一种Co3O4/Bi4O7/Bi2O3异质结光催化剂及其应用

文档序号:29937539发布日期:2022-05-07 13:50阅读:409来源:国知局
一种Co3O4/Bi4O7/Bi2O3异质结光催化剂及其应用
一种co3o4/bi4o7/bi2o3异质结光催化剂及其应用
技术领域
1.本发明属于光催化剂制备技术领域,涉及光催化剂的制备,具体涉及一种co3o4/bi4o7/bi2o3异质结光催化剂及其该光催化剂活化过硫酸盐处理水体有机污染物的应用。


背景技术:

2.随着经济的快速发展,引发的水污染问题也越来越严重。近年来,在废水中广泛检测出残留的大量抗生素,严重危害了人类的健康和环境的质量。因此,众多研究者致力于生物降解,吸附,化学氧化等方法对水环境中抗生素的去除。但传统的抗生素处理方法存在效率低、能耗高的缺点,严重影响其在实际生活中的应用。在众多的处理技术中,高级氧化工艺(aops)备受人们关注,因其能生成高活性物种而直接将难降解污染物氧化为无毒的小分子化合物。而其中基于硫酸根自由基(so
4-·
)的高级氧化技术已经成功运用于废水中有机污染物的去除。硫酸根自由基具有高的氧化还原电位(2.5-3.1ev),较长的自由基寿命(20-40μs),宽的ph范围(2-8),以及对芳香族有机物独特的选择性。但传统的硫酸根活化技术存在能耗高,活化能力差的缺点,因此寻求一种光催化剂用于有效活化过硫酸盐是十分必要的。


技术实现要素:

