携式电源,是一种较有发展前景的燃料电池。目前,甲酸或甲醇的电化学氧化主要以钼催化剂为主,但是钼的成本高,容易发生一氧化碳中毒等缺点制约了其实际应用。同样作为钼系金属的钯纳米材料由于其优异的氢气传感与储存性能引起了广泛关注。在以钯为基体的催化剂中掺杂一些过度金属,如铁、钴、镍等,可以进一步提高催化剂的催化性能,节约贵金属用量,降低催化剂成本。因此,钯基双金属纳米材料作为一种非钼催化剂,以其低成本和高催化性能等优势在直接燃料电池中具有潜在的应用价值。但是,金属纳米粒子容易聚集,在直接燃料电池进行催化时,催化活性和稳定性较差。
研究发现,将金属纳米粒子负载在一些具有良好导电性及大比表面积的碳基底上,可以抑制纳米粒子的聚集,提高催化剂的活性和稳定性。目前,已有大量文献报道负载钯基双金属纳米粒子的碳纳米纤维复合材料用于燃料电池的电极材料。由于碳载体表面一般呈化学惰性,在负载纳米粒子前需要对其进行强酸氧化处理或表面活性剂修饰。但是这些表面功能化处理在提高纳米粒子的分散性的同时,降低了碳载体的机械性能和导电性,且纳米粒子容易脱落,影 响催化剂的性能。
电纺技术是一种制备一维纳米材料的有效方法,目前已经广泛应用于纺织、催化、环境、能源及生物医药等诸多领域。结合电纺技术和热处理技术,通过在纺丝液中掺杂金属前体,可制备负载有金属纳米粒子的碳纳米纤维复合材料,如专利号申请号为200910067537.9的中国专利公开了IE纳米粒子/碳纳米纤维复合材料。该材料对过氧化氢、^ 一烟酰腺嘌呤二核苷酸、多巴胺、抗坏血酸和尿酸等生物小分子的直接电化学检测可以显示出较高的灵敏度和选择性。发明内容
本发明解决的技术问题在于提供一种负载钯钴合金纳米粒子的碳纳米纤维复合材料,电催化活性和稳定性提高。
本发明公开了负载钯钴合金纳米粒子的碳纳米纤维复合材料的制备方法,包括以下步骤:
(A)将聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴溶于二甲基甲酰胺溶液中,得到均匀的混合溶液;所述混合溶液中,聚丙烯腈的含量为5 15wt%,乙酰丙酮钯的含量为I 5wt%,乙酰丙酮钴的含量为I 5wt% ;
(B)将步骤(A)中所述的混合溶液进行电纺,褪火后得到部分氧化的复合纤维;
(C)将步骤(B)所述的部分氧化的复合纤维以4 6°C /min的速度升温到300 6000C,在该温度下通入氢气和氩气的混合气体,得到还原的复合纤维;
(D)将步骤(C)所述的还原的复合纤维以4 6°C /min的速度升温至700 1000°C,在该温度下保持20 60min,然后在氩气中冷却到室温,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。
优选的,所述步骤(A)中,所述乙酰丙酮钯的含量为1.5 3.5wt%,所述乙酰丙酮钴的含量为1.2 3.8wt%。
优选的,所述步骤(B)中,所述电纺的电场强度为50 100kV/m,喷丝头和收集板的间距为10 50cm,施加电压为5 50kV。
优选的,所述步骤(C)中,所述褪火温度为200 300°C,所述褪火时间为2 5小时。
优选的,所述步骤(C)中,所述氢气与氩气的体积比为1:3。
优选的,所述步骤(D)中,所述还原的复合纤维以4 6°C /min的速度升温至800 900。。。
本发明公开了一种由上述技术方案所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料,所述钯钴合金纳米粒子镶嵌在碳纤维基底中。
本发明公开了一种甲酸的电催化氧化方法,包括以下步骤:
提供由上述技术方案所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料或上述技术方案所述的负载钯钴合金纳米粒子的碳纳米纤维复合材料制备的电极;
以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲酸进行电催化氧化。
本发明还提供了一种甲醇的电催化氧化方法,包括以下步骤:
提供由上述技术方案所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料或上述技术方案所述的负载钯钴合金纳米粒子的碳纳米纤维复合材料制备的电极;
以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲醇进行电催化氧化。
优选的,所述电极按照以下方法制备:
