专利名称:控制流体流动的静电流体加速器和方法
技术领域:
本发明涉及产生电晕放电的方法和装置,具体来说,涉及用于流体加速的方法和 装置,以便利用离子和用于运动的此类电场来提供一流体(尤其是空气)的速度和动量,以 及对这样的流体的控制。
背景技术:
许多专利(例如,见授予Siannon等人的美国专利Nos. 4,210, 847和Spurgin的 4,231,766)已经认识到这样的事实电晕放电可用来产生离子和带电粒子。这样的方法广 泛地用于静电除尘器和电风机,如由Chapman&Hal 1(1997)出版的“实用静电除尘器”一书 中所述。电晕放电装置可在成对的电极(例如,一电晕放电电极和一吸引电极)上施加一 高电压来形成。其中,一高压电源施加到成对的电极上,由此产生电晕放电。诸电极构造和 布置成在其中一个电极(称之为电晕放电电极)附近产生一不均勻的电场,于是,产生一电 晕和朝向附近的互补的电极(称之为收集或吸引电极)的合成的电晕电流。电晕放电电极 需要的几何形通常要求一尖端或锋口朝向电晕电流流动方向,例如,面向收集或吸引电极。因此,至少电晕放电电极应该小或包括尖端或锋口,以便在电极附近产生需要的 电场梯度。电晕放电发生在相对狭窄的电压范围内,介于一电晕发作的下限电压和一较高 的击穿(或火花)电压之间。在电晕开始电压以下,没有离子从电晕放电电极中发射,因此, 没有产生空气的加速。另一方面,如果施加的电压接近介电击穿或电火花电平,则可造成火 花和电弧,其中断电晕放电过程和形成不愉快的电弧声音。因此,一般有利的是,在这些值 之间保持高电压,具体来说,接近但略微低于火花电平,这样,流体加速是最有效的。有许多专利着力于解决静电装置中产生火花的问题。例如,Baker的美国专利 No. 4,061,961描述了一用来控制两级静电除尘器电源的工作循环的电路。该电路包括一与 电源变压器的初级绕组串联连接的开关器件以及一可工作来控制开关器件的电路。设置一 适于监控电源变压器的初级绕组中电流的电容性网络来操作该控制电路。在正常的工作工 况下,即,当电源变压器的初级绕组中的电流在标称的限制内时,电容性网络操作该控制电路,以允许电流流过电源变压器的初级绕组。然而,一检测到与起弧产生的高的瞬时电压相 关的增加的初级电流,电弧发生在除尘器的部件之间并由电源变压器的次级绕组反映到电 源变压器的初级绕组,此时,电容性网络操作该控制电路。与此相呼应,控制电路致使开关 器件抑制电流流过变压器的初级绕组,直到与高的瞬时电压相关的起弧工况被压制或其它 方式抑制。在高瞬时电压终止之后的一定时间间隔后,开关器件对初级绕组自动地重新建 立起电源,由此,恢复静电除尘器电源的正常工作。Baker等人的美国专利No. 4,156,885描述了一用于静电除尘器电源的自动电流 过载保护电路,其在检测到一持续的过载之后进行工作。Weber的美国专利No. 4,335,414描述了一用于静电除尘器空气清洁器电源的自 动电子恢复电流切断。一保护电路利用一铁谐振变压器来保护电源,所述变压器具有一初 级电源绕组、一提供相对高电压的次级绕组以及一提供相对低电压的第三绕组。在离子发 生器或集电器单元中如果发生过载,则保护电路通过检测来自高电压的一电压并将检测到 的电压与固定参考值比较,以此操作保护电路来抑制电源的工作。当检测电压下跌到低于 一预定值时,通过变压器初级的电流被抑制一预定的时间。电流自动地恢复,而电路将循环 地致使电源关闭,直到故障被清除为止。参考电压取自第三绕组电压,导致提高电路的灵敏 度缩短过载工况的时间。如现有技术所认识的,任何高电压的施加会呈现放电的危险。对于某些应用放电 是理想的。对许多其它高电压的应用,电火花是一应该避免或防止的不理想的事情。在高 电压保持到接近一火花电平(即,介电击穿电压)的应用中,这种情况尤其如此。例如,静 电除尘器以可能的最高压电平工作,这样,不可避免地产生电火花。静电除尘器通常保持火 花发生率在每分钟50-100次。当一火花发生时,电源输出通常跌到零伏,仅在经过称为“电 离时间”的预定时间段之后,才恢复工作,在所述的“电离时间”过程中,空气放电并重新建 立火花前电阻。每一火花事件降低高电压装置的总效率,并且是电极变劣和老化的主要原 因之一。火花的产生还形成一种在许多环境和相关的应用中不能接受的不愉快的声音,例 如,家庭使用的静电空气加速器、过滤器和各种用具。除了由火花产生的不希望的噪音之外,其它的无效也烦扰现有技术。例如,成对的 电晕放电和吸引电极应该构造和布置成产生一非均勻的电场,至少一个电极,即,电晕放电 电极,通常是相对小和/或包括尖端或锋口,以便在电极附近提供一合适的电场梯度。有好 几种已知的结构用来在电极之间施加电压,以便为离子的产生有效地发生需要的电场。Lee 的美国专利No. 4,789,801和Taylor等人的专利Nos. 6,152,146描述了施加一脉冲电压波 形横贯成对电极,该波形具有10%和100%之间的工作循环。这些专利描述了通过生成的 电晕放电装置,与稳态的D. C.电源的应用相比,这样的电压发生减小了臭氧的发生。不管 为减小臭氧发生的该种电压发生的实际利益如何,通过使用小于100%的工作循环显著地 减小空气流的发生,而合成的脉动的空气流被认为是不愉快的。Sherman等人的美国专利No. 6,200, 539描述了使用高频的高压电源来产生频率 约20kHz的交变电压。这样的高频高电压产生要求一大量的相当昂贵的电源,这样的电源 通常招致高的能量损失。Weinberg的美国专利No. 5,814,135描述了一种高压电源,它产生 非常窄(即,陡、短的持续时间)的电压脉冲。这样的电压发生可产生仅相对小量和小比率 的空气流,且不适于高的空气流的加速或运动。
Lee 的美国专利 No. 4,789,80Uffeinberg 的 5,667,564,Taylor 等人的 6,176,977 和Mkakihra等人的4,643,745还描述了空气运动装置,它们使用一静电场来加速空气。 在这些装置中达到的空气速度非常低,对于商业的或工业的应用并不实用。Edwards的美国专利Nos. 3,699,387和3,751,715描述了使用接连放置的多级静 电空气加速器(EFA)来提高空气的流动。这些装置使用一导电网作为吸引(收集)电极, 该网分离附近的电晕电极。网呈现一相当大的空气阻力和减缓空气流动,由此,阻止EFA达 到要求的较高的流率。遗憾的是,这些装置没有能够产生商业上可行的气流量。提供多级传统的空气运 动装置本身不能提供一答案。例如,接连放置的五个串连级的静电流体加速器仅比单独一 级的加速器多供应17%的气流。例如,参见Spurgin的美国专利No. 4,231,766。同样地, 电极相对于彼此变化相对位置,对EFA的性能和流体速度仅提供有限的改进。例如,美国专 利No. 4,812,711报告了产生仅0. 5m/s的空气速度,远低于商用风扇和鼓风机可望达到和 可提供的速度。因此,需要有一实用的静电流体加速器,其能产生商用上有用的流率,同时,将诸 如火花之类的不希望的和寄生的效应减到最小。
发明内容
本发明包括涉及离子发生装置和过程的诸特征,以提供高效率、高输出,以及减少 或消除诸如减少的火花和臭氧发生之类的寄生效应。业已发现火花开始电压电平即使对相同组的电极也不具有一恒定值。火花是不能 有把握预言的突发事件。电火花的发生通常是一可由多种原因造成的不可预测的事件,如 果不是全部如此,则许多情形是瞬时的情况。火花的开始趋于随诸如湿度、温度、沾污等的 流体(即,介电的)条件而变化。对于同一组电极,火花电压可具有大至10%或以上的开始 裕度的变化。本行业中已知的高电压应用和装置通常处理仅在火花发生以后的火花。如果要避 免所有火花,则工作电压必须保持在相对低的电平。必要减小的电压电平降低了空气的流 率,也降低诸如静电流体加速器和除尘器之类的相关装置的装置性能。如上所指出的,现有技术和装置仅处理火花开始之后的火花事件;还没有商业上 实用的技术方案来阻止火花的发生。提供一动态机构来避免火花发生(而不是仅熄灭一现 存的电弧),同时,将电压电平保持在火花可能产生的范围之内,这将导致一更加有效的装 置工作,同时,避免伴随火花发生的电弧声音。本发明的一个特征是为诸如(但不限于)电晕放电系统之类的装置提供高电压的 发生。本发明提供在全部的介电击穿和火花放电之前的一定时间内探测火花的开始。使用 “无惯性的”高压电源,本发明的一特征可控制与火花相关的电气放电。因此,实际的做法 是,使用这样一高压电平,其大致上更靠近火花开始电平,同时又防止火花发生。本发明的诸多特征和方面还涉及在下面情形中的火花控制,例如,不要求绝对的 火花抑制,或甚至可以是不要求的情形。根据本发明的一个方面,一火花控制装置包括高电源和一构造来监视提供给一负 载装置的电流的参数的探测器。响应于这些参数来识别火花前的条件。一开关电路响应于火花前的条件的识别,以便控制提供给负载装置的电流。根据本发明的一特征,高压电源可包括这样一高压电源,其构造成将一初级电源 变换成一高压功率馈送,以供应电流。根据本发明的另一特征,高压电源可包括一递升的电源变压器,而高压电源包括 一交流电(ac)脉冲发生器,其具有一连接到递升电源变压器的初级绕组的输出。一整流电 路连接到递升电源变压器的次级绕组,以提供高压电平的电流。根据本发明的另一特征,高压电源可包括一具有低惯性输出电路的高压电源。根据本发明的另一特征,高压电源可包括一可工作来监视电流的控制电路。响应 于探测到的火花前的条件,电流的电压降低到一不引导火花发生的电平(例如,低于火花 的电平)。根据本发明的另一特征,负载电路可连接到高压电源上,以便响应于识别的火花 前的条件来有选择地接受电流的一相当的部分。负载电路可以是一用来耗散电能的电气装 置(例如,将电能转换成热能的电阻器)或一用来储存电能的电气装置(例如,电容器或电 感器)。负载装置还可包括某些工作装置,例如,不同级的电晕放电装置,其包括多个电极构 造来接受电流而形成一电晕放电。电晕放电装置可以是呈静电空气加速装置、静电空气清 洁器和/或静电除尘器的形式。根据本发明的另一特征,开关电路可包括电路,除了由电源供电初级负载装置之 外,所述电路还用来有选择地向辅助装置供电。因此,如果探测到一初始的火花,则响应于 识别到的火花前的条件,将有规律地供应到初级装置的功率的至少一部分可分流到辅助装 置,由此,降低初级装置内的电压并避免火花发生。一个或两个初级负载装置可以是静电空 气处理装置,其构造成在由电晕放电结构产生的静电力的影响下加速流体。根据本发明的另一特征,探测器对以下的现象敏感包括电流电平或波形的变化、 电压电平或波形的变化,或与火花前的条件相关的磁的、电的或光的事件。根据本发明的另一方面,控制火花的方法可包括对装置供应一高压电流,并监视 高压电流以探测该装置的火花前的条件。响应于火花前的条件来控制高压电流,以便控制 与火花前的条件相关的火花事件的发生。根据本发明的另一特征,监视的步骤可包括检测高压电流中的电流尖峰。根据本发明的一特征,供应一高压电流的步骤可包括将一电源从一初级电压电平 变换到一高于初级电压电平的次级电压电平。然后,次级电压电平的电源进行整流而将高 压电流供应到装置。这可包括减小输出电压或装置处的电压,例如,在一电晕放电的空气加 速器的电晕放电电极上的电压电平。电压可减小到不引导火花发生的电平。控制也可通过 安排高压电流的至少一部分到辅助的负载装置来实现。可通过将一电阻器切换到供应高压 电流的高压电源的一输出电路中来实施上述安排。根据本发明的另一特征,附加的步骤包括引导流体到一电晕放电电极,用高压电 流对电晕放电电极通电,产生一电晕放电进入到流体中,并在电晕放电的影响下加速流体。根据本发明的另一方面,静电流体加速器可包括阵列电晕放电和收集器电极,以 及电气上连接到阵列的高压电源,以便对电晕放电电极供应高压电流。一探测器可构造来 监视高压电流的电流电平,并响应地识别出火花前的条件。一开关电路可响应于识别的火 花前的条件而控制高压电流。
