专利名称:用于压力摇摆吸附操作的改进的吸附床的制作方法
技术领域:
本发明涉及压力摇摆吸附系统,具体讲涉及适于空气分离操作的这种系统中使用的改进的吸附床。
低温空气分离工厂利用超低温度从空气中分离氧和氮。这种工厂一般利用少量能量,但是由之带来的投资费用高。由于这种高投资费用,使得低温空气分离厂仅在高流动容量操作下才具有竞争性。
对于较低容量的操作说来,低温空气分离工厂在经济上可能是不合算的,压力摇摆吸附(PSA)系统特别适合于各种重要的工业应用。例如,高纯氧被用于各种工业中,如化学加工、钢厂和纸厂,以及铅和气体生产工序之中。氮也被用于许多化学加工、精炼、金属生产和其它工业应用上。
在PSA工艺之中,原料气体混合物(如空气)含有某种较易吸附的成分和某种较难吸附的成分,例如空气的氮和氧,将其通到能够在较高吸附压力下选择性吸附较易吸附成分的吸附床的进气端。较难吸附的成分通过该床由其排气端加以回收。然后,使该床减压至较低的解吸压力下使所说较易吸附的成分解吸,从该床的进气端将其除去,接着再通入额外的原料气混合物进行再加压和吸附,以这种方式在该床中继续进行吸附-解吸-再加压的循环操作。这种PSA处理过程通常在多床系统中进行,其中每个床均采用PSA处理顺序,而且与该吸附系统的其它一些床中进行这种处理顺序互相衔接。在回收高纯氧产品作为空气中较难吸附成分的PSA系统中,每个吸附床一般都会包含一种能够选择性吸附氮作为较易吸附成分的吸附材料,而被选择性吸附的氮随后在将该床的压力从较高的吸附压力值降低至较低的解吸压力值时由该床解吸回收。回收氮产品的PSA系统同样是以采用从空气中选择性吸附氮作为其较易吸附成分的吸附为基础的。
从前,PSA空气分离系统采用二床和三床,床中使用公知的分子筛(如13X沸石分子筛材料)作为吸附剂。这种沸石分子筛材料和其它这类材料(如5A材料)能够从空气中选择性吸附氮,是平衡型吸附剂。因此,由于空气中的较易吸附的氮和较难吸附的氧之间在沸石分子筛材料床中建立起平衡条件的结果,在这种材料床的进气端形成被选择性吸附的氮的吸附前沿,并且向着排气端或氧产品端推进。
虽然在PSA操作中可以优选使用传统的沸石分子筛,但是对于从原料空气中选择性吸附氮并且回收氧或氮体为所需的产品气体来说,也可以采用专门改性的材料。因此,最近开发出了锂阳离子型传统的沸石X用于PSA处理之中。据发现,这种锂吸附剂(即LiX)显示出对于从空气或含极性较小或可极化性较小的分子(如氧)的其它气流中吸附氮来说具有令人十分满意的容量和选择性。
为了PSA处理操作而提出的LiX吸附材料是锂阳离子型沸石,其中骨架Si/Al2摩尔比为大约2.0~大约3.0,优选2.0~2.5,而且其中至少约88%(优选至少90%,更优选至少95%)的AlO2-四面体单元与锂阳离子缔合。这种被充分交换过类型的LiX对氮吸附性能,是从使用其中小于或等于86当量%阳离子是锂而其余基本上为钠的LiX材料所能得到的结果所完全预期不到的。
现已发现,当将所说的13X吸附材料与二床真空PSA系统(VPSA)结合使用时,可以使能量需求和投资成本显著降低。这类真空系统通常是用高于大气压的较高吸附压力操作的,而且解吸压力较低处于低于大气压的范围内。现在发现,上面所说的那种较新且经专门改性过的吸附材料使VPSA系统的能量需求极大地降低。但是,由于生产这种专门改性的吸附材料需要更复杂的处理,所以使用这种材料(以下叫作“专用吸附剂”材料)所需的成本相当高,而且使用这种专用吸附剂的VPSA处理工艺往往十分昂贵。在通常尺寸的VPSA系统中,在长约6英尺的两个床中装入传统的13X吸附剂或专用吸附剂材料。使用专用吸附剂的这种VPSA系统,在能量需求上虽然比使用传统的13X吸附剂的系统低15%,但是这种专用吸附剂系统与同尺寸的传统吸附剂VPSA系统相比,吸附剂材料成本却高的多。
虽然这种专用吸附材料在VPSA系统中使用的性能理想,但是应当看到这种专门改性的材料因成本高而防碍它在实际的工业VPSA系统中使用。因此,本领域中十分希望针对改进的VPSA处理工艺作进一步研究,尤其是找出一些措施,使得这种专用吸附剂材料在VPSA系统中能够被更充分利用而又不会产生现在那种与之有关的材料成本高的缺点。