由上述技 术方案所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料或上述技术方案所述的负载钯钴合金纳米粒子的碳纳米纤维复合材料与水搅拌混合,得到悬浮液;
将所述悬浮液滴加在玻碳电极表面,得到修饰后的电极。
与现有技术相比,本发明首选将特定配比的聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴配置成混合溶液;然后对混合溶液进行电纺和热处理,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。所述方法制备的复合材料,实现了碳纳米纤维载体制备、钮钴合金纳米粒子的生长及负载的同步进行,因此钯钴合金纳米粒子均一稳固的镶嵌在碳纳米纤维基底中,钯钴合金纳米粒子不容易脱落与聚集。由于钯钴合金纳米粒子的独特电子结构和均一稳固镶嵌特性使得钯钴合金纳米粒子负载碳纳米纤维复合材料的电催化活性和稳定性大幅提高。其次,所述制备方法无需使用催化剂,避免了杂质引入,制备方法简单,一步制备。而且钯钴合金纳米粒子的组成和粒径可以通过调节钯和钴前体的摩尔比来有效调节。


图1为实施例1制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料的扫描电镜图和透射电镜图2为实施例4制备的电极和比较例2制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的循环伏安曲线;
图3为实施例4制备的电极和比较例2制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的计时电流曲线;
图4为实施例4制备的电极和比较例2制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的循环伏安曲线;
图5为实施例4制备的电极和比较例2制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的计时电流曲线。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
本发明实施例公开了一种负载钯钴合金纳米粒子的碳纳米纤维复合材料的制备方法,包括以下步骤:
(A)将聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴溶于二甲基甲酰胺溶液中,得到均匀的混合溶液;所述混合溶液中,聚丙烯腈的含量为5 15wt%,乙酰丙酮钯的含量为I 5wt%,乙酰丙酮钴的含量为I 5wt% ;
(B)将步骤(A)中所述的混合溶液进行电纺,褪火后得到部分氧化的复合纤维;
(C)将步骤(B)所述的部分氧化的复合纤维以4 6°C /min的速度升温到300 6000C,在该温度下通入氢气和氩气的混合气体,得到还原的复合纤维;
(D)将步骤(C)所述的还原的复合纤维以4 6°C /min的速度升温至700 1000°C,在该温度下保持20 60min,然后在氩气中冷却到室温,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。
在本发明中,首先以聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴为原料制备电纺溶液,所述聚丙烯腈为形成碳纳米 纤维的主体材料,乙酰丙酮钯和乙酰丙酮钴为金属前体。聚丙烯腈、乙酰丙酮钯和乙酰丙酮溶于二甲基甲酰胺溶液中,得到均匀的混合溶液,其中聚丙烯腈的含量为混合溶液的5 15wt.%,优选为8 12wt.% ;乙酰丙酮钯的含量为混合溶液的I 5wt.%,优选为1.5 3.5wt.% ;乙酰丙酮钴的含量为混合溶液的I 5wt.%,优选为1.5 3.8wt.%0本发明特别限定了钯金属前体与钴金属前体的比例,使钴原子完全嵌入钯晶格内,形成合金。乙酰丙酮钯和乙酰丙酮钴的质量比优选为(0.5 I):1。
得到的混合溶液即为电纺溶液,接着对所述混合溶液进行电纺。经过电纺,混合溶液形成了含有乙酰丙酮钯和乙酰丙酮钴的聚丙烯腈复合纤维。所述电纺的电场强度优选为50 100kV/m,还可以优选为60 90kV/m ;喷丝头和收集板的间距优选为10 50cm,还可以优选为20 40cm ;施加电压优选为5 50kV,还可以优选为15 35kV。电纺后,对所述复合纤维进行褪火处理,经过褪火处理,复合纤维部分被氧化,得到部分氧化的复合纤维。所述褪火温度优选为200 300°C,还可以优选为230 280°C ;所述褪火时间优选为2 5小时,还可以优选为3 4小时。