根据本发明的一特征,开关电路可构造成通过响应于火花前的条件由高压电源来 抑制高压电流供应到电晕放电电极。根据本发明的另一特征,开关电路可包括一泄放电阻,其构造成响应于识别的火 花前的条件接受至少一部分高压电流。业已发现电晕放电火花之前先有某种可观察到的暴露一火花事件即将发生的电 气事件,并可监视来预言介电击穿何时即将发生。火花的指示预兆可以是一电流的增加,或 电晕放电附近的磁场的改变或变化(例如,一递增),或在电路或电极环境内的其它可监视 的情况。尤其是,通过试验方法已经确定,火花事件发生之前通常先有电晕电流的增加。该 电流的增加发生在火花事件之前的一短时间内(即,0.1-1.0毫秒)。电流的增加可以呈一 短时间的电流尖峰的形式,其在相关的电气放电之前显现约0. 1-1. 0毫秒(msec)。该电流 的增加基本上与电压变化无关。为了防止火花事件,必须探测初始的电流尖峰事件,并急剧 地将施加到和/或在电晕放电电极的电压电平下降到火花电平之下。两种条件应该得到满足,以便能控制这样的火花。首先,高压电源应能在火花事件 发生之前,即,在从事件探测直到火花事件开始的时间段之内,快速地下降输出电压。第二, 电晕放电装置应能放电和储存电能,即,火花前的放电。电晕电流增加和火花之间的时间在0. 1-1. Omsec的量级上。因此,储存在电晕放 电装置(包括电源和通电的电晕放电电极)内的电能应能在较短时间,即,在亚毫秒范围的 时间内耗散储存的能量。此外,高压电源应具有“低惯性”特性(即,能够在其输出上快速 地变化一电压电平)和中断电压发生的电路,较佳地在亚毫秒或毫秒范围内。这样一快速 电压下降是实际可行的,这可使用一高频切换的高压电源工作,工作范围在IOOkHz至IMHz 内,其具有低的储存能和快速地下降或关闭输出电压的电路。为了提供这样的能力,电源应 该在一“关闭”周期(即,不连续高电压输出所需要的时间)在高电压开关频率下工作,所 述“关闭”周期小于电晕电流尖峰探测和任何生成的火花事件之间的时间。由于本技术行 业的技术状态的电源可在高达IMHz的开关频率下工作,具体来说,一合适设计(例如,无惯 性)的电源可以在需要的亚毫秒范围中断电流的发生。即,能够关闭电源,并将输出电压显 著地降低到安全的电平,即,降到远低于呈火花形式的电气放电开始的电平之下。 有不同的技术用来探测在电火花之前的电气事件。一电流传感器可用来测量峰值 或平均值,或RMA (均方根),或任何其它输出电流的数量或值,以及电流的变化率,即,dl/ dt。或者,可使用一电压传感器来探测电源的电压电平或一 AC分量的电压电平。可以用来 监视识别即将来临的火花事件的另一参数是输出电压的下跌,或输出电压的交流分量的电 压对时间的一阶导数(即,dV/dt)。还可探测电场或磁场强度或在呈火花形式的电气放电 前的电晕放电内的其它变化。这些技术的一个共同特征在于,电晕电流尖峰的增加不伴随 有输出电压的增加或任何显著的电源波动。 可采用不同的技术来快速地降低由电源产生的输出电压。一较佳的方法是关闭功 率晶体管,或SCR,或电源的任何其它开关部件,它们形成供应给递升变压器的初级的脉动 的高频ac电,以便中断电功率产生的过程。在此情形中,开关部件变得非工作的,且没有电 功率产生或供应到负载上。该方法的缺点在于,积累在电源部件内残余能量,尤其是,在诸 如电容器和电感器(包括杂散电容和漏电感)的输出滤波阶段中的能量必须释放到某些地 方去,即,排放到一合适的散能装置,通常称之为“接地”。如果没有某种快速的排放机构,则由电源储存的残余能量就可能释放到负载内,因此,使输出电压下降(即,“跌落”)的速率 减慢下来。或者,一较佳的结构和方法在电气上“短路”磁性部件(变压器和/或多匝电感 器)的初级绕组(即,互连绕组的接线端),以耗散磁场击穿所储存的任何能量,由此确保 没有能量传输到负载上。其它更基本的方法短路电源的输出,达到一比较低值的电阻。然 而,该电阻应比火花电阻高得多,同时,应小于待供电的电晕放电装置的工作电阻,就在火 花事件发生之前的时刻所出现的那样。例如,如果一高电压电晕装置(例如,一静电流体加 速器)就在火花探测之前消耗ImA电流,且在一火花事件过程中(或,其它短路情况)通过 一限流装置(例如,串连的限流电阻)来限制来自电源的输出电流至1A,则横贯负载(即, 电晕放电装置的电晕放电电极和吸引器电极之间)施加的“泄放”电阻应逐步进展到大于 ImA(即,提供一较低的电阻和由此传导大于正常工作负载电流的电流),但小于1A( S卩,小 于最大短路电流所限制的电流)。该附加的泄放电阻可以通过一高电压簧片型继电器或其 它高电压高速继电器或开关部件(例如,SCR、晶体管等)连接到电源输出。无惯性的高压 电源的共同的和极为重要的特征在于,它可在短时间和某时刻中断电功率的发生,所述短 时间小于从电气事件前起和指示一初始的火花事件之间的时间,所述时刻是在没有一定干 预情况下火花实际地已经发生的时候,即,通常是亚毫秒或毫秒范围。这样一无惯性电源的另一重要特征在于,任何积累和储存在电源部件内的残余能 量不应显著地减慢下来,或其它方式阻碍负载内,例如电晕放电装置内的放电过程。例如, 如果电晕放电装置排放其自己的电能在50毫秒内,且到火花事件前的最小期望时间是100 毫秒,则,电源不应添加大于50毫秒到排放时间,这样,实际排放时间不超过100毫秒。因 此,高压电源不应使用任何像电容器或电感器之类的储能部件,它们会在诸如功率晶体管 之类的有源部件关闭之后排放其能量到电晕放电装置内。为了提供该能力和功能,任何高 电压变压器应具有一相对小的漏电感和或者小或者没有输出滤波电容。业已发现包括电压 放大器和回扫电感器的传统的高压电源的布局一般不适合这样的火花控制或预防。本发明还着力解决现有技术的不足,以认识或评价这样的事实离子发生过程比 仅将一电压施加到两个电极来得复杂。相反,现有技术的系统和方法一般不能产生相当的 气流,同时不能限制臭氧的发生。与电晕相关的过程具有三个共同的方面。第一方面是流体介质内的离子的发生。 第二方面是通过发射的离子放出流体分子和外界粒子。第三方面是放出粒子朝向一相对 (收集器)电极的加速(即,沿电力线)。由离子造成的空气或其它流体加速取决于离子的数量(即,数目)和其在流体离 子附近和因此排斥流体离子朝向相对电极的感应电荷的能力。同时,臭氧的发生基本上正 比于施加到电极上的功率。当离子被感应进入到流体中时,它们趋于将本身附连到粒子和 电荷中性的流体分子上。各粒子可接受取决于特殊粒子大小的仅有限量的电荷。根据以下 的公式,最大电荷量(于是称之为饱和电荷)可表达如下% = {(l+2X/dp)2+〔 1/(1+2 λ/dp)〕*〔(εΓ-1)/(εΓ+2)〕ε 0dp2E,其中,dp = 粒子大小,ε ^是电极对之间的介电材料的介电常数,而ε。是真空中介电常数。从此方程式可见,它遵从这样的规律引入到流体内的一定量离子将使附近分子 和周围粒子带电到某种最大的电平。该离子的数量代表从一个电极流到另一电极的电荷数 量,并确定两个电极之间流动的电晕电流。
一旦带电,流体分子沿电场的方向被吸引到相对的收集器电极。电场力F施加在 其上的该有方向的空间移动具有电荷Q的分子,电荷Q依赖于电场强度E,即,其又正比于施 加到电极上的电压F = -Q*ERr如果最大数量的离子被电晕电流引入到流体内,且生成的电荷被单独施加的电 压加速,则产生一相当的气流,而平均功率消耗显著地下降。这可以这样来实现控制电晕 电流的数值如何从某个最小值变化到某个最大值,同时,电极之间的电压基本上保持恒定。 换句话说,业已发现,最大程度地减小施加到电极(作为施加的平均高电压的部分)的电源 电压的高电压波纹(或,交变分量),同时,与电流的总平均或RNS幅值相比,保持电流波纹 相当高和理想化,这是有益的。(除非另有指出或在使用中已有暗示,如本文中所使用的,术 语“波纹”和词组“交变分量”是指信号的时间变化分量,包括诸如正弦波、方波、锯齿波、不 规则波、复合波等的所有的时间变化信号波形,还包括双向波形(也称之为“交变电流”或 "ac")和诸如脉动的直流电或“脉动的dc”的单向波形。此外,除非文中另有指出,结合包括 (但不限于)“波纹”、“ac分量”、“交变分量”等的这样术语一起使用的诸如“小”、“大”等的 形容词,描述了特殊参数的相对的或绝对的幅值,特殊参数诸如信号电势(或“电压”)和信 号流率(或“电流”)。)因为电晕和吸引器电极的电晕发生阵列的反应性(电容性)的分 量,所以,电压和电流波形之间的这样的区别在有关电晕的技术和装置中是可能的。电容性 分量导致相对低幅值的电压交变分量,产生相对大的对应电流的交变分量。例如,在电晕放 电装置中可使用一产生带有小波纹的高电压的电源。这些波纹应是相对高的频率“f”(即, 大于IkHz)。电极(即,电晕电极和收集器电极)设计成当高频电压施加时,它们的交互电 容C足够高而呈现相对小的阻抗X。,其表示如下Xc = 1/2 π fC电极可代表或可看作非反应性的dc电阻和反应性的ac容性阻抗的并联。欧姆电 阻致使电晕电流从一个电极流到另一电极。该电流幅值近似正比于施加的电压幅值,且基 本上恒定不变(dc)。容性阻抗负责两个电极之间的电流的ac部分。该部分正比于施加的 电压的ac分量(“波纹”)的幅值,而反比于电压交变分量的频率。根据波纹电压的幅值及 其频率,两个电极之间的电流的ac分量的幅值可小于或大于电流的dc分量。业已发现,能够产生带有小幅值波纹的高电压(即,过滤的dc电压)但提供横贯 电极的带有相对大ac分量(即,大幅值电流波纹)的电流的电源,可提供提高的离子发生 和流体加速,同时,在空气的情形中,显著地减小或最大程度地减小臭氧的发生。因此,电流 波纹表达为一比例或分数,其定义为电晕电流的ac分量的幅值除以电晕电流的dc分量的 幅值(即,Iac/Idc),电流波纹应相当地大于电压波纹(即,至少2倍),较佳地至少10倍、100 倍,甚至更加较佳地为1000倍,电压波纹类似地定义为施加到电晕放电电极上的电压的随 时间变化的分量或ac分量的幅值除以dc分量的幅值(即,Va。/Vd。)。另外还已经发现,在下列情形中电晕放电装置可达到最佳性能输出电压具有相 对于平均电压幅值的小幅值电压的交变分量,而通过电极和介入的介电物质(即,被加速 的流体)的电流是大于电压的交变分量(相对于dc电压)的至少2倍,较佳地是10倍(相 对于一 dc电流分量),S卩,电流的ac/dc比远大于因子2、10,或甚至大于施加电压的ac/dc 比。即,较佳地是横贯电晕放电电极产生一电压,以使生成的电流满足以下的关系
Vac << Vdc 且 Iac Idc或Vac/Vdc<< Iac/Idc或Vac < Vdc 且 Iac > Idc或Vffls ^ Vmean 且 IKMS > IMEAN如果上述要求中的任何一个得到满足,则与电流和电压的ac/dc比近似相等的电 源相比,生成的电晕放电装置在每立方英尺移动流体上消耗较小的功率,并产生较少的臭 氧(在空气的情形中)。为了满足这些要求,电源和电晕发生装置应进行合适地设计和构造。尤其是,电源 应产生一高的电压输出,其带有只是最小的且同时相对高的频率波纹。电晕发生装置本身 应具有所设计的杂散或寄生电容预定值,所述电容提供通过电极(即,从一个电极到另一 电极)提供相当高频的电流。如果电源产生低频波纹,则X。将相当大,且交变分量电流的 幅值不能与电流的直流分量的幅值相比。如果电源产生非常小波纹或没有波纹,则交变电 流不能与直流电相比。如果电晕发生装置(即,电极阵列)具有一低的电容(包括电极之 间的寄生和/或杂散电容),则交流电在幅值上将再次不能与直流电相比。如果在电源和 电极阵列之间安装一大的电阻(例如,参见Lee的美国专利No. 4,789,801中的