3.针对上述现有技术的缺点,本发明的首要目的在于提供一种co3o4/bi4o7/bi2o3异质结光催化剂的制备方法。
4.本发明的另一目的是提供上述co3o4/bi4o7/bi2o3异质结光催化剂在可见光下活化过硫酸盐降解有机污染物的应用。
5.为了实现上述任务,本发明采取如下的技术解决方案予以实现:
6.一种co3o4/bi4o7/bi2o3异质结光催化剂的制备方法,其特征在于,包含以下步骤:
7.步骤一:称取适量的co(no3)2·
6h2o和c4h6n2,分别溶于甲醇和乙醇的混合溶液中,其中,甲醇和乙醇的体积比为1:1,分别形成溶液a和溶液b;
8.步骤二,待co(no3)2·
6h2o和c4h6n2在溶液a、b完全溶解后,将溶液a、b混合,搅拌30min,然后将混合液在30℃下保持24h,得到紫色的co-mof前驱体;
9.步骤三,将得到co-mof前驱体过滤,用甲醇和水交替洗涤三次,然后在50℃烘箱中干燥;干燥后在马弗炉里以升温速度2℃/min至350℃,并在350℃条件下煅烧2h,得到黑色的co3o4;
10.步骤四,取适量的naoh、nabio3·
2h2o和co3o4,分散于去离子水中,搅拌30min得到混合物,将混合物转移到聚四氟乙烯反应釜中,在180℃下水热18h;
11.步骤五,水热完成后,冷却至室温,用乙醇和去离子水交替洗涤,80℃下干燥过夜,得到co3o4/bi4o7/bi2o3异质结光催化剂。
12.根据申请人的研究表明,上述方法得到的co3o4/bi4o7/bi2o3异质结光催化剂,可用于可见光下活化过硫酸盐,降解水中有机污染物。
13.本发明的co3o4/bi4o7/bi2o3异质结光催化剂的制备方法,制备简单,得到的co3o4/bi4o7/bi2o3异质结光催化剂,具有下列优点:
14.1、在可见光下,利用co3o4/bi4o7/bi2o3异质结光催化剂能够更高效活化过硫酸盐,并产生空穴,超氧自由基,单线态氧等活性物种,对污染物的去除效果好。
15.2、在可见光下,使用co3o4/bi4o7/bi2o3异质结光催化剂活化过硫酸盐降解四环素,在ph为4.08-12.05范围内均具有很高的催化活性,对于废水ph适用范围有效拓宽,并且降低了酸碱调节所需费用。
16.3、co3o4/bi4o7/bi2o3异质结光催化剂用量较少,且在常温条件下能高效去除污染物,条件可控,经济可行,适合于难生物降解的有机废水处理。
附图说明
17.图1为co3o4/bi4o7/bi2o3异质结光催化剂的xrd谱图;
18.图2为co3o4/bi4o7/bi2o3异质结光催化剂的sem谱图;
19.图3为不同体系条件下四环素的降解对比图;
20.图4为不同初始ph值下体系对四环素降解图;
21.图5为可见光下的co3o4/bi4o7/bi2o3异质结光催化剂活化pms降解四环素的重复实验结果;
22.图6为可见光下的co3o4/bi4o7/bi2o3异质结光催化剂活化pms对不同污染物的降解图;
23.图7为可见光下的co3o4/bi4o7/bi2o3异质结光催化剂活化pms降解四环素的自由基捕获图。
24.以下结合附图和实施例对本发明进一步详细说明。
具体实施方式
25.利用活化过硫酸盐处理有机废水,首先应当有合适的催化剂,本实施例合成了一种co3o4/bi4o7/bi2o3异质结光催化剂,其中co3o4是以co-mof为前驱体合成,用于增加催化剂的比表面积。
26.以下给出co3o4/bi4o7/bi2o3异质结光催化剂的制备方法,包括:
27.用电子天平准确称量适量co(no3)2·
6h2o和c4h6n2分别溶于甲醇和乙醇的混合溶液(甲醇和乙醇的体积比为1:1)中,分别形成溶液a和溶液b;
28.待co(no3)2·
6h2o和c4h6n2分别在溶液a、b完全溶解后,将溶液a、b快速混合,搅拌30min,得到混合液;然后将混合液在30℃下保持24h,得到紫色的co-mof前驱体。
29.将得到的紫色co-mof前驱体过滤,用甲醇和水交替洗涤三次,然后在50℃烘箱中干燥;干燥后在马弗炉里以升温速度2℃/min至350℃,并在350℃条件下煅烧2h,得到黑色的co3o4。
30.将适量的naoh和nabio3·
2h2o,以及煅烧得到的co3o4分散于60ml去离子水中,搅拌30min,得到混合物;将混合物转移到100ml聚四氟乙烯反应釜中,在180℃下水热18h;
31.水热完成后冷却至室温,用乙醇和去离子水交替洗涤,80℃下干燥过夜,得到co3o4/bi4o7/bi2o3异质结光催化剂。