得到部分氧化的复合纤维后,将其以4 6°C /min的速度升温到300 600°C,在该温度下通入氢气和氩气的混合气体,得到还原的复合纤维。其中,复合纤维中的钯离子和钴离子被还原,并且,钯钴纳米粒子稳定负载于聚丙烯腈复合纤维基底中。所述氢气和氩气的体积比优选为1:3。
得到还原的复合纤维后,所述的还原的复合纤维以4 6°C /min的速度升温至700 1000°C进行热处理,所述温度优选为800 900°C。本发明严格限定了热处理温度,当热处理温度低于700°C时,钯钴纳米粒子以混合相存在,即同时存在钯钴合金相、钯面心立方相和钴面心立方相;当热处理温度过高,即高于1000°C,钯钴合金纳米粒子会发生表面偏析现象,且温度越高,偏析现象越明显,最终形成核-壳钯钴纳米粒子。本发明在700 1000°C下保持20 60min,然后在氩气中冷却到室温,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。得到的复合材料中,钯钴纳米粒子均一稳定的镶嵌于碳纳米纤维基底中。所述钮钴合金纳米粒子的粒径为10 40nm,所述碳纳米纤维的直径为300 500nm。
本发明保 护了由上述技术方案的制备方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料,所述钯钴合金纳米粒子镶嵌在碳纤维基底中。所述钯钴合金纳米粒子的粒径为10 40nm,所述碳纳米纤维的直径为300 500nm。
本发明上述技术方案的方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料具有良好的稳定性和催化活性。其可以应用于甲酸或甲醇的电催化氧化中。
本发明还保护了一种甲酸的电催化氧化方法,包括以下步骤:
提供由上述技术方案的方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料制备的电极;
以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲酸进行电催化氧化。
在本发明中,所述负载钯钴合金纳米粒子的碳纳米纤维复合材料要发挥催化作用,首先用其修饰制备电极,所述电极优选按照以下方法制备:
由上述技术方案的负载钯钴合金纳米粒子的碳纳米纤维复合材料与水搅拌混合,得到悬浮液;
将所述悬浮液滴加在玻碳电极表面,得到修饰后的电极。
以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲酸进行电催化氧化。对甲酸进行电催化氧化时,选用的溶液为述甲酸和硫酸的混合溶液,甲酸的浓度优选为0.5mol/L,所述硫酸的浓度优选为0.5mol/L。所述甲酸和硫酸的混合溶液的制备方法优选为:配制0.5mol/L硫酸溶液,再将甲酸加入到0.5mol/L硫酸中,直到甲酸的浓度为0.5mol/L。所述混合溶液进行电化学测试前,优选用氮气进行除氧,所述除氧时间优选为20 40分钟。本领域技术人员也可以根据实际需要,对含有甲酸的溶液浓度进行调节。
本发明还保护了一种甲醇的电催化氧化方法,包括以下步骤:
提供由上述技术方案的方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料制备的电极;
以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲醇进行电催化氧化。
在本发明中,所述负载钯钴合金纳米粒子的碳纳米纤维复合材料要发挥催化作用,首先用其修饰制备电极,以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲醇进行电催化氧化。对甲醇进行电催化氧化时,选用的溶液为述甲醇与氢氧化钾的混合溶液,甲醇的浓度优选为lmol/L,所述氢氧化钾的浓度优选为lmol/L。所述甲醇与氢氧化钾的混合溶液的制备方法优选为:配制lmol/L氢氧化钾溶液,再将甲醇加入到lmol/L氢氧化钾中,直到甲醇的浓度为lmol/L。所述混合溶液进行电化学测试前,优选用氮气进行除氧,所述除氧时间优选为20 40分钟。本领域技术人员也可以根据实际需要,对含有甲醇的溶液浓度进行调节。