图1和2), 则ac电流波纹的幅值将被抑制(即,下降),并在幅值上不能与电流的dc( S卩,恒定的)分 量的波纹相比。因此,只有如果某种的条件得到满足,以使预定的电压和电流关系存在,则 电晕发生装置才能最佳地发挥功能来提供足够的空气流动,提高工作效率和要求的臭氧电 平。生成的电源成本也较低。尤其是,一产生波形的电源不要求相当的输出过滤,否则的话,过滤的提供相当昂 贵,并在电源输出处连接物理上大的高电压电容器。单就这一点使得电源变得较便宜。此 外,这样一电源具有较小的“惯性”,即,趋于降低输出内幅值变化的储存能较少,因此,其比 没有或可忽略波纹的高惯性电源,能够快速地变化输出电压。本发明还着力于现有技术中的若干不足,其局限性在于空气流和通常无力达到理 论最佳特性。这些不足之一包括对于多级EFA装置的过分的尺寸要求,因为若干级的EFA 连续地放置,所以,沿空气通道(即,沿空气流动方向)需要相当的长度。该较长的通道还 呈现对空气流动的较大的阻力。当多级彼此靠近放置时,还引起其它的问题。减小级之间的间距可在一级的一吸 引器电极和一邻近下一级的电晕放电电极之间产生“背电晕”,其导致反向的空气流。此外, 由于相邻级之间的电容,在相邻级之间存在有寄生的电流。该电流由相邻级之间的非同步 的高电压波纹或高电压脉冲造成。使用大的或多级EFA,以致各个分离的(或成组)的级设置有其自己的高压电源 (HVPS),则还会产生其它的问题。在此情形中,形成电晕放电所需要的高电压可导致在诸电 极之间产生的火花达到一不可接受的电平。当一火花发生时,HVPS必须完全地关闭一段时 间,该时间是恢复工作之前消电离和熄灭火花所需要的。当电极数量增加时,则火花的发生 比用一组电极更加频繁。如果一 HVPS馈送若干组电极(S卩,若干级),则必须更频繁地关闭 以熄灭发生的增加次数的火花。这对于整个系统来说,导致不理想地增加电源的中断。为 了解决该问题,有利的是,从其自己专用的HVPS中馈送到各级。然而,使用单独的HVPS要 求连续级间隔得更宽,以避免由相邻级的电极之间的杂散电容造成的不理想的电气互相作用,并避免产生背电晕。本发明提出一创新的解决方案,通过靠近间隔的EFA的诸级来增加空气流,同时, 最大程度地减小或避免引入不理想的效应。本发明实施包括电极几何、互相的位置和施加 到电极的电压的组合,以提供提高的性能。根据本发明的特征,多个电晕电极和收集电极彼此平行地定位,或垂直于空气流 方向在对应平面之间延伸。相邻级的所有电极彼此平行,使相同类型的所有电极(即,电晕 放电电极或收集电极)放置在相同的平行平面内,诸平行平面正交于相同类型的电极或电 极边缘定位在其中的诸平面。根据另一特征,多级靠近地间隔,以避免或最大程度减小相邻 级的多极之间的任何的电晕放电。如果相邻电极之间的最靠近间距是“a”,则施加到第一电 极的电压Vl和施加到最靠近的第二电极的电压V2之间的电势差(V1-V2),与诸电极之间的 距离之比,是一归一化的距离“aN”,则aN= (Vl_V2)/a。一级的电晕放电线与相邻级的最 靠近部分之间的归一化距离,应超过这些电极之间施加的电晕发作电压,在实践中,这意味 着电晕发作电压应不小于归一化距离的1. 2至2. 0倍,所述归一化距离是从电晕放电电极 到对应相关(即,最靠近)的吸引电极,由此防止背电晕的形成。最后,施加到相邻级的电压应是同步的和同相的。即,施加到相邻级的电极的电压 的ac分量应同时地升和降,并基本上具有相同的波形和量级和/或幅值。本发明增加EFA电极密度(通常在每单位长度级内测量),并消除或显著地减小电 极之间的寄生电流。此时,本发明消除相邻级的电极之间的电晕放电(例如,背电晕)。这一 点的实施部分地通过以基本上相同的电压波形对相邻EFA级供电,即,相邻电极上的电势 具有相同或非常相似的交变分量,以便消除或减小级之间任何ac的差分电压。以这样一同 步方式在级间进行工作,则相邻EFA分量的相邻电极之间的电势差保持恒定不变,从一个 电极到另一电极的任何生成的寄生电流减到最小或完全避免。同步可通过不同的方法来实 施,但最容易的方法是用从对应的电源的对应的同步的和同相的电压对相邻的EFA分量供 电,或用同步的电源来提供对应施加的电压的相似幅值的ac分量。这可用连接到相邻EFA 分量的相同的电源来实现,或用产生施加的电压的同步的和同相的ac分量的不同的(较佳 地是匹配的)电源来实现。本发明还解决现有技术中的其它的不足,其包括气流的限制和通常不能达到理论 的最佳特性。这些不足的另外方面包括产生用于商业用途的大量流体流动的有限能力。还 有其它的不足在于,必须用大的电极结构(电晕电极之外)来避免产生高强度的电场。使 用物理上大的电极还增加流体流动阻力和限制EFA容量和效率。当一 EFA邻近最大容量或在最大容量处工作时,还引起其它的问题,S卩,某种最大 的施加电压和功耗。在此情形中,施加的工作电压特征地保持在介电击穿电压附近,以致会 发生诸如火花和/或电弧之类的不希望的电气事件。如果无意地接触其中一个电极,则可 产生还有其它的缺点,可能产生一大的电流流过人身,这既不愉快还通常是危险的。通常地使用细线来用作电晕电极还会引起其它的问题。这样的线必须相当地细 (通常约为0. 004”直径)且易碎,因此,难于清洗或其它的工作。当必须或要求一更强的流体流(例如,较高的流体流率)时,还会发生其它的问 题。传统的多极布置导致一相对低的多极密度(因此,不足以最大地可达到的电功率),因 为电晕电极必须彼此位于最小的距离,以便避免对其对应的电场发生互相干扰。间距要求增加体积和限制电极密度。本发明的一特征提供一创新的解决方案,在加速电极的构造和加工中利用高阻材 料,通过使用一创新的电极几何和优化的彼此电极位置(即,极间几何)来提高流体的流动。根据本发明的特征,多个电晕电极和加速电极彼此平行地定位,某些电极在垂直 于气流的方向的对应平面之间延伸。电晕电极由导电材料制成,例如,金属或导电陶瓷。电 晕电极可以呈细线、刀片或带的形状。应该指出的是,电晕放电发生在电晕电极的狭窄的区 域上,这些狭窄区域这里称之为“电离边缘”。这些边缘通常位于相对于要求的流体流动方 向的电晕电极的下游侧。其它的电极(例如,加速电极)呈杆或细带的形状,细带沿流体流 动的主要方向延伸。一般来说,电晕电极的数量等于加速电极的数量+1。即,各个电晕电极 位于相对于和平行于一个或两个邻近的加速电极。加速电极由提供高阻路径的高阻材料制成,S卩,由高阻率的材料制成,该材料易于 传导电晕电流,而横贯电极不招致显著的电压下跌。例如,加速电极由相对高电阻的材料制 成,例如,填充碳的塑料、硅、砷化镓、磷化铟、氮化硼、碳化硅、硒化镉等。这些材料通常应具 有的电阻率P在103至109 Ω-cm的范围内,较佳地在105至108 Ω-cm之间,更为较佳的 范围是在106和107 Ω-cm之间。此时,电极的几何这样进行选择,以使诸如火花或电弧之类的局部事件或扰动可 被终止,而没有显著电流增加或产生噪音。本发明增加EFA电极密度(通常用每体积的‘电极长度’测量),并显著地降低 由涉及到电极物理厚度的电极造成的空气动力学的流体阻力。本发明的另外的优点在于, 不管施加到电极的工作电压如何近地接近一介电击穿的限值,它总提供实际的无火花的工 作。本发明的还有另外的优点在于,提供一更加结实的电晕电极形状,使得电极更加稳固和 可靠。电极的设计使得它能形成“无故障”的EFA,例如,如果有人无意触及,则不会存在安 全性的危害。本发明的还有另外的优点在于,使用除固体材料之外的电极来提供电晕放电。例 如,一导电流体可有效地用于电晕放电的发射,支持更大的电功率处理的能力,因此,增加 流体的速度。此外,流体可在电晕放电的护套附近变化电化学过程,例如,产生的臭氧(在 空气的情形中)比由固体电晕材料产生的臭氧少,或提供通过流体的化学变化(瞬间的有 害的气体毁灭)。附图的简要说明图1是带有低惯性输出电路的高压电源(HVPS)的示意的电路图,所述输出电路可 被控制而快速地将一电压输出电平降低到低于介电击穿启动电平的某裕度的电平,该击穿 启动电平也产生一高幅值的dc电压,其具有低幅值高频电压波纹;图2是另一高压电源的示意的电路图,其构造成防止在诸如电晕放电装置的高电 压装置内的火花事件;图3是另一高压电源的示意的电路图,其构造成防止在高电压装置内发生火花事 件;图4是一高压电源的示意的电路图,其构造成防止在高电压装置内发生火花事 件;
图5是静电流体加速器的电晕放电电极处的一输出电晕电流和输出电压的示波 器描迹,静电流体加速器从构造来期待和避免火花事件的HVPS中接受电能;图6是连接到供给一静电装置的HV电源的HVPS的图形;图7A是产生dc电压和dc+ac电流的电源的示意图;图7B是分别示出电压和电流幅值对时间的电源输出的波形;图8A是具有不充分极间电容的电晕放电装置的示意图,以便(i)优化空气流, (ii)减小功耗和/或(iii)最大程度地减小臭氧发生;图8B是一电晕放电装置的示意图,其优化来从诸如图1所示的电源中获益并与所 述电源合作;图9是施加到电晕放电装置的高电压和合成的电晕电流的示波器描迹;图IOA是静电流体加速器(EFA)组件的示意图,其带有馈送邻近电晕放电级的单 一高压电源;图IOB是一 EFA组件的示意图,其带有一对馈送各个邻近电晕放电级的同步电 源;图IlA是相邻EPA级的电极之间的电压和电流的计时图表,在级之间没有ac差分 电压分量;图1IB是相邻EPA级的电极之间的电压和电流的计时图表,其中,级之间存在小的 电压波纹;图12是一电源单元的示意图,该电源单元包括一对具有同步输出电压的高压电 源副组件;图13A是实施一第一电极布置几何的两级EFA组件的示意的俯视图;图1 是实施一第二电极布置几何的两级EFA组件的示意的俯视图;图14是带有形成为细线的电晕电极的EFA组件的示意图,诸细线在电气上与相对 的高电阻加速电极间隔开;图15是带有形成为细线的电晕电极和形成为高电阻棒的加速电极的EFA组件的 示意图,后者的导电部分完全封闭在外壳内;图16是带有形成为细线的电晕电极和形成为高电阻棒的加速电极的EFA组件的 示意图,其带有沿加速电极的宽度变化的或阶跃的导电性的相邻的分段;图17是带有呈细带形状的电晕电极的EFA组件的示意图,所述细带位于电气上相 对的高电阻加速电极之间;图18A是示出流体内和对应加速电极的本体内的电晕电流分布的图表;图18B是示出由火花或电弧事件产生的电流的路径的图表;图19是一梳形加速电极的示意图;以及图20是填充有一导电流体并插入在高电阻加速电极之间的中空的点滴形电晕电 极的示意图。