32.所得到的co3o4/bi4o7/bi2o3异质结光催化剂,在可见光下活化过硫酸盐降解水中有机污染物的实施过程如下:
33.在含有机污染物的废水中加入co3o4/bi4o7/bi2o3异质结光催化剂,室温下搅拌形成混合物;向所述混合物中加入过一硫酸盐,形成反应体系;开启金卤灯照射该反应体系,协同co3o4/bi4o7/bi2o3异质结光催化剂,催化活化所述过一硫酸盐产生自由基对有机污染物进行降解。
34.经申请人的试验表明,co3o4/bi4o7/bi2o3异质结光催化剂通过在可见光下活化过硫酸盐(pms)降解四环素(tc),由于光催化与pms活化的协同作用,在60min内有98.4%的tc被去除。循环性实验表明cbb+vis+pms体系具有良好的循环稳定性,循环5次tc降解率仅下降1.7%。对于不同污染物罗丹明b(rh b),环丙沙星(cip),盐酸土霉素(otc),左氧氟沙星(lev),该体系的降解效果也较好。并通过猝灭实验表明,空穴(h
+
),超氧自由基(
·o2-),单线态氧(1o2)为主要活性物种。
35.以下是发明人给出的实施例。
36.实施例1:
37.取3.492g的co(no3)2·
6h2o和3.94g的c4h6n2分别溶于40ml混合溶液(甲醇和乙醇的体积比为1:1)中,分别形成溶液a和溶液b;待co(no3)2·
6h2o和c4h6n2在溶液a、b完全溶解后,将溶液a、b快速混合,搅拌30min得到混合液,然后将混合液在30℃下保持24h,得到紫色的co-mof前驱体。
38.将得到的co-mof前驱体过滤,用甲醇和水交替洗涤三次,然后在50℃烘箱中干燥,干燥后在马弗炉里以升温速度2℃/min至350℃,并在350℃条件下煅烧2h,得到黑色co3o4。
39.将0.48g的naoh和0.56g的nabio3·
2h2o,以及0.112g的co3o4分散于60ml去离子水中,搅拌30min,得到混合物;将混合物转移到100ml聚四氟乙烯反应釜中,在180℃下水热18h。
40.水热完成后冷却至室温,用乙醇和去离子水交替洗涤,80℃下干燥过夜,得到co3o4/bi4o7/bi2o3异质结光催化剂。
41.分析co3o4/bi4o7/bi2o3异质结光催化剂的物相晶格如图1所示,形貌如图2所示。
42.图1给出了co3o4/bi4o7/bi2o3异质结光催化剂c的xrd图谱,在27.38
°
,33.04
°
,46.31
°
处的衍射峰归属于单斜bi2o3(jcpds no:41-1449)的(1 2 0)(-1 2 2)(0 4 1)晶面,而在31.32
°
、32.2
°
处的衍射峰则归属于bi4o7(jcpds no:47-1058)的(4 0 0)(0 4 0)晶面,在36.85
°
处衍射峰归属于co3o4(3 1 1)晶面,表明co3o4被成功复合到bi4o7/bi2o3样品上。
43.图2为co3o4/bi4o7/bi2o3异质结光催化剂的sem图,样品为co3o4包覆的微米颗粒。
44.应用实例1:
45.采用70w金卤灯加紫外滤光片(λ≥420nm)在室温下进行四环素(tc)降解实验。ph值不做调整。
46.将50mg的co3o4/bi4o7/bi2o3异质结光催化剂在黑暗条件下分散于100ml,10mg/l的污染物溶液,搅拌30min,达到吸附-解吸平衡。
47.设定不同的体系对四环素(tc)进行降解,在vis(只有可见光照)、pms(只加过硫酸盐)、vis+pms(可见光照射下加过硫酸盐)、vis+cat(可见光照射下加催化剂)、cat+vis+pms(可见光照射下加催化剂和过硫酸盐)五种体系。每隔一定时间后取3ml溶液,再通过0.22μm
的滤膜过滤,并使用uv-vis分光光度计(uv-6100pcs)在特征波长处测量吸光度。分析降解效果,如图3所示。
48.由图3可知,在只有光照条件下,tc只有6.9%被去除,可忽略。在只加入pms后,约17.2%的tc被去除,表明pms没有被有效活化。在可见光照射下加入pms,tc的去除率约26%,表明可见光可以活化pms,但活化效果较差。在可见光下加入催化剂,约47.7%的tc被去除,表明所制备的催化剂有一定的光催化效果,但效果不佳,而在光催化体系中引入pms,则对tc去除效率大幅提升,在60min内有98.4%tc被去除。这一结果表明cat,vis和pms这三者对于tc的降解都是必要因素,且只有三者的有效耦合组成cat+vis+pms体系对tc降解率最高,进一步表明高级氧化技术与光催化技术的耦合能有效去除tc污染物。