本发明所述方法制备的复合材料,实现了碳纳米纤维载体制备、钯钴合金纳米粒子的生长及负载的同步进行,因此钯钴合金纳米粒子均一稳固的镶嵌在碳纳米纤维基底中,钯钴合金纳米粒子不容易脱落与聚集。由于钯钴合金纳米粒子的独特电子结构和均一稳固镶嵌特性使得钯钴合金纳米粒子负载碳纳米纤维复合材料的电催化活性和稳定性大幅提高。其次,所述制备方法无需使用催化剂,避免了杂质引入。而且钯钴合金纳米粒子的组成和粒径可以通过调节钯和钴前体的摩尔比来有效调节。
为了进一步理解本发明,下面结合实施例对本发明提供的负载钯钴合金纳米粒子的碳纳米纤维复合材料的制备方法及甲酸或甲醇的电催化氧化方法进行说明,本发明的保护范围不受以下实施例的限制。
实施例1
I)电纺溶液的配制:将聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴溶于二甲基甲酰胺溶液中,得到均一的混合溶液;混合溶液中聚丙烯腈的含量为IOwt.%,乙酰丙酮钯和乙酰丙酮钴的含量分别为2.5wt.%和3.6wt.% ;
2)电纺:将步骤I)中所得的均一混合溶液在电场强度为100kV/m,喷丝头和收集板的间距为30cm,施加电压为20kV,电纺制备含有乙酰丙酮钯和乙酰丙酮钴的聚丙烯腈复合纤维;
3)将步骤2)中所得的含有乙酰丙酮钯和乙酰丙酮钴的聚丙烯腈复合纤维在230°C褪火3h以部分氧化该复合纤维;
4)以5°C /min的速度升温到500°C,在该温度下通入氢气和氩气的混合气体lh,氢气与氩气的体积比为1:3,以还原钯和钴离子并稳定钯钴纳米粒子负载聚丙烯腈复合纤维;
5)以5°C /min的速度升温到850°C,在该温度下保持30min以碳化IE钴纳米粒子负载聚丙烯腈复合纤维,然后在氩气中冷却到室温,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。
制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料的扫描电镜和透射电镜如图1所示,a为扫描电镜图,b为透射电镜图;由图1可知,碳纳米纤维的直径在300 500nm之间,钯钴合金纳米粒子均一稳固镶嵌在碳纳米纤维基底中且粒径分布窄,其平均粒径为23.7nm ;X_射线衍射分析结果表明钯钴纳米粒子以合金相形式存在;电感耦合等离子体发射光谱分析得到钯钴合金纳米粒子的负载量为15.8 wt.% ;能量色散X射线光谱分析表明钮-钴合金摩尔比为1:1。实施例2I)电纺溶液的配制:将聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴溶于二甲基甲酰胺溶液中,得到均一的混合溶液;混合溶液中聚丙烯腈的含量为8wt.%,乙酰丙酮钯和乙酰丙酮钴的含量分别为1.7wt.%和2.9wt.% ;2)电纺:将步骤I)中所得的均一混合溶液在电场强度为100kV/m,喷丝头和收集板的间距为30cm,施加电压为20kV,电纺制备含有乙酰丙酮钯和乙酰丙酮钴的聚丙烯腈复合纤维;3)将步骤2)中所得的含有乙酰丙酮钯和乙酰丙酮钴的聚丙烯腈复合纤维在230°C褪火3h以部分氧化该复合纤维;4)以5°C /min的速度升温到500°C,在该温度下通入氢气和氩气的混合气体lh,氢气与氩气的体积比为1:3,以还原钯和钴离子并稳定钯钴纳米粒子负载聚丙烯腈复合纤维; 5)以5°C /min的速度升温到850°C,在该温度下保持30min以碳化IE钴纳米粒子
负载聚丙烯腈复合纤维,然后在氩气中冷却到室温,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。制备的钯钴合金纳米粒子负载碳纳米纤维复合材料的形貌与实施例1的相似,只是钯钴合金纳米粒子的平均粒径为19.5nm ;X_射线衍射分析结果表明钯钴纳米粒子以合金相形式存在;电感耦合等离子体发射光谱分析得到钯钴合金纳米粒子的负载量为
13.5wt.% ;能量色散X射线光谱分析表明钯-钴合金的摩尔比为1: 2。实施例3I)电纺溶液的配制:将聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴溶于二甲基甲酰胺溶液中,得到均一的混合溶液;混合溶液中聚丙烯腈的含量为8wt.%,乙酰丙酮钯和乙酰丙酮钴的含量分别为3.3wt.%和1.4wt.% ;2)电纺:将步骤I)中所得的均一混合溶液在电场强度为100kV/m,喷丝头和收集板的间距为30cm,施加电压为20kV,电纺制备含有乙酰丙酮钯和乙酰丙酮钴的聚丙烯腈