具体实施例方式图1是高压电源(HVPS) 100的示意的电路图,其构造来防止在诸如静电流体加速 器之类的高电压装置内发生火花事件。HVPS 100包括带有初级绕组107和次级绕组108的高电压升压变压器106。初级绕组107连接到一 ac电压,ac电压由DC电压源101通过 半桥变换器(功率晶体管104、103和电容器105、114)提供。门信号控制器111在晶体管 104,113的门处产生控制脉冲,其频率由形成RC时间电路的电阻器110和电容器116的值 确定。次级绕组108连接到电压整流器109,其包括四个高电压(HV),高频二极管构造成一 全波电桥整流器电路。HVPS 100在接线端120和接地之间产生一高电压,接线端120和接 地连接到一 HV装置或电极(例如,电晕放电装置)。施加到HV装置(例如,横贯一阵列的 电晕放电电极)的电压的AC分量由高电压电容器119检测,而被检测的电压由齐纳二极管 122限制。当输出电压显示火花前的电压波动特性时,特征的AC波动分量导致横贯电阻器 121 —相当大的信号级,从而打开晶体管115。晶体管115接地于信号控制器111的针销3, 并中断横贯功率晶体管104和113的门的电压。使晶体管104和113不导通,则一几乎瞬 时的电压中断影响到初级绕组107,因此,传递到紧偶合的次级绕组108。由于一类似的快 速电压下跌在电晕放电装置处导致低于一火花开始电平,所以,可避免任何即将来临的电 弧或介电材料的击穿。火花防止技术包括两个步骤或阶段。首先,储存在电晕放电装置的杂散电容内的 能量通过电晕电流放电下降到电晕开始电压。该电压总是远在火花开始电压的下面。如果 该放电发生在短于约0. lmSec( S卩,小于lOOmksec)的时间周期内,则电压的下落将有效地 防止火花事件发生。用试验方法已经确定,电压从较高的火花开始电压电平下落到电晕开 始电平,可以较佳地在约50mksec内实现。在电源电压达到电晕开始电平和电晕电流停止之后,放电过程变得缓慢得多,且 电压在若干个毫秒的时间上下落到零。在由电阻器121和晶体管115的门源的固有电容限 定的相同的预定的时间之后,电源100恢复电压发生。预定的时间通常在几个毫秒的量级 上,业已发现,这样的预定时间对于电离过程和正常工作恢复是足够的。响应于电源重新施 加到变压器106,提供到电晕放电装置的电压在几个毫秒时间内约从电晕电源开始电平上 升到正常工作电平。采用这样一结构,即使当输出电压超过某值时,也不会发生火花事件, 否则所述超过的电压值会横贯同一电晕放电布置和结构造成频繁的火花。电源100可使用 提供的电子部件来形成;不需特殊的部件。图2是一变化的电源200的示意的电路图,其带有簧片触头222和附加的载荷 223。电源200包括带有初级绕组210和次级绕组211的高电压两绕组电感器209。初级绕 组210通过功率晶体管208连接到接地,并连接到设置在接线端201的dc电源。PWM控制 器205 (例如,一 UC3843电流型PWM控制器)在晶体管208的门处产生控制脉冲,它的工作 频率由包括电阻器202和电容器204的RC电路确定。典型的频率可以是IOOkHz或更高。 次级绕组211连接到电压倍增器电路,其包括HV电容器215和218,以及高频HV 二极管216 和217。电源200在连接到一 HV装置或电极(S卩,载荷)的输出接线端219和220之间,产 生HV dc电,其介于10和25kV之间,且通常为18kV。当通过分路电阻器212的电流超过一 预设的电平并允许一电流流过一包括簧片触头222的簧片型继电器的控制线圈221时,控 制晶体管203打开。当电流通过线圈221时,在由电阻器207和电容器206确定的一定时 间内,簧片触头222关闭,分路HV输出到HV泄放电阻器223,加载输出和降低输出电压电 平。使用该火花控制电路并组合各种EFA部件和/或装置可导致在正常工作过程中实际地 消除所有的火花。簧片继电器203/222可以是由台湾的Ge-Ding Information Inc.出品的 ZP-3。图3是类似于图2所示的结构的另一 HVPS结构的示意的电路图。然而,在HVPS 300包括簧片触头322和直接地连接到HVPS的输出接线端的附加的载荷323的情况下, HVPS 300包括一带有初级绕组310和次级绕组311的高电压变压器309。初级绕组310通 过功率晶体管308连接到接地,并连接到一连接在功率输入接线端301的DC源。PWM控制 器305(例如,一 UC384!3)在晶体管308的门处产生控制脉冲。这些控制脉冲的工作频率由 电阻器302和电容器304确定。次级绕组311连接到一电压倍增器电路,它包括HV电容器 315和318和高频HV 二极管316和317。HVPS300在连接到HV装置或电极(载荷)的输出 接线端319和320处产生约ISkV的高电压输出。当通过分路电阻器312的电流超过某个 预定的预设电平并允许电流流过控制线圈321时,火花控制晶体管303接通。当电流流过 线圈321时,簧片触头322关闭而分路HVPS的HV输出到HV泄放电阻器323,由此,在由电 阻器307和电容器306确定的一时间段内减小输出电压电平。使用该初始的火花探测和减 缓结构,导致在延长的工作时间内实际上没有火花发生。图4示出一类似于图2所示的结构的电源结构,HVPS400还包括继电器和功率泄 放载荷423,所述继电器包括常开触头422和线圈421。HVPS400包括一带有初级绕组410 和次级绕组411的电源变压器409。初级绕组410通过功率晶体管408连接到接地,并连接 到接线端401处的dc电源。PWM控制器405(例如,一 UC3843)在晶体管408的门处产生 一串控制脉冲。这些控制脉冲的工作频率由电阻器402和电容器404设定。次级绕组411 连接到一电压倍增器电路以供应一高电压(例如,9kV),倍增器电路包括HV电容器415和 418和高频HV 二极管416和417。电源400在连接到HV装置或电晕电极(载荷)的接线 端419和420处产生高电压输出。当通过分路电阻器412的电流超过某个预定为初始火花 事件的特征的预设电平并允许电流流过线圈421时,火花控制晶体管403接通。当电流流 过线圈421时,继电器触头422关闭,通过泄放电阻器423使初级绕组410短路。由泄放电 阻器423提供的附加载荷在由电阻器407和电容器406确定的一时间段内快速地减小输出 电压电平。图5是一示波器的显示,其包括以电晕电流501和输出电压502表示的电源输 出的两个扫描迹线。如图中可见,电晕电流具有特征的窄的尖峰503,其表示在约0. 1至 1. Omsce的时间内的初始的火花事件,这里显示为电流尖峰后的约2. 2msce0探测电晕放电 或类似的HV装置内的电流尖峰503,可激发控制电路,断开HVPS,并较佳地泄放任何需要 的储存能量,以将一电极电势下降到或低于介电击穿的安全电平。因此,除了通过例如,阻 止一高频脉冲发生器(例如,PWM控制器20 的工作来中断到HVPS的初级电源之外,还可 采取其它的步骤来快速地将施加到HV装置的电压降低到低于火花启动或介电击穿电势电 平。这些步骤和支持电路可以包括将任何储存的电荷“泄放”到一合适的“接受器”内,例 如,一电阻器、电容器、电感器,或它们的某种组合。接受器可以位于HVPS的物理界围内,和 /或位于通电的装置处,即,HV装置或载荷。如果位于载荷处,则接受器可以更快地接受储 存在载荷内的电荷,而一位于HVPS处的接受器可被引导来降低HVPS输出的电压电平。应 该指出的是,使用HV电阻器,接受器可以耗散功率来降低施加到载荷处或位于载荷处的电 压电平。或者,在火花事件已经解决而快速地将装置返回到最佳工作之后,能量可以被储存 和重新施加。此外,没有必要在任何情况下将电压降低到零电势电平,但将电压电平降低到某已知的或预定的值,以避免火花事件,这是令人满意的。根据一实施例,HVPS包括处理和 记忆能力来将特定的火花前指示器(例如,电流尖峰强度、波形、时间等)的特征与合适的 响应相联系,以在某个预设的电平上避免或最大程度地减小火花事件的几率。例如,HVPS可 以响应于一绝对幅值或在一电流尖峰下的面积(即,/ tlt2(it_iavCTage)dt),用来有选择地插 入多个先前确定的载荷,以提供一要求的火花事件控制量,例如,避免一火花事件,延迟或 减小火花事件的强度,提供火花事件等要求的数量或速率。再次参照图5,如果HVPS的输出全部被中断,没有电流流入电晕放电装置,则横贯 电晕放电装置的电压如图5所示和如上所述地快速下降。在某个短时间后,可观察到电流 尖峰504,其指示出实际火花事件已发生的时刻没有采取行动来减小施加到HV装置的电压 电平。幸运的是,由于输出电压远低于火花电平,所以,没有火花或电弧产生。相反,仅可见 一中等的电流尖峰,其足够小而不导致任何的扰动或不理想的电弧噪音。在探测电流尖峰 504之后的2-lOmsec量级上的一定时间段后,或在电流尖峰503之后的l-9mSec后,HVPS 接通并恢复正常工作。图6是根据本发明的HVPS601的图,其连接而将HV电供应到一静电装置602,例 如,一电晕放电流体加速器。静电装置602可包括多个电晕放电电极603,它们通过公共连 接604连接到HVPS601。吸引器或收集器电极605通过连接606连接到互补的HVPS601的 HV输出。在HV电势施加到电晕放电电极603后,对应的电晕放电电子云形成在电极附近, 对于介入的流体(例如,空气)分子进行充电,所述流体分子起作一介于电晕放电电极603 和相对的充电的吸引器或收集器电极605之间的介电物质。电离的流体分子被加速朝向收 集器/吸引器电极605的相对的电荷,导致一理想的流体运动。然而,由于各种环境的和其 它的扰动,流体的介电特性会变化。该种变化可以是充分的,以使介电击穿电压可以下降到 某一点,此时,电弧可发生在多组的电晕放电和吸引器电极603、605之间。例如,灰尘、潮气 和/或流体密度的变化可将介电击穿电平降低到低于施加到装置的工作电压的一点上。通 过监视对于火花前信号事件的电源信号的电气特征(例如,电流尖峰或脉冲等),可实施合 适的步骤来控制事件发生,例如,降低这些情形中的工作电压,其中要求避免火花发生。尽管上述的本发明针对消除或减小多个火花事件和/或火花事件强度,但其它的 实施例也可提供其它的火花控制设施的能力和功能。例如,根据本发明的一实施例的方法 可控制火花事件,其快速地改变电压电平(例如,改变PWM控制器的工作循环周数)来使火 花放电更加均勻,提供一要求的火花强度和/或速率,或用于任何其它的目的。因此,本发 明的实施例的其它的应用和实施包括火花前的探测和电压快速地变化到一特殊的电平以 获得以要求的结果。根据本发明的上述的和其它的特征,三个特征提供来有效地控制火花事件。首先, 电源应是无惯性的。这意味着电源应能在小于火花前指示器和火花事件发生之间的时间段 的时间内快速地变化一输出电压。该时间通常为一个毫秒或不到。第二,一有效的和快速 的火花前探测的方法应包括到电源关闭电路内。第三,负载装置(例如,电晕放电装置)应 具有低的固有电容,其能在小于火花前信号和实际火花事件之间的时间段的时间内进行放 H1^ ο图7A是一与本发明的实施例相一致的适于对电晕放电装置供电的电源的方框 图。高压电源(HVPS) 705产生可变化幅值Vac+dc的电源电压701 (图7B)。电压701已经在Vdc的平均dc电压上叠加一 ac或幅值Vac的交变分量,所述Vac具有一由距离703代表 的瞬时值(即,电压的交变分量)。电压701的典型的平均dc分量(Vdc)在IOkV至25kV 范围内,较佳地是等于18kV。波纹频率“f”通常是约100kHz。应该指出的是,低频的谐波, 例如,多种的60Hz的市电频率包括120Hz可以呈现在电压的波形中。以下的计算仅考虑最 重要的谐波,即,最高频谐波,在此情形中为IOOkHz。波纹的峰对峰幅值703 (Vac是电压701 的ac分量)可以在0至2000伏峰对峰的范围内,较佳地小于或等于900V,其RMS值近似 为640V。电压701施加到成对的电极(即,电晕放电电极和吸引器电极)。电阻器706代 表HVPS705的内部电阻和将HVPS705连接到电极的电线的电阻,该电阻通常具有一相对小 的值。电容707代表两个电极之间的杂散电容。应注意到,电容707的值不是恒定的,但可 以大致地估计为约IOpF级。电阻708代表电晕放电电极和吸引器电极之间的空气间隙的非阻抗的dc欧姆载 荷电阻器R的特征。