49.应用实例2:
50.采用70w金卤灯加紫外滤光片(λ≥420nm)在室温下进行四环素(tc)降解实验。用0.5mol/l的naoh和hcl调节溶液的初始ph值为4.08、6.02、8.25、10.16、12.05。
51.将50mg的co3o4/bi4o7/bi2o3异质结光催化剂在黑暗条件下分散于100ml,10mg/l的四环素溶液,搅拌30min,达到吸附-解吸平衡。每隔一定时间后取3ml溶液,再通过0.22μm的滤膜过滤,并使用uv-vis分光光度计(uv-6100pcs)在特征波长处测量吸光度。分析tc降解效果如图4所示。
52.由图4可知,在酸性条件下(ph=4.08),tc的去除率降低到94.9%,这主要是由于在酸性条件下,pms主要以h2so5为主,不能作为光生电子的受体,进而影响tc的降解。而在碱性条件下,tc的去除率也有所降低,可能是由于催化剂在碱性条件下表面带有负电荷,抑制了pms与其表面活性位点的接触。但体系在初始ph为4.08-12.05范围内对tc的降解效果良好,表明该体系具有宽的ph适应范围。
53.应用实例3:
54.采用70w金卤灯加紫外滤光片(λ≥420nm)在室温下进行四环素(tc)降解实验。ph值不做调整。
55.将50mg的co3o4/bi4o7/bi2o3异质结光催化剂在黑暗条件下分散于100ml,10mg/l的四环素溶液,搅拌30min,达到吸附-解吸平衡。每隔一定时间后取3ml溶液,再通过0.22μm的滤膜过滤,并使用uv-vis分光光度计(uv-6100pcs)在特征波长处测量吸光度。降解结束后对催化剂回收洗涤后,进行干燥,用于下一次循环实验。分析降解效果如图5所示。
56.由图5可知,cat+vis+pms系统经过5次循环,tc的降解率没有明显降低,仍达到96.7%,表明co3o4/bi4o7/bi2o3具有良好的循环稳定性,具有较好的实用能力和应用前景。
57.应用实例4:
58.采用70w金卤灯加紫外滤光片(λ≥420nm)在室温下进行不同污染物(即:罗丹明b(rh b),环丙沙星(cip),盐酸土霉素(otc),四环素(tc),左氧氟沙星(lev))降解实验。ph值不做调整。
59.将50mg的co3o4/bi4o7/bi2o3异质结光催化剂在黑暗条件下分散于100ml,10mg/l的不同污染物溶液,搅拌30min,达到吸附-解吸平衡。每隔一定时间后取3ml溶液,再通过0.22μm的滤膜过滤,并使用uv-vis分光光度计(uv-6100pcs)在特征波长处测量吸光度。分析不同污染物降解效果如图6所示。
60.由图6可知,体系对于不同污染物罗丹明b(rh b),环丙沙星(cip),盐酸土霉素
(otc),四环素(tc),左氧氟沙星(lev)在60min去除效率分别为100%,98.8%,99.2%,85.5%和72%。总的来说,体系对不同污染物去除效率较高。
61.应用实例5:
62.采用70w金卤灯加紫外滤光片(λ≥420nm)在室温下进行四环素(tc)降解实验。ph值不做调整。
63.将50mg的co3o4/bi4o7/bi2o3催化剂在黑暗条件下分散于100ml,10mg/l的四环素溶液,搅拌30min,达到吸附-解吸平衡。每隔一定时间后取3ml溶液,再通过0.22μm的滤膜过滤,并使用uv-vis分光光度计(uv-6100pcs)在特征波长处测量吸光度。甲醇(meoh)作为so
4-·

·
oh的猝灭剂,meoh和ipa来区分so
4-·

·
oh在降解过程中的作用。用乙二胺四乙酸二钠(edta-2na),对苯醌(bq),l-组氨酸(l-histidine)分别猝灭空穴(h
+
),超氧自由基(
·o2-)和单线态氧(1o2)。分析降解效果如图7所示。
64.由图7可知,在添加meoh和ipa后,降解效果仅下降3.6%和3.5%,表明so
4-·

·
oh不是tc降解过程的主要自由基。在添加l-histidine后tc降解率下降了7.6%,则1o2对于tc降解贡献较小。添加bq后,tc降解率下降了22.6%,表明
·o2-在降解过程起一定作用。而在添加edta-2na后,降解率下降了78.9%,表明h
+
是参与反应的主要自由基。因此5种自由基对降解反应贡献顺序为h
+

·o2->1o2>so
4-·

·
oh。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1