因此,本发明的一个目的是提供改进的VPSA系统和工艺。
本发明的另一目的是提供一些能耗低和投资费少且综合性能理想的VPSA系统用吸附剂床。
以下针对这些发明目的和预期的其它目的对本发明作详细说明,本发明的新特点在后附的权利要求中将专门指出。
本发明提供了VPSA空气分离系统用的一些复合吸附剂床,其中在所说床的进气端使用专用吸附剂材料,而在所说床的排气端使用13X吸附剂材料。所说专用吸附剂材料的空气分离性能得以实现,而且是在与全专用吸附剂材料PSA系统所能得到的相比投资费用显著降低的条件下获得的。
以下参照唯一的附图
对本发明进行说明,附图中的曲线是从13X床至所有专用吸附剂床在床组成变化的条件下产品成本与吸附剂床组成间的关系曲线。
本发明目的通过采用传统的13X吸附剂材料和专用吸附剂材料的复合吸附剂床而得以完成。仅采用专用吸附剂的VPSA系统与可比较的13X系统相比,能耗低但吸附剂成本高得多。而采用本发明的复合吸附剂床与采用专用吸附剂的VPSA系统相比,能耗低很少或几乎没有增高,但是专用吸附剂分子筛成本却显著地节省,节省幅度取决于床中所用每一种吸附剂材料的数量和构型。
为了寻找出使用本发明的复合隔膜时满足能耗和成本上综合性能要求的条件,试验中使用了2.5LiX材料作为所说的专用吸附剂材料,同时将传统的吸附剂加到其顶端或产品端。据有益且出乎意外地发现,复合吸附剂床把专用吸附剂的较高性能特点与所希望的较低投资费用二者结合在一起。
显示出本发明优点的试验结果列于下表中,为便于比较在归一化的基础上列出了生产氧用一般的VPSA空气分离系统上的投资、能耗和产品成本。附图中示出了上些特定复合床组合的产品成本。
表VPSA复合床归一化的投资能耗 产品成本全传统的吸附剂1.001.00 1.00
0.85 0.86 0.85全专用吸附剂 0.900.85 0.88从这个具有代表性的试验结果发现,为了便于工业上进行VPSA操作,从专用吸附剂床开始,最好在床的顶端或产品端加入13X吸附剂。因此将会看到,采用复合吸附剂床能够使归一化的产品成本降低幅度超过采作全专用吸附剂的床,而且归一化的投资费用在很少或不牺牲归一化能耗的条件下得到明显降低。
在实际工业上实施本发明时,从整个吸附剂床进料端开始的专用吸附剂床比例,可以占整个床的大约25%~大约95%,在本发明的优选方案中专用吸附剂床比例占整个床的大约50~大约75%。
属于本发明范围的还包括按这样方式采用本发明复合吸附剂床的一些方案,其中在所说床的进气端,即上述专用吸附剂-传统吸附剂复合床的上游采用部分传统的吸附剂床。在这些可以采用但非优选的方案中,在进气端的选择性传统床部分或传统床,一般占三层总复合吸附剂床的大约5%~大约30%。应当体会到,实施这种三层吸附剂床的方案时,下游所用的专用吸附剂和传统吸附剂的比例或床部分应当作相应的调整,使之符合给定用途的要求。对于上面提到的那种优选的专用吸附剂一传统吸附剂复合物来说,处于三层吸附剂的选择性方案中床的下游产品端的传统吸附剂部分,一般应至少占总床的大约25%,但是此床部分的比例也可以根据具体空气分离的用途要求变化。
本发明虽然是就其具体方案加以说明的,但是应当知道,只要是不超出后附权利要求中所说的本发明范围,可以对本发明的细节作出各种变化和更改。因此,本发明可以用于这样一些空气分离操作之中,其中从所说床的排气端通常以纯态下或者说在大约88%~大约93%纯度下回收氧(空气中较难吸附的成分)作为产品氧气,或者在解吸时从所说床的进气端可以回收氮(在本发明复合床中使用的平衡型吸附剂的较易吸附的成分)作为所需的产品气体。PSA操作的吸附-解吸-再压缩处理顺序也可以更改成包括本领域中公知的其它处理步骤,例如顺流减压-压力平衡步骤,此步骤中一旦完成较高压力下的吸附就从一个床的排气端排出气体,使之通到初始处在较低压力(如较低的解吸压力)下的另一个床的排气端,在其间进行压力平衡以便回收所需的能量。因此,本发明可以用于至少有一个吸附剂床的PSA系统之中,在实际工业应用本发明时优选多床系统,最优选二床系统。
在本发明的复合吸附剂床VPSA系中使用的压力条件,可以根据系统和操作的总要求改变;应当注到较高的压力将处于高于大气压的范围内,而且一般扩展到大约150磅/吋2或更高;而较低的解吸压力将处于低于大气压的范围内,而且可以低到大约3磅/吋2或更低。