该电阻器R取决于施加的电压,通常具有IOM Ω的典型值。dc分量从HVPS705流过电阻器708,而ac分量主要流过电容器707,其在IOOkHz 的工作范围比电阻器708呈现相当低的阻抗。尤其是,电容器707的阻抗k是波纹频率的 函数。在此情形中,它近似地等于Xc = 1/(2 π fC) = 1/(2*3. 14*100,000*10*1(T12) = 160k Ω流过电容器707的电流的ac分量Ia。等于Iac = YjXc = 640/160,000 = 0. 004A = 4mA。流过电阻器708的电流的dc分量Ide等于Idc = Vdc/R = 18kV/10MQ = 1. 8mA。因此,电极之间合成电流的ac分量大约是合成电流的dc分量的2. 2倍。装置700的工作可参照图7B的定时图表来描述。当电离的电流到达一定的最大 幅值(Imax)时,离子从电晕放电电极发射,以对流体的周围的分子和颗粒(即,空气分子) 充电。此时,产生最大功率并发生最大的臭氧产生(在空气或氧气中)。当电流减小到Imin 时,产生较小的功率,实际上没有臭氧发生。此时,充电的分子和颗粒以与最大电流情况中相同的力(由于电压保持基本不 变)被加速朝向相对的电极(吸引器电极)。因此,流体加速率基本上不受影响,且没有达 到如减小臭氧发生那样的程度。周围流体的加速由形成电晕放电电极到吸引器电极的离子的力矩产生。这是因为 在电压701的影响下离子从电晕放电电极发射而形成包围电晕放电电极的“离子云”。该 离子云响应于电场强度朝向相对的吸引器电极移动,电场的强度正比于施加的电压701的 值。由电源705施加的电流近似地正比于输出电流702(假定电压701保持基本不变)。因 此,电流702的脉动特性导致能耗比相同幅值的纯dc电流更低。这样的电流波形及电流 的ac和dc分量之间的关系通过具有一低的内部电阻706和小幅值的输出电压的交变分 量703得以保证。通过试验的方法已经确定,当电流702的交变分量的相对幅值(S卩,Iac/ Idc)大于电压701的交变分量的相对幅值(即,Vac/Vdc)时,可达到最有效的静电流体加 速。此外,由于这些比值变化,所以,要实现另外的改进。因此,如果Vac/Vdc相当地小于 Iac/Idc (即,不大于一半),且较佳地不大于Iac/Idc的1/10、1/100,或甚至较佳地不大于 1/1000 (其中,Vac和Iac类似地进行测量,例如,都是RMS、峰对峰,或类似值),则可达到流体加速的另外的效率。用数学方法换另外的方式来表述,电晕电流的常量分量和施加电压 的随时间变化的分量两者的乘积,除以电晕电流的随时间变化的分量和施加的电压的常量 的分量两种的乘积,所得商应该最小,对于某些初始的步骤,各个离散的步骤在数量方面提 供显著的改进图8A示出不满足上述方程的电晕放电装置。它包括呈针形的电晕放电电极800, 它的尖锐的几何形提供必要的电场以在针尖端附近产生一电晕放电。相对的收集器电极 801大得多,其呈一光滑杆的形式。高压电源802通过高电压供应电线803和804连接到两 个电极。然而,因为放电电极垂直于收集器电极801的中心轴线的相对定向,所以,该结构 在电极800和801之间不形成任何显著的电容。一般来说,任何电容正比于电极之间面向 的有效面积。在图8A所示的装置中该面积非常小,因为其中一个电极呈具有最小横截面面 积的针尖的形状。因此,从电极800流到电极801的电流将不具有显著的ac分量。类似于 图8A所示结构的电晕放电装置的结构显示非常低的空气加速能力和相对显著量的臭氧发 生。图8B示出另一种电晕放电装置。多个电晕放电电极呈长而细的电晕放电线805 的形状,其相对的收集器电极806呈厚得多的棒的形状,它们平行于电晕线805。高压电源 807通过对应的高压电流线809和810连接到电晕放电线805和收集器电极806。该结构在 电极之间提供大得多的面积,因此,在其间形成大得多的电容。因此,从电晕线805流到收 集器电极806的电流将具有显著的ac分量,如果高压电源807具有足够的电流供应能力。 当用具有显著的高频电流波纹、但较小的电压波纹(即,交变分量)的高压电源供电时,如 图8B所示的电晕放电装置的结构提供更大的空气加速能力和较少的臭氧发生。再次参照图1,高压电源电路100可构造成能发生具有小的高频波纹的高电压。如 上所述,电源100包括带有初级绕组107和次级绕组108的高电压的双绕组的变压器106。 初级绕组107通过一半桥变换器(功率晶体管104、113和电容器105、114)连接到一 dc电 压源101。门信号控制器111在晶体管104、113的门处通过电阻器103和117产生控制脉 冲。这些脉冲的工作频率由选定的电阻器110和电容器116的值确定。变压器106的次级 绕组108连接到桥式电压整流器109,其包括四个高电压高频功率二极管。电源100在接线 端120和接地之间产生一高电压输出,接地连接到电晕放电装置的电极。图9示出如下所述的示波器扫描迹线输出电流和电压的波形、电晕放电装置处 的高电压901连同产生的和流过阵列电极的合成的电流902。由此可见,电压901具有约 15,300V的相对恒定的幅值,且具有极小或没有交变分量。另一方面,电流902具有超过2mA 的相对大的电流交变分量(波纹),远超过电流平均值(1. 189mA)。因此,除了上述的特征之外,本发明还包括诸实施例,其中,低惯性的电源组合一 阵列的电晕放电元件,它们对电源呈现一高的阻抗载荷。即,阵列的电容载荷大大地超过电 源输出内的任何阻抗分量。这种关系提供一恒定的、低波纹的电压和高波纹的电流。该结 果在于,高效的静电流体加速器和减小的臭氧的发生。图IOA是根据本发明的另一实施例的静电流体加速器(EFA)装置1000的示意图, 其包括两个EFA级1014和1015。第一 EFA级1014包括电晕放电电极1006和相关的加速 电极1012 ;第二 EFA级1015包括电晕放电电极1013和相关的加速电极1011。两个EFA级 和所有的电极都在图中示意地示出。只有一组电晕放电电极和收集器电极对每一级显示,以便于图示,但可望各级可包括大量的成阵列对的电晕电极和加速电极。EFA1000的一重要 的特征在于,电晕放电电极1006和收集器电极1012之间的距离Cl1可比拟于后级1015的收 集器电极1012和其电晕放电电极1013之间的距离d2,即相邻级的元件之间的最靠近的距 离不太大于同一级内的电极之间的距离。通常地,收集器电极1012和相邻级的电晕放电电 极1013之间的级间距离d2是同级内电晕放电电极1006和收集器电极1012之间的级间间 距Cl1 (或电晕放电电极1013和收集器电极1011之间的间距)的1.2和2.0倍。因为该一 致的间距,所以,电极1006和1012之间及1006和1013之间的电容是相同的量级。应注意 到,在此结构中,偶联在电晕放电电极1006和1013之间的电容可允许某些杂散电流在电极 之间流动。该杂散电流是与电极对1006和1012之间的容性电流的幅值相同的量级。为了 在电极1013和1006之间减少不必要的电流,各电极应供应有同步的高电压波形。在图IOA 所示的实施例中,两个EFA级由共同的电源1005供电,S卩,馈送平行的两级的具有单一电压 转换电路(例如,电流变压器、整流器和过滤电路等)的电源。这确保电极1006和1013之 间的电压差相对于电极1006和1011保持恒定不变,这样,没有电流或仅有非常小的电流流 过电极1006和1013之间。图IOB示出一 EFA1001的另一种的结构,其包括一对分别由分开的电源1002和 1003供电的EFA级1016和1017。第一 EFA级1016包括电晕放电1007和收集器电极1008, 它们在级1016内形成一对互补的电极。第二 EFA级1017包括电晕放电电极1009和收集器 电极1010,它们形成一第二对互补的电极。两个EFA级1016、1017和所有的电极1007-1010
示意地示出在图中。第一 EFA级1016由电源1002供电,而第二 EFA级1017由电源1003供电。两个 EFA级以及两个电源1002和1003可以是相同的设计,以简化同步,但不同的设计可用作合 适地容纳另种的布置。电源1002和1003通过控制电路1004实现同步以提供同步的输出。 控制电路确保两个电源1002和1003产生同步的和基本上相等的同相的输出电压,以使电 极1007和1009之间的电势差保持基本恒定(例如,没有或具有非常小的ac电压分量)。 (注意尽管术语“同步”一般地包括信号之间的频率和相位的一致,但通过使用术语“同 相”来进一步强调相位对齐的要求,其要求信号在对应的部位处彼此同相,例如,如施加到 和存在于各级中。)保持该电势差为恒定(即,最大程度地减小或消除任何ac电压分量) 可限制或消除电极1007和1009之间的任何容性电流的流动,以达到一可接受的值,例如, 通常小于1mA,且较佳地小于100 μ A。参照如图IlA和IlB所示的波形,可以看到邻近EFA级的电极之间的寄生容性电 流的减少。如图IlA所示,呈现在电极1007上的电压Vl (图10Β)和呈现在电极1009上 的电压V2是同步且同相的,但在dc幅值上不必相等。因为完全的同步,所以,呈现在电极 1007和1009上的电压之间的差V1-V2接近恒定,表示在信号之间仅一 dc偏离值(即,没有 ac分量)。流过电极1007和电极1009之间的容性偶联的电流Ic正比于横贯电容的电压 的时间变化率(dV/dt)Ic = C*〔d(Vl_V2)/dt〕。从该关系式可直接得出,如果横贯任何电容的电压保持恒定(即,没有ac分量), 则没有电流流过该路径。另一方面,如果电压快速地变化(即,d(Vl-V2)/dt大),则甚至小 的电压变化可形成大的容性电流。为了避免从相邻EFA级的不同的电极流出过度的电流,施加到这些相邻级的电极的电压应该同步和同相。例如,参照图11B,电晕电压Vl和V2略 微地不同步,导致在差d(Vl-M)/dt中小的ac电压分量。该小的ac电压分量导致一显著 的流过相邻EFA级之间的寄生电流Ic。本发明的一实施例包括施加到所有级的功率的同 步,以避免电流流过级间。相邻EFA的电极的最靠近的间距可近似如下。注意到,典型的EFA在一颇为狭窄 的电压范围上有效地工作。施加在电晕放电电极和同级的收集电极之间的电压V。应超过所 谓的电晕开始电压Vonset,以便进行合适的工作。即,当电压V。小于v。nsrt时,没有电晕放电发 生且没有空气运动发生。此时,V。应不超过介电击穿电压vb,以避免电弧。根据电极的几何 和其它的条件,Vb可以是V。nset的两倍。对于典型的电极结构,Vb/Vonset的比约为1. 4-1. 8, 这样,任何特殊的电晕放电电极不应位于可能发生一“背电晕”的离相邻收集电极的一距离 处。因此,相邻级的最靠近电极之间的归一化距离aNn应至少是,电晕放电电极和同一级的 收集电极之间的归一化距离“aNc”的1. 2倍,较佳地不大于距离“aNc”的2倍。S卩,相邻级 的电极应间隔开,以确保电极之间的电压差小于相邻级的任何电极之间的电晕开始电压。如果上述条件得不到满足,则必要的结果是,相邻级必须进一步和比其它情形更 宽地彼此间隔开。这样增加级间的间距导致不利地影响空气运动的几种情况。例如,相邻 级之间的增加的间距导致较长的管道,因此,导致对气流更大的阻力。EFA的全部的体积和 重量也增加。对于同步的和同相的HVPS,通过HFA级之间减小间距而不降低效率或提高火 花的发生,由此可避免这些负面的方面。参照图12,一两级的EFA1200包括一对HVPS 1201和1202,它们与对应的第一和 第二级1212和1213相关。