复合纤维;3)将步骤2)中所得的含有乙酰丙酮钯和乙酰丙酮钴的聚丙烯腈复合纤维在230°C褪火3h以部分氧化该复合纤维;4)以5°C /min的速度升温到500°C,在该温度下通入氢气和氩气的混合气体lh,氢气与氩气的体积比为1:3,以还原钯和钴离子并稳定钯钴纳米粒子负载聚丙烯腈复合纤维;5)以5°C /min的速度升温到850°C,在该温度下保持30min以碳化IE钴纳米粒子
负载聚丙烯腈复合纤维,然后在氩气中冷却到室温,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料的形貌与实施例1的相似,只是钯钴合金纳米粒子的平均粒径为36.2nm ;X-射线衍射分析结果表明钯钴纳米粒子以合金相形式存在;电感耦合等离子体发射光谱分析得到钯钴合金纳米粒子的负载量为14.2wt.% ;能量色散X射线光谱分析表明钯-钴合金的摩尔比为2:1。实施例4将实施例1得到的负载钯钴合金纳米粒子的碳纳米纤维复合材料制备成电极,所述电极按照以下方法制备:称取Img实施例1得到的负载钯钴合金纳米粒子的碳纳米纤维复合材料置于5mL烧杯中,加入ImL 二次水,搅拌Ih,得到浓度为lmg/mL的负载钮钴合金纳米粒子的碳纳米纤维复合材料黑色悬浮液;取5 y L步骤I)所述的黑色悬浮液滴加在玻碳电极表面,把该电极置于干燥器中室温下挥发溶剂,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料修饰的电极;制得的负载钯钴合金纳米粒子的碳纳米纤维复合材料修饰电极在使用前用去离子水冲洗干净;当所述的修饰电极不用时,保存在干燥器中。实施例5
将实施例4制备的电极用于 甲酸的虫催化氧化。配制0.5mol/L硫酸溶液,再将甲酸加入到0.5mol/L硫酸中,直到甲酸的浓度为
0.5mol/L (由于甲酸加入的量较少,其体积可以忽略不计)。将0.5mol/L硫酸与0.5mol/L甲酸混合溶液用氮气除氧30分钟,然后以实施例4制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,进行循环伏安扫描,扫描速度为50mV/s。将0.5mol/L硫酸与0.5mol/L甲酸混合溶液用氮气除氧30分钟,然后以实施例4制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,在500转/分钟的搅拌下,进行恒电位测试,检测电位为0.2V。实施例4制备的负载钯钴合金纳米粒子的碳纳米纤维修饰的电极用于甲酸的电催化氧化,显示出较高的催化活性和稳定性。图2为实施例4制备的电极和比较例2制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的循环伏安曲线,扫描速度为50mV/s。图2中,曲线a为实施例4制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的循环伏安曲线,曲线b为比较例2制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的循环伏安曲线,曲线a比曲线b的峰电流密度增大2倍,起峰电位负移33mV。图3为实施例4制备的电极和比较例2制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的计时电流曲线,恒定电位为0.2V。图3中,曲线a为实施例4制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的计时电流曲线,曲线b为比较例2制备的电极在0.5mol/L硫酸和0.5mol/L甲酸混合溶液中的计时电流曲线,恒电位测试结果表明,负载钯钴合金纳米粒子的碳纳米纤维对甲酸的氧化具有良好的稳定性。实施例6 将实施例4制备的电极用于甲醇的电催化氧化。配制lmol/L氢氧化钾,再将甲醇加入到lmol/L氢氧化钾中,直到甲醇的浓度为lmol/L (由于甲醇加入的量较少,其体积可以忽略不计)。将lmol/L氢氧化钾与lmol/L甲醇混合溶液用氮气除氧30分钟,然后以实施例4制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,进行循环伏安扫描,扫描速度为50mV/s。