本发明就13X材料作了具体说明,但是应当想到其它的传统未离子交换过的沸石分子筛材料也可以与本发明的专用吸附剂(即锂阳离子型沸石X,LiX)结合使用。
如上所述,实施本发明时作为吸附剂床的专用吸附剂部分优选使用的LiX吸附剂材料,是这样一些锂阳离子型沸石X,其中骨架Si/Al2摩尔比为大约2.0~大约3.0,优选2.0~2.5,而且其中至少有大约88%(优选至少90%,更优选至少95%)的AlO2-四面体单位与锂阳离子缔合。据进一步发现,在沸石X骨架中的AlO2-四面体单元的相对比例从占总四面体单元数的44.4%增加到所说的总单元数的50%,同时相应增加Li+离子(即Li+离子的当量百分数两种情况下均相同),这种作法也可以用来提高所说沸石吸附氮的容量和选择性;此发现远远超出曾经简单地提到过LiX材料中所指出物阳离子数增加的程度。
制备实施本发明时使用的LiX材料时可以方便地使用按传统方式得到的沸石X原料。两种这样的材料是SiO2/Al2O3之比分别为2.5和2.0的沸石X,它们主要含钠阳离子,即NaX材料。按照授予Milton的第2882244号美国专利中的教导,使用硅酸钠、铝酸钠和水作为试剂,反应混合物按氧化物摩尔比表示的组成为3.5Na2O∶Al2O3∶3.0SiO2∶144H2O在大约100℃温度下可以用水热法合成所说的2.5NaX材料。
所说的2.0NaX材料可以在混合的钠-钾形式下合成如下;首先将208克Al(OH)3溶解在267克50%NaOH水溶液中,利用加热和搅拌制成第一溶液,即溶液(a);在1000克水中溶解287克85.3%的KOH粒,然后混合与671克50%NaOH水溶液所形成的溶液,制成溶液(b);将溶液(a)缓缓加到溶液(b)中制成溶液(c),冷却到4-12℃;用1131.7克水稀释453.25克40级硅酸钠(9.6%Na2O,30.9%SiO2)制成溶液(d);在处于混合器内的溶液(d)中加入冷溶液(c),低速下混合3分钟。在制备高质量产品时,重要的因素是冷却和避免最终混合时产生过量机械能。直到大约4分钟之前不应出现胶凝现象。凝胶在36℃下陈化2-3天,并且在70℃下消化16小时。然后将所需的沸石过滤分出,滤饼内NaOH水溶液(pH=12)漂洗,漂洗液量为母液容积的7倍。经漂洗的产物在4升NaOH溶液(pH=10)中再造浆,然后经过滤和水漂洗回收之。此再造浆操作最好再重复两次,然后在空气中干燥分出的产物。此干燥产物在100ml 1%NaOH溶液中浆化后使之在浆状下90℃保持21小时。过滤后滤饼在60℃下用1000mlNaOH溶液(pH12)再造浆30分钟,然后过滤。些再造浆过程最好再重复两次,然后过滤回收固体物,经NaOH水溶液(pH9)洗涤后在空气中干燥。
使用按上述方式制备的2.5NaX,可以按下述方式生产沸石“预制”烧结块首先用pH12的、基本上由氢氧化钠和水组成的苛性钠水溶液洗涤原料沸石晶体,然后用水洗到pH9;再将洗过的沸石晶体与Avery粘土(一种市售的高岭土型粘土)按80wt%沸石和20wt%粘土的比例混合;接着使此沸石混合物与足够的水混合制成一种可挤压的物质,此物质具有足够的湿材强度(green strength)使挤压粒能耐受随后的煅烧步骤,此步骤中在大约650℃温度下煅烧大约1小时所说的高岭土型粘土转变成活性的偏高岭土型;煅烧后,冷却结合的烧结块,将其浸泡在大约100℃的苛性钠水溶液中消化,使大部分偏高岭土转变成沸石晶体,主要是沸石X晶体。从苛性钠消化液中分出经消化的烧结块之后,再用新鲜的氢氧化钠水溶液(pH12)洗涤,最后用水洗至pH9-10,然后在空气中干燥;将干燥过的产品粒粉碎后过筛制成传统粒度(如16×40目)的颗粒。
这种粒度的颗粒可以通过在真空中375℃温度下加热约2.5小时的方法活化。以此方式进行活化处理应小心,以便使该沸石NaX晶体不致因包藏和/或吸附水形成蒸汽而遭受过度的水热冲击。这样形成的活化材料是2.5NaX活化材料。