两级基本上相同,并由相同的HVPS1201和1202供应电功率。 HVPS1201和1202包括各自的脉冲宽度调制(PWM)控制器1204和1205,功率晶体管1206和 1207,高电压电感器1208和1209(即,过滤扼流圈),以及电压倍增器1201和1202。HVPS 1220和1221对级1212和1213的对应的EFA电晕放电电极提供功率。如上所述,尽管级 1212和1213的EFA电极示意地表示为单对的一个电晕放电电极和一个加速(或吸引器) 电极,但各级将通常包括多对的电极,它们构造成二维的阵列。PWM控制器1204、1205产生 (和提供在针销7)高频脉冲到各自的过滤晶体管1206和1207的门。这些脉冲的频率由 包括电阻器1216和电容器1217以及电阻器1218和电容器1219的对应的RC计时电路确 定。一般来说,级间的这些分量值之间的略微的差可导致两个HVPS级的略微不同的工作频 率。然而,频率的甚至一略微的变化也会导致EFA1200的级1212和1213的不同步的工作。 因此,为了确保电源1201和1202同步的和同相的(即,零相移或相差)工作,连接控制器 1205通过一包括电阻器1215和电容器1214的同步输入电路,来从PWM控制器1204的针销 1接受一同步信号脉冲。该结构将PWM控制器1205同步到PWM控制器1204,以使两个PWM 控制器输出既同步(同频率)又同相(同相位)的电压脉冲。图13A和1 是两级EFA装置的两个不同结构的截面图。尽管仅示出两级,但原 理和结构方面的细节是相同的。参照图13A,第一 EFA装置1311由两个系列或一前一后级 1314和1315组成。第一级1314包含多个对齐在第一垂直柱的平行的电晕放电电极1301, 以及对齐在平行于电晕放电电极1301的柱的第二柱的收集电极1302。所有电极显示在沿 纵向进出纸面延伸的截面内。电晕放电电极1301可以呈如图所示的导线的形式,但也可使 用其它的结构。收集电极1302显示为水平延长为导电杆。再者,为了说明起见,可以实施与本发明的各种实施例一致的其它的几何和结构。第二级1315类似地包含一对齐的电晕 放电电极1303(也显示为垂直于纸面延伸的细导线),以及收集电极1304(也为杆)。所 有电极安装在空气管道1305内。EFA1311的第一和第二级1314和1315由对应的单独的 HVPS(未示出)供电。HVPS是同步和同相的,于是,第二级1315的电晕放电电极1303可放 置在离第一级1314的收集电极1302最靠近的可能的归一化距离处,而不会不利地互相作 用和降低EPA特性。为了说明起见,我们假定施加到相邻级1314和1315的电极上的所有电压和其分 量(例如,ac和dc)相等。还进一步假定高电压施加到电晕放电电极1301和1303,而收集 电极1302和1304接地,即,相对于施加到电晕放电电极1301和1303的高电压保持在公共 的接地电势。所有的电极布置在平行的垂直柱内,使不同级的对应电极水平地对齐,并垂直 地偏离其自己级内错列柱的互补的电极。电晕放电电极1301和垂直地最靠近邻近收集电 极1302前导边缘之间的归一化距离1310等于aNl。第二级的电晕放电电极1303和第一 级的收集电极1302的尾部边缘之间的归一化距离aN2(1313)应稍大于aNl,实际距离取决 于施加到电晕放电电极的具体的电压。在任何情形下,aN2应刚好大于aNl,即,在距离aNl 的1至1. 2倍范围内,较佳地为aNl的1. 1至1. 65倍,甚至更为较佳地是近似为aNl的1. 4 倍。尤其是,如图13A所示,距离aN2刚好大于所必须的距离,以避免形成一电流流过其间的 电晕开始电压之间的电压。让我们假定该归一化“stant”距离aN2等于1.4XaNl。然后, 相邻级之间的水平距离1312小于距离aN2(1313)。如图所示,当相邻级的同类型电极位于 一平面1320内(如图13A所示)时,级间间距最小化。平面1314可以定义为正交于包含 电晕放电电极的边缘的平面的一平面(图13A中的平面1317)。如果相邻级的同类型电极 位于不同的但平行的平面内,例如,平面1321和1322(如图1 所示),则相邻EFA级的诸 电极之间的合成的最小间距等于用线1319所示的aN2。应注意到,线1319的长度与距离 1313 (aN2)相同,且大于距离1312,这样级间间距增加。因此,本发明的这些特征包括满足各种实施例中的三种条件中的一个或多个条件 的结构相邻EFA级的电极用基本上相同电压波形供电,即,相邻电极上的电势应具有基 本上相同的交变分量。这些交变分量在数量和相位上应接近或相同。相邻EFA级应靠近地间隔,相邻级之间的间距由这样的距离限定和确定,该距离 刚好足以避免或最大程度地减小相邻级电极之间的任何的电晕放电。相邻级的同类型电极应位于相同的平面内,该平面正交于电极(或电极前导边 缘)定位的平面。图14是EFA装置1400的示意图,其包括线状的电晕电极1402 (为本实例起见,示 出三个,但也可包括其它的数量,一典型的装置在合适的阵列中具有成十或成百个电极,以 提供一要求的特性)以及加速电极1409(在本简化实例中为两个)。各个加速电极1409 包括一相对高电阻部分1403和一低电阻部分1408。高电阻部分1403具有的电阻率P在 IO1至109Q-cm的范围内,较佳地在IO5和IO8 Ω-cm之间的范围内,更加较佳地是在IO6至 IO7Q-Cm的范围内。所有电极显示在截面内。因此,电晕放电电极1402呈细导线的形式和形状,而加 速电极1409显示为杆和板的形状。最靠近加速电极1409的电晕电极1403的“下游”部分形成电离边缘1410。电晕电极1402以及加速电极1409的低电阻部分1408通过线导体1404 和1405连接到高压电源(HVPS) 1401的相对极性的接线端。低电阻部分1408具有的电阻 率P ^ IO4 Ω -cm,且较佳地不大于1 Ω -cm,甚至更加较佳地不大于0. 1 Ω -cm。EFA1400沿 箭头1407所示的要求的流体流动方向产生一流体流动。HVPS1401构造成在电极1402和收集电极1409之间产生一预定的电压,以便在电 极之间形成一电场。该电场用点状流动线1406表示。当电压超过一所谓的“电晕开始电 压”时,一电晕放电活动开始在电晕电极1402的附近,导致从电晕电极1402对应地发射离 子的过程。电晕放电过程致使流体离子从电晕电极1402发射并沿着和跟随电力线1406加速 朝向加速电极1409。呈自由离子和其它带电粒子形式的电晕电流接近加速电极1409的最 近端。然后,电晕电流沿着最低电阻的路径通过与周围流体的一些高电阻路径相对的电极 流动。由于加速电极1409的高电阻部分1403具有包围电离流体的较低的电阻,所以,电晕 电流的主要部分流过加速电极1409的本体,即,流过高电阻部分1403到低电阻部分1408, 到HVPS 1401的返回路径通过连接导线1405而完成。由于电流沿高电阻部分1403的宽度 (见图14)流动(平行于空气流动1407的主方向,一电压下降Vd沿电流路径形成)。该电 压降正比于电晕电流Ic乘以高电阻部分1403的电阻R之积(此刻略去低电阻部分1408 和连接线的电阻)。然后,电晕线102和加速电极1409的对应的最近端之间施加的实际电 压Va,由于电阻引起的电压降,施加的实际电压Va小于HVPS1401的输出电压V。ut,即,Va = Vout-Vd = Vout-Ic^R (1)。注意到,电晕电流是非线性地比例于电晕电极1402和加速电极1409的端部之间 的电压Va,S卩,电流比电压增加得更快。电压-电流关系可近似地表示为如下的经验表达 式Ic = M(Va-V0)1'5, (2)其中,V。=电晕开始电压,而经验确定的系数。该非线性关系提供一理想的反 馈,事实上,它自动地控制横贯电极出现的合成的电压值Va,并防止、最大程度地减小、减缓 或减轻电晕放电的扰动和不规则性。注意到,电晕放电过程因其特性(即,“不可预见的”) 而被认为“不规则”,电晕电流值取决于经受变化的多种环境因素,例如,温度、沾污、湿度、 异物等。如果对于某些原因电晕电流在电极间空间的一个位置比某些其它位置变得更大, 则沿对应的高电阻部分1403的电压降Vd将变大,因此,在此位置的实际电压Va将变低。这 又限制此位置的电晕电流并防止或最大程度地减小火花或电弧的发生。以下的实例用于说明的目的,其使用如在本发明的一实施例中使用的典型的分量 值。在如图14示意地所示的EFA1400的一实施例中,一电晕开始电压假定为等于8. 6kV,以 在电晕电极1402的附近达到30kV/cm的最小电场强度。该值可由计算、测量或其它方法确 定,并对于IOmm的电晕/加速电极间距和0. Imm的电晕电极直径,该值通常是一电晕开始 值。用于加速电极1409的高电阻部分103的总电阻Rt。tal等于0. 5ΜΩ,而高电阻部分1403 沿气流方向1407的宽度(见图14)等于1英寸。横向于气流方向(即,进入附图平面内的 方向)的加速电极1409的长度等于M英寸。因此,对于每一英寸的加速电极1409具有电 阻率I in。h是Rinch = Rtotal*24 = 12ΜΩ
用于该特定设计的经验系数Ic1等于22*10_6。在等于12. 5kV的施加的电压Va处, 电晕电流Ic等于Ic = 4. 6 X 1(Γ9* (12,500V—8, 600V) L 5 = 1. 12mA。然而,流过每一英寸的半导体部分103的电晕电流I。/in。h等于1. 12mA/24inches = 47 μ A/inch。因此,横贯半导体部分103的该一英寸长度的电压降Vd等于Vd = 47*1(Γ6Α*12*106Ω = 564V。来自HVPS1401的V。ut等于施加到电极的电压Va和横贯加速电极1409的半导体部 分1403的电压降Vd之和,表达如下Vout = 12,500+564 = 13,064V由于某种原因,如在某局部区域的电晕电流增加到47 μ A/inch的全部分布值的 两倍,这样,它在某点处等于94 μ A,合成电压降Vd将反映该变化并等于1,128V( BP, Vd = 94Χ1(Γ6μΑ*12Χ106Ω)。然后,Va = Vout-Vd = 13,064-1,128 = 11,936V。因此,增加的电 压降Vd减缓局部区域处的实际电压电平,并限制该区域的电晕电流。根据公式0),通过该 一英寸的长度的电晕电流I。可以表达为4. 6*1(Γ9(11,936-8,600V)L5/24inch = 0. 886mA, 相对于1. 12mA。即使如果某些局部不规则性,由此该“负反馈”效果工作来恢复正常的EFA 工作。在由进入级间空间内的异物(例如,灰尘等)引起短路的极端的情形中,通过电路的 最大电流有效地受到异物接触电极的局部区域的电阻的限制。让我们考虑像手指或螺丝刀之类的异物将两个电极短路在一起,S卩,在电晕电极 1402和加速电极1409之间提供一相对低的电阻(比较于插入的流体的电阻)的电气路径。 可以合理地假定,电流将流过宽度近似等于高电阻率部分1403的宽度(即,1英寸)的区 域。因此,异物可造成最大电流Imax,其等于Ifflax = VoutAtotal = 13,064ν/12*106Ω = 1. 2mA其刚好略微大于标称工作电流1. 12mA。这样一小的电流增加不应造成任何电击的 危险或产生任何不愉快的噪音(例如,电弧和爆音)。此时,全部EFA的最大工作电流限制 到Imax = 13,064V/0. 5ΜΩ = 26mA该值足以产生一大的流体流动,例如,至少100ft7min。如果加速电极由金属 或具有相对低的电阻率(例如,P彡104Q-cm,较佳地,ρ彡ΙΩ-cm,且更为较佳地 P ( IO-1Q-Cm,)的其它材料制成,则短路电流将只受限于HVPS1401的最大电流(即,最 大电流能力),和/或受限于储存在其输出滤波器(例如,滤波电容器)内的任何能量上,由 此,对使用者提供一显著的电击危险,产生一由火花造成的不愉快的“咔哒”或“爆音”声, 和/或产生电磁扰动(例如,无线电频率干扰或射频干扰)。一般来说,选择高电阻率区域 103的电阻率特征和几何(长度对宽度比),以便提供无妨碍的工作,同时,不对EFA工作赋 予电流的限值。这可通过在下列两者之间提供一相对大的比(较佳地如果至少为10)来实 现(i)加速电极的总长度(横向于流体主流动方向的尺寸)以及(ii)对其宽度的加速电 极(沿流体流动方向的尺寸)。一般来说,电极的长度应大于电极的宽度。最佳结果可通过 提供多个加速电极来实现,较佳地,多个加速电极等于电晕电极数加1或减1的范围内,视 电极位置和结构而定。应注意到,尽管为图示的目的图14示出两个加速电极和三个电晕电极,但其它的电极结构也可包括面向相同三个电晕电极的四个加速电极中的三个,或者,包 括另种电极结构的其它数量和结构。还应考虑到,局部过度电流可导致高电阻率材料变劣。如果一异物在某个延长的 时间段(例如,在清洁前的几个毫秒以上)内留驻在电极之间,则这种情况尤其如此。为了 防止电极损坏和因过电流情况引起的相关的失败,HVPS可装备有一电流传感器或其它的装 置,其能探测这样一过电流事件并迅速地中断功率产生或其它方法阻止电流流动。在一预 定的重设或静止时间T。ff之后,的产生可恢复持续某个最小的预定时间T。n,该时间足以探 测任何留下的或残余的短路条件。如果短路条件持续,则HVPS可关闭或其它方式停止,再 次持续至少时间段T。ff。因此,如果过电流问题继续存在,则为了确保EFA的安全工作和电 极的寿命,HVPS1401可继续该开-关循环工作数次(例如,十次或更多)使1; 足以大于 T0no应注意到,在某些情形中,循环将具有清除某些短路条件的效果,而无需人工干预。图15示出EFA的另一实施例,其带有具有高电阻率部分的加速电极。图14中所 示的EFA1400与EFA1500的主要区别在于,在后者中,低电阻率部分1505完全地包含在加 速电极1509的高电阻率部分1503内(即,完全地被周围的高电阻率材料封装)。该改型对 本发明的该实施例提供至少两个优点。第一,将低电阻率部分1508完全地封装在高电阻率 部分1503内,因可防止无意地或偶然地与HVPS 1501的高电压“热”接线端直接接触,而提 高EFA安全性。第二,结构强迫电晕电流流过高电阻率部分1503的较大的部分或体积,而 不是仅一个表面区域。尽管对大部分高电阻率材料(例如,塑料或橡胶)表面导电率与体 积(即,内部)导电率是相同的量级,但由于表面逐渐地污染和变劣,表面导电率可很大地 不同(例如,随时间的变化可能增加若干个数量级)。EFA具有在加速电极的表面处收集流体中存在的颗粒的固有的能力。当收集到一 定量的颗粒或其它方式积累在加速电极上时,颗粒可以毗邻的污染物固体层(例如,一连 续膜)覆盖电极的表面。该污染物层的导电率可能高于高电阻率材料本身的导电率。在这 样一情形中,电晕电流可流过该污染层,并有损高电阻率材料提供的优点。通过将低电阻 率部分1508完全地封装在高电阻率部分1503内,图15的EFA1500可避免该问题。应注 意,低电阻率部分1508不需是连续的,或具有任何点直接接触HVPS1501的供应接线端或从 HVPS1501提供功率的导线1505。应该认识到这些导电部分的主要功能是沿加速电极1509 的长度平衡电势,即,分布电流以使接触低电阻率部分1508的高电阻率部分1503保持在一 定的等电势上。此外,如果电晕电极1502(包括电离边缘1510)接地,则基本上减少或不存 在无意地或偶然地暴露到危险的电流电平的机会,危险的电流电平可因高工作电压而导致 伤害和/或电死,这是因为没有“热”电势来接触全部的结构。图16是一 EFA组件1600的示意图,其带有电晕电极1602 (较佳地形成为具有电 离边缘1610的沿纵向定向导线)和由多个水平堆叠的高电阻率的杆组成的加速电极1603, 诸杆各带有不同的电阻值沿加速电极的宽度而降低。加速电极1603由若干个分段1608至 1612制成,各与其紧邻的邻近分段紧密地接触。各个这些分段由一材料制成,或以其它方 式精心安排而具有不同的电阻率值Pn。业已确定,当电阻率沿朝着HVPS1601接端连接方 向逐渐地减小时(即,从分段1608至1609、1611和1612递减),合成的电场相对于流体流 动的主方向在线性方面变得更均勻。注意到,在图14和16中,示于电晕电极1402/1502和 加速电极1403/1503之间的电场线较佳地不平行于流体流动的主方向,但是弧形的。该弧形致使离子和其它带电颗粒在方向的范围上被加速,由此,降低EFA的效率。通过加速电极 电阻值逐渐递进,业已发现当电晕电流达到一定的最大值时,离子的轨迹与流体流动的主 方向对齐。还应注意到,为显示的目的,尽管加速电极1603显示为包括多个电阻率值为Pn 的离散的分段,电阻率值可在电极的宽度上连续地变化。在宽度上电阻率的逐渐的变化可 通过多种过程来达到,例如,包括合适的杂质材料在合适的变化浓度电平上的离子植入,以 便达到电阻率逐渐地增加或减小。图17A和17B是EFA1700的还有另一实施例的示意图,其中,加速电极1703由高电 阻率材料制成。尽管为了图示的目的,图17A和17B分布示出一特定数量的电晕电极1702 和加速电极1703,但也可使用与本发明的各种实施例一致的其它的数量和结构。加速电极1703由一个或多个高电阻率材料的细带或层制成。电晕电极1702由诸 如金属或导电陶瓷之类的低电阻率的材料制成。HVPS1701通过导线1704和1705连接到电 晕电极1702和加速电极1703。电晕电极1702的几何形对照于电极形成为针或细线的几 何形,所述针或销固有地较难保持和安装,并在EFA的正常工作过程中易于损坏。各电晕电 极1702的下游边缘包括一电离边缘1710。如同其它小物件那样,通常用作电晕电极的细线 易碎,因此显得不可靠。相反,示于图17A和17B中的本实施例提供呈相对宽的金属带的形 状的电晕电极。而这些金属带在电晕放电端必须细,以便容易沿其“下游”边缘发生电晕放 电,但带相对地较宽(沿气流方向),由此,其比对应的细线不易破碎。如图17A所示的EFA1700的另一优点包括加速电极1703基本上比现有技术的系 统所使用的电极为细。即,现有的加速电极通常远厚于相关的电晕电极,以避免围绕加速电 极和加速电极的边缘产生一电场。通过相反或对着加速电极1703的平的表面放置电晕电 极1702的边缘(在本说明中,电晕电极的右“下降”边缘),图17A所示的结构最大程度地 减小或消除由加速电极1703产生的任何电场。即,电晕电极1702的主体的至少一部分沿 要求的流体流动方向通过加速电极1703的前导边缘下降地延伸,由此,电晕电极1702的一 工作部分沿其尾部边缘在加速电极1703的延伸的平表面之间并接近该表面产生一电晕放 电。该定向和结构在这样的平表面附近提供一电场强度,其基本上低于围绕电晕电极1702 的尾部边缘形成的对应的电场强度。因此,一电晕放电形成在电晕电极1702的尾部边缘附 近,而不在加速电极1703的表面处。就在电晕放电起始时,通过在流体内离子和带电颗粒的发生,以及这样的电荷通 过导线1705沿着加速电极1703传递到HVPS1701,电晕电流流过位于电晕电极1702和加 速电极1703之间的被加速的流体(例如,空气、绝缘液体等)。由于没有电流沿相对方向 (即,从加速电极1703通过流体到电晕电极170 流动,所以不产生背电晕。还已经发现, 该结构导致电场(由线1706表示),其相对于要求的流体流动的方向(用箭头1707示出) 比其它方式提供的电场更加线性。电场的提高的线性由横贯加速电极1703的电压降造成, 该加速电极产生横向于流体流动的主方向的电场的等电势线。由于电场线正交于这样的等 电势线,所以,电场线更加平行于流体流动的主方向。如图17A所示的EFA1700的另一的优点通过插入加速电极1703的结构,由隔绝电 晕电极1702彼此的活动部分(即,如图所示的右边缘)提供。因此,电晕电极彼此“见不 到”,因此,与现有系统相比,电晕电极1702可彼此紧密靠近地定位(即,沿如图17A所示的 垂直方向)。通过使用如图17A所示的设计特征,可避免出现的相当大的流体流动的两个主要障碍。这些障碍中的第一障碍在于,通常的加速电极的相对厚的前部造成的高的空气 阻力。本结构提供的电晕电极和加速电极均具有低的拖曳几何形,即,形成在空气动力学中 的“友好”的形状。例如,这些几何形提供一用于空气的阻力系数Cd不大于1较佳地小于 0. 1,更加较佳地小于0. 01。实际的几何形或形状必须取决于要求的流体的流动和被加速的 流体的粘度,这些因素在各设计之间是不同的。由本发明的本实施例克服的第二障碍在于,由于根据现有的结构所必须的和由 现有结构观察到的传统的极间间距要求,合成的低密度的电极是可能的。例如,US专利 No. 4,812,711示出彼此间隔开50mm距离的四个电晕电极,本文援引该专利全文以供参考。 没有出人意料的是,该相对低密度和小量的电极仅可容纳非常低的功率电平,带有一合成 的低电平的流体流动。相反,本实施例容纳电晕电极到吸引器电极间的间距小于10mm,较佳 地小于1mm。电极的还有另一结构示于图17B的EFA1700。在此情形中,电晕电极1702沿如箭 头1707所示的要求的流体流动方向,放置在离加速电极1703 —预定的距离。再者,合成的 电场基本上呈线性,如虚线所示,从电晕电极1702出发朝向加速电极1703。然而,应注意 到,有关要求的流体流动方向,电晕电极1702不放置在加速电极1703 “其中”。如图17A所示的本发明的各种实施例的目的在于,与其它可能的或由其它EFA装 置实施的技术相比,实现与当今制造技术一致的更紧密间距的电晕电极(即,较高密度的 电极)。即,极端薄和短的电极可容易地进行制造,其通过一单一制造过程或步骤,例如,所 述过程或步骤与现代微电子机械系统(MEMQ以及相关的半导体技术和能力相一致。再次 参照图17A,从图中可见,相邻的电晕电极1702可垂直地彼此间隔开小于Imm的距离,或甚 至彼此仅几个μπι。最后造成的电极密度的增加提供了提高的流体的加速和流率。例如,美 国专利No. 4,812,711描述了一能够产生空气速度仅为每秒0. 5米(m/sec)的装置。相反, 如果电极间距为1mm,则可达到50倍增加的电极密度和提高的电流能力,以提供对应增加 的空气速度,即,达到约25m/sec或5,OOOft/min。此外,若干EFA级可连续地放置,或沿要 求的流体流动的水平方向一前一后地放置,当流体流过连续的多级时,各级还加速流体。各 级位于离开就近的级一预定的距离,该距离由施加到各级的相对电极的最大电压确定。尤 其是,当某一级的电晕放电电极和加速电极更靠近地放置在一起时,要求较低的电压来起 动和保持电晕放电。因此,鉴于低的工作电压用于该各级之内,全部级的EFA可类似地彼此 更靠近地放置。该关系导致沿水平方向的级的密度近似地正比于级内的电极密度(例如, 沿垂直方向)。因此,可以期望电极“垂直”密度的增加将在“水平”密度上提供类似的增加, 以使流体流动加速度反比于极间距离的平方。由本发明的各种实施例获得的诸优点至少部分地归功于使用一高电阻率材料作 为加速电极的部分。高电阻率材料可包括相对高电阻的材料,例如,填充碳粉的塑料或橡 胶、硅、锗、锡、砷化镓、磷化铟、氮化硼、碳化硅、硒化镉等。这些材料具有的电阻率应在IO1 至101° Ω-cm范围内,较佳地应在IO4至IO9 Ω-cm之间,更加较佳地应在IO6至IO7 Ω-cm之 间。使用高电阻率的材料支持电极密度的提高。例如,紧密间距的金属加速电极显示出产 生高频火花事件的不稳定的工作特性。相比之下,根据本发明的实施例的高电阻率的电极 产生一更加线性化的电场,由此,最大程度地减小火花的发生和减小从加速电极的尖边缘 发出背电晕。参照图17a可以理解消除背电晕。