将lmol/L氢氧化钾与lmol/L甲醇混合溶液用氮气除氧30分钟,然后以实施例4制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,在500转/分钟的搅拌下,进行恒电位测试,检测电位为-0.2V。实施例4制备负载钯钴合金纳米粒子的碳纳米纤维修饰的电极用于甲醇的电催化氧化,显示出较高的催化活性和稳定性。图4为实施例4制备的电极和比较例2制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的循环伏安曲线,扫描速度为50mV/s。图4中,曲线a为实施例1制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的循环伏安曲线,曲线b为比较例2制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的循环伏安曲线,曲线a比曲线b的峰电流密度增大2倍,且起峰电位发生负移。图5为实施例4制备的电极和比较例2制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的计时电流曲线,恒定电位为0.2V。图5中,曲线a为实施例4制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的计时电流曲线,曲线b为比较例2制备的电极在lmol/L氢氧化钾和lmol/L甲醇混合溶液中的计时电流曲线,恒电位测试测结果表明,负载钯钴合金纳米粒子的碳纳米纤维对甲醇具有良好的稳定性。比较例II)电纺溶液的配制:将聚丙烯腈和醋酸钯溶于二甲基甲酰胺溶液中,得到均一的混合溶液;混合溶液中,聚丙烯腈含量为8wt.%,醋酸钮含量为4.8wt.% ;2)将步骤I)中所得的均一混合溶液在电 场强度为100kV/m,喷丝头和收集板的间距为30cm,施加电压为20kV,电纺制备含有乙酰丙酮钯的聚丙烯腈复合纤维;3)将步骤2)中所得的含有醋酸钯的聚丙烯腈复合纤维在230°C褪火3h以部分氧化该复合纤维;4)以5°C /min的速度升温到500°C,在该温度下通入氢气和氩气的混合气体lh,氢气与氩气的体积比为1:3,以还原钯离子并稳定钯纳米粒子负载聚丙烯腈复合纤维;5)以5°C /min的速度升温到850°C,在该温度下保持30min以碳化IE纳米粒子负载于聚丙烯腈复合纤维上,然后在氩气中冷却到室温,得到负载钯纳米粒子的碳纳米纤维复合材料。制备的负载钯纳米粒子的碳纳米纤维复合材料中,钯纳米粒子的平均粒径为56.7nm ;X_射线衍射分析结果表明钯纳米粒子以面心立方体结构存在;电感耦合等离子体发射光谱分析得到钯纳米粒子的负载量为15.2wt.%。比较例2将比较例I制备的负载钯纳米粒子的碳纳米纤维复合材料制备成电极,所述电极按照以下方法制备:称取Img比较例I制备负载钮合金纳米粒子的碳纳米纤维复合材料置于5mL烧杯中,加入ImL 二次水,搅拌lh,得到浓度为lmg/mL的负载钯钴合金纳米粒子的碳纳米纤维复合材料黑色悬浮液;取5 y L步骤I)所述的黑色悬浮液滴加在玻碳电极表面,把该电极置于干燥器中室温下挥发溶剂,得到负载钯合金纳米粒子的碳纳米纤维复合材料修饰的电极;制得的负载钯合金纳米粒子的碳纳米纤维复合材料修饰的电极在使用前用去离子水冲洗干净;当所述的修饰的电极不用时,保存在干燥器中。
比较例3将比较例2制备的电极用于甲酸的电催化氧化。配制0.5mol/L硫酸溶液,再将甲酸加入到0.5mol/L硫酸中,直到甲酸的浓度为
0.5mol/L (由于甲酸加入的量较少,其体积可以忽略不计)。将0.5mol/L硫酸与0.5mol/L甲酸混合溶液用氮气除氧30分钟,然后以比较例2制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,进行循环伏安扫描,扫描速度为50mV/s。将0.5mol/L硫酸与0.5mol/L甲酸混合溶液用氮气除氧30分钟,然后以比较例2制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,在500转/分钟的搅拌下,进行恒电位测试,检测电位为0.2V。比较例4将比较例2制备的电极用于甲醇的电催化氧化。配制lmol/L氢氧化钾,再将甲醇加入到lmol/L氢氧化钾中,直到甲醇的浓度为lmol/L (由于甲醇加入的量较少,其体积可以忽略不计)。将lmol/L氢氧化钾与lmol/L甲醇混合溶液用氮气除氧30分钟,然后以实施例4制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,进行循环伏安扫描,扫描速度为50mV/s。

将lmol/L氢氧化钾与lmol/L甲醇混合溶液用氮气除氧30分钟,然后以比较例2制备的电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,在500转/分钟的搅拌下,进行恒电位测试,检测电位为-0.2V。以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