制备LiX材料时,可以使未活化的过筛颗粒经受离子交换处理,以便使所说的颗粒在玻璃柱中与用LiOH调节pH为9.0的氯化锂水溶液(1摩尔)流在80℃温度下接触。所用氯化锂溶液的量应能保证使所说的沸石颗粒在大约14小时以上的一段时间内与按化学计四倍过量的锂离子充分接触。离柱的离子交换溶液不再循环。经离子交换的产物水洗后,用LiOH调节pH为9,经测定其中94%被离子交换。
使用按上述方法制备的低氧化硅2.0NaKX材料,碱金属阳离子可以被锂阳离子置换到大于99当量%的程度,必要时可以用LiCl水溶液(pH9,用LiOH调pH)作离子交换。此物质在粉末态下包含2.0LiX(99%)材料。
本领域中普通技术人员知道,在不属于本发明部分内容的制备LiX操作细节上可以作出各种变化和改进。基于此认识应当注意到,例如在按上述的容量法用LiCl水溶液(用LiOH调节pH为9)对2.5NaX材料作离子交换处理时,可以使用大于或小于四倍量的LiCl,以便使形成的产品具有各种数量的锂阳离子。此外,还应当知道采用这种离子交换法时可以使用碳酸锂或其它这类锂盐代替碳酸锂制备所需的LiX材料。
人们将会发现,本发明为PSA领域提供了一种所希望的进步。由于因VPSA操作所带来的产品成本能够显著降低而无通常因使用专用吸附剂而造成成本上升的缺点,所以本发明能够使VPSA操作更有效地实施,从而能满足人们在各种实际工业操作中对于氧和氮的日益增长的需求。
权利要求
1.一种从空气中回收氧和氮用的真空压力摇摆吸附系统,所说的系统循环地在高于大气或大气的较高吸附压力下和低于大气的较低解吸压力下操作,而且所说的系统包含一个或多个吸附剂床,每个床能够选择性地吸附氮作为原料空气中较易吸附的成分;改进之处包括在作为每个所说的吸附剂床中结合一个复合床,所说的复合床在进气端包含专用吸附剂材料而在相反端,即其产物端包含传统的未经离子交换过的沸石X吸附剂材料;所说的专用吸附剂材料从所说明进气端延伸,从总吸附剂床的大约25%延伸到大约95%;所说的专用吸附剂材料包含锂阳离子型沸石X,其中Si/Al2摩尔比为大约2.0至大约3.0而且其中至少大约88%的AlO2-四面体单位与锂阳离子缔合;借以与全专用吸附剂系统相比使产品成本降低结果令人满意而又不使能耗显著增加。
2.权利要求1的系统,其中所说专用吸附剂床的比例在总床中占大约50%~大约75%。
3.权利要求1的系统,其中所说的传统吸附剂材料包括13X。
4.权利要求3的系统,其中所说的专用吸附剂材料中至少有90%与锂阳离子缔合的AlO2四面体单位。
5.权利要求4的系统,其中至少95%的AlO2四面体单位与锂阳离子缔合。
6.权利要求5的系统,其中所说专用吸附剂床的比例占总床的大约50%至大约75%。
7.权利要求1的系统,其中使用所说的系统适用于生产氧产品。
8.权利要求1的系统,其中使用所说的系统适用于生产产品氮。
9.权利要求7的系统,其中使用所说的系统适用于生产纯度约88%至约93%的产品氧。
10.权利要求1的系统,其中在专用吸附剂材料和传统吸附剂材料的所说复合床的上游的进气端包括传统的未经离子交换过的沸石X吸附剂材料,所说的专用吸附剂材料在每床端的传统吸附剂材料之间形成所说床的中间部分。
11.权利要求1的系统,其中处于床进气端的所说传统吸附剂材料在总床中所占的比例为大约5%至大约30%。
12.权利要求10的系统,其中所说的传统吸附剂包括13X。
13.权利要求11的系统,其中所说的传统吸附剂包括13X。
14.权利要求13的系统,其中至少大约95%的AlO2四面体单位与锂阳离子缔合。
15.权利要求6的系统,其中所说的系统包括两个吸附剂床。
16.权利要求3的系统,其中所说的系统包括两个吸附剂床。
17.权利要求6的系统,其中所说的系统包括两个吸附剂床。
18.权利要求10的系统,其中所说的系统包括两个吸附剂床。
全文摘要
由传统的13X吸附剂和经专门阳离子交换过的吸附剂材料组成的复合吸附剂床,能够使用于空气分离的真空压力摇摆吸附操作在氧或氮的产品,成本在较低的有利条件下进行。
文档编号B01D53/047GK1073119SQ9211370
公开日1993年6月16日 申请日期1992年12月10日 优先权日1991年12月11日
发明者L·J·图森特 申请人:普拉塞尔技术有限公司