再次参照图17A,图中示出电晕放电事件在电晕电极1702的尾部或右边缘处或沿 着其尾部或右边缘发生,但不沿着加速电极1703的前导或左边缘发生。这是因为由电晕放 电过程产生了电压和电场的分布。例如,加速电极1703的左边缘至少略微厚于电晕电极 1702的右边缘,而电晕电极1702的右边缘既细又尖锐。因为靠近一电极的电场近似地正 比于电极的厚度,所以,电晕放电开始在电晕电极1702的尾部边缘处。然后,合成的电晕电 流通过两个路径从电晕电极1702的尾部边缘流到HVPS1701的高电压接线端。第一路径是 沿线1706所示的电场通过的流体的电离部分。第二路径是通过加速电极1703的本体。流 过加速电极1703的本体的电晕电流导致沿该本体的电压降。该电压降从施加到加速电极 1703的右边缘的高电压接线端朝向电极的左边缘前进。随着电晕电流增加,对应的增加显 示在该电压降内。当HVPS1701dd的输出电压达到一足以沿加速电极1703的左边缘起动电 晕放电的电平时,在这些边缘处的电压降足够高来减缓任何电压的增加,并防止沿加速电 极的边缘电晕放电。本发明的其它的实施例可将极间间距减小到几个微米的量级。在这样的间距下, 一电晕放电条件可以相对低的电压起动,电晕放电的形成不是由电压本身造成,而是由电 压产生的高强度电场造成。该电场强度近似地正比于施加的电压,而反比于相对电极之间 的距离。例如,大约8kV的电压足以在近似为Icm的极间间距下起动电晕放电。极间间距 减小10分之一至1mm,可将电晕放电起动所要求的电压降低到近似为800V。极间间距进一 步减小到0. Imm可将要求的电晕起动电压降到80V,而10微米的间距仅需要8V来起动电晕 放电。这些低电压提供极间更靠近的间距和各级之间更近的间距,由此,增加总的流体加速 度好几倍。如上所述,该增加量近似地反比于诸极之间的距离的平方,与Icm间距相比,在 空气流中导致100、10000和1000000的总的增加。使用一高电阻率电极结构的益处,可参照图18A和18B作进一步解释。参照图18A, EFA1800包括电晕电极1802和加速电极1803。加速电极1803又包括一低电阻率部分1804 和一高电阻率部分1806。一电晕电流在箭头1805所示的电流路径上,流过存在于电晕电 极1802和加速电极503之间的电离的流体(即,通过极间空间),该路径继续通过如箭头所 示的加速电极1803的高电阻率部分1806。局部的扰动一发生,例如一火花事件,则合成的 放电电流引导至通过由图18B的箭头1807所示的狭窄路径。然后,电流沿一横贯高电阻率 部分1806的较宽的路径1808前进。因为从加速电极1803的一小区域发出的增加的电流, 仅在路径1808上逐渐地向外扩展,路径1808上合成的电阻基本上比这样的电流分布在全 部的高电阻率部分1806上时高。因此,由增加的电流流动为信号的火花或火花前事件受到 沿路径1808的电阻限制,由此,限制住电流。如果选择高电阻率部分1806而具有一电阻率 和宽度对长度的比,则可避免或减缓任何显著的电流的增加。这样的电流增加可由多个事 件造成,包括上述的放电或火花、在电极上或电极之间存在异物(例如,灰尘、昆虫等)螺丝 刀,或甚至手指放置在电极之间和与电极发生接触。本发明的另一实施例示于图19中。如图所示,EFA1900包括加速电极1903的一 梳形的高电阻率部分1906。诸如火花之类的任何局部的事件显然限制成在吸引电极1903 的一小部分上流动,例如,在单一的或靠近事件的少数的齿上。与正常工作条件相关的电晕 电流用箭头1905显示。例如,显示在箭头1907和1908处的诸如一火花的事件被限制在沿 手指或齿1906流动。该路径上的电阻足够高来调制由事件造成的任何的电流的增加。应注意到,性能的提高是通过增加齿数,而不是选择宽度对长度之比。一为1对0. 1的典型的 宽度对长度之比可以是合适的,较佳地是0. 05对1之比或更小。如上所述,本发明的各种特征使得本发明能使用固体之外的材料来产生一电晕放 电或离子发射。一般来说,固体材料仅是“勉强地”放出,并产生离子,由此,限制流体的EFA 加速。此时,如果定位和成形来产生电晕放电,则诸如水之类的许多流体可释放更多的离 子。例如,使用一导电流体作为电晕发射材料可见美国专利No. 3,751,715中的描述。其中, 描述一泪滴形的容器用作容纳导电流体的槽。例如,导电流体可以是自来水,较佳地是一包 括强的电解液的水溶液,例如,NaCl, HN03、NaOH等。图20示出根据本发明的一实施例的 一 EFA的工作,其中,EFA2000包括五个加速电极2003和四个电晕电极2002。所有这些电 极显示为截面图。电晕电极各包括由诸如塑料或硅之类的绝缘制成的狭窄细长的非导电壳 2009,并有形成在壳体尾部边缘或右侧内的电离边缘2010处的狭槽2011。电晕电极2002 的壳体2009通过一合适的供应管连接到一导电流体供应源或容器(未示出)。形成在电 晕电极2002的尾部边缘内的狭槽2011足够地狭窄,以使流体通过流体分子张力包含在壳 体2009之内。狭槽2011可装备有海绵状的“阻塞”或喷嘴部分,以便提供一恒定缓慢地通 过槽释放的导电流体。HVPS 2001产生一电压足以发生电晕放电,这样,导电流体2008起 作一尖锐边缘的导体,并从槽2011处的电晕电极2002的尾部边缘在槽2011处发射离子。 导电流体2008生成的离子从槽2001沿着由线2006代表的电场朝向加速的高电阻率的电 极2003迁移。随着流体在产生的电晕放电中被消耗,流体通过壳体2009从合适的流体源 或容器(未示出)进行补充。应该指出和理解的是,在本说明书内提及的所有的出版物、专利和专利申请是用 来表明本发明所涉及的本技术领域内的技术水平。本文援引所有的出版物、专利和专利申 请以供参考,其引用的程度雷同于各出版物、专利和专利申请被全文地具体地和个别地指 明以供参考的程度。
权利要求
1.一种静电流体加速器包括电晕电极;与所述电晕电极间隔的加速电极;以及电源,将工作电压连接到所述电晕电极和所述加速电极,以在所述电晕电极和所述加 速电极之间的极间空间内形成一高强度的电场,所述加速电极由高电阻率的材料制成,各个所述加速电极具有横向于要求的流体流动 方向定向且相互垂直的长度和高度尺寸、以及平行于所述要求的流体流动方向定向的宽度 尺寸,沿横向于要求的流体流动方向的方向的所述加速电极的长度大于平行于所述流体流 动方向的所述加速电极的宽度,而所述加速电极的所述宽度至少是沿横向于所述要求的流 体流动方向和所述长度的方向的所述加速电极的高度的10倍。
2.如权利要求1所述的静电流体加速器,其特征在于,横过所述加速电极的电压降Vd 不大于由所述电源供应的所述工作电压的50 %。
3.如权利要求1所述的静电流体加速器,其特征在于,横过所述加速电极的电压降Vd 不大于由所述电源供应的所述工作电压的10%。
4.如权利要求1所述的静电流体加速器,其特征在于,各个所述加速电极包括多个分 段,所述加速电极之一的各个所述分段具有与所述一个加速电极的所述分段中的其余分段 不同的电阻率。
5.如权利要求4所述的静电流体加速器,其特征在于,所述加速电极的所述分段中各 个分段的电阻率,随离所述电晕电极的距离而减小。
6.如权利要求4所述的静电流体加速器,其特征在于,具有一最低电阻率的、最远离所 述电晕电极的所述分段之一,具有一连接到所述电源的输出接端的电气触头。
7.如权利要求4所述的静电流体加速器,其特征在于,所述加速电极的所述分段的邻 近的分段的诸部分彼此间隔,并且彼此紧密接触。
8.如权利要求1所述的静电流体加速器,其特征在于,所述加速电极具有一梳形结构, 其带有的齿朝向电晕电极,并带有一远离电晕电极定位的底部。
9.如权利要求1所述的静电流体加速器,其特征在于,所述电晕电极工作在接地电势。
10.如权利要求1所述的静电流体加速器,其特征在于,所述加速电极的电阻率在所述 加速电极的宽度上变化。
11.一种静电流体加速器包括电晕电极;与所述电晕电极间隔的加速电极,各个所述加速电极由高电阻率的材料制成且包括一 沿一要求的流体流动方向拉长的薄板状的形状,各个所述加速电极基本上平行于所述电晕 电极,所述电晕电极定位在加速电极的相邻的电极之间;以及连接到所述电晕电极和所述加速电极的电源,以在极间空间产生电场,由此沿所述要 求的流体流动的所述方向在所述极间空间内加速流体。
12.如权利要求11所述的静电流体加速器,其特征在于,所述加速电极包括高电阻率 的材料,其具有的电阻率P至少为10_3Q-cm。
13.如权利要求11所述的静电加速器,其特征在于,所述加速电极包括一高电阻率的 材料,其具有的电阻率P至少为IO3 Ω-cm。
14.如权利要求11所述的静电流体加速器,其特征在于,横过所述加速电极的电压降 Vd不大于由所述电源产生的输出电压的50%。
15.如权利要求11所述的静电流体加速器,其特征在于,横过所述加速电极的电压降 Vd不大于由所述电源产生的输出电压的10%。
16.如权利要求11所述的静电流体加速器,其特征在于,所述加速电极包括多个分段, 各个所述分段具有不同的电阻率,各个所述分段基本上平行于所述电晕电极。
17.如权利要求16所述的静电流体加速器,其特征在于,最靠近所述电晕电极的所述 分段之一的电阻率具有最高值,各个所述分段的电阻率沿逐渐远离所述电晕电极的方向减
18.如权利要求17所述的静电流体加速器,其特征在于,带有最低电阻率的所述分段 具有一连接到所述电源的输出接端的电气触头。
19.如权利要求16所述的静电流体加速器,其特征在于,所述加速电极的所述分段的 邻近的分段的诸部分彼此间隔,并且彼此紧密接触。
20.如权利要求11所述的静电流体加速器,其特征在于,所述加速电极具有一梳形结 构,其带有的齿朝向电晕电极,并带有一远离电晕电极定位的底部。
21.如权利要求11所述的静电流体加速器,其特征在于,所述电晕电极工作在接地电势。
22.如权利要求11所述的静电流体加速器,其特征在于,所述加速电极的电阻率在所 述加速电极的宽度上变化。
全文摘要
控制流体流动的静电流体加速器和方法。一用于处理流体的装置包括一电晕放电装置(602)和一电源(601)。电晕放电装置(602)包括至少一个电晕放电电极(603)和至少一个收集器电极(605),它们彼此靠近定位,以便提供在预定范围内的总的极间电容。电源(601)加以连接而将一电功率信号供应到电晕放电电极和收集器电极(603、605),以便造成电晕电流流过电晕放电电极和收集器电极(603、605)之间。发生的电功率信号的电压的交变分量的幅值不大于电功率信号的电压的常量分量的幅值的1/10。电压的交变分量是这样的幅值和频率电压的最高谐波的交变分量的幅值除以电压的常量分量的幅值获得的比,相当地小于电晕电流的最高谐波的交变分量的幅值除以电晕电流的常量分量的幅值获得的比,即,(Vac/Vdc)<(Iac/Idc)。
文档编号B03C3/68GK102078842SQ20101058246
公开日2011年6月1日 申请日期2003年6月23日 优先权日2002年6月21日
发明者I·A·克里克塔弗维奇, V·L·格罗伯特斯 申请人:德塞拉股