权利要求
1.负载钯钴合金纳米粒子的碳纳米纤维复合材料的制备方法,包括以下步骤: (A)将聚丙烯腈、乙酰丙酮钯和乙酰丙酮钴溶于二甲基甲酰胺溶液中,得到均匀的混合溶液;所述混合溶液中,聚丙烯腈的含量为5 15wt%,乙酰丙酮钯的含量为I 5wt%,乙酰丙酮钴的含量为I 5wt% ; (B)将步骤(A)中所述的混合溶液进行电纺,褪火后得到部分氧化的复合纤维; (C)将步骤(B)所述的部分氧化的复合纤维以4 6°C/min的速度升温到300 600°C,在该温度下通入氢气和氩气的混合气体,得到还原的复合纤维; (D)将步骤(C)所述的还原的复合纤维以4 6°C/min的速度升温至700 1000°C,在该温度下保持20 60min,然后在氩气中冷却到室温,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤(A)中,所述乙酰丙酮钯的含量为1.5 3.5wt%,所述乙酰丙酮钴的含量为1.2 3.8wt%。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(B)中,所述电纺的电场强度为50 100kV/m,喷丝头和收集板的间距为10 50cm,施加电压为5 50kV。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤(C)中,所述褪火温度为200 300°C,所述褪火时间为2 5小时。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤(C)中,所述氢气与氩气的体积比为1:3。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤(D)中,所述还原的复合纤维以4 6°C /min的速度升温至800 900°C。
7.一种由权利要求1 6任意一项所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料,所述钯钴合金纳米粒子镶嵌在碳纤维基底中。
8.一种甲酸的电催化氧化方 法,包括以下步骤: 提供由权利要求1 6任意一项所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料或权利要求7所述的负载钯钴合金纳米粒子的碳纳米纤维复合材料制备的电极; 以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲酸进行电催化氧化。
9.一种甲醇的电催化氧化方法,包括以下步骤: 提供由权利要求1 6任意一项所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料或权利要求7所述的负载钯钴合金纳米粒子的碳纳米纤维复合材料制备的电极; 以所述电极为工作电极,银/氯化银电极为参比电极,钼电极为对极,对甲醇进行电催化氧化。
10.根据权利要求8或9所述的电催化方法,其特征在于,所述电极按照以下方法制备: 由权利要求1 6任意一项所述方法制备的负载钯钴合金纳米粒子的碳纳米纤维复合材料或权利要求7所述的负载钮钴合金纳米粒子的碳纳米纤维复合材料与水搅拌混合,得到悬浮液; 将所述悬浮液滴加在玻碳电极表面,得到修饰后的电极。
全文摘要
本发明提供一种负载钯钴合金纳米粒子的碳纳米纤维复合材料的制备方法首选将特定配比的聚丙烯腈、乙酰丙酮钯和乙酰丙酮配置成混合溶液;然后对混合溶液进行电纺和热处理,得到负载钯钴合金纳米粒子的碳纳米纤维复合材料。以所述复合材料制备的电极作为修饰电极,用于甲酸或甲醇的电催化。所述方法制备的复合材料,钯钴合金纳米粒子均一稳固镶嵌在碳纳米纤维基底中,钯钴合金纳米粒子不容易脱落与聚集,电催化活性和稳定性大幅提高。其次,所述制备方法无需使用催化剂,避免了杂质引入,制备方法简单,一步制备。而且钯钴合金纳米粒子的组成和粒径可以通过调节钯和钴前体的摩尔比来有效调节。
文档编号B01J23/89GK103212422SQ20131015278
公开日2013年7月24日 申请日期2013年4月27日 优先权日2013年4月27日
发明者由天艳, 郭乔辉, 刘 东 申请人:中国科学院长春应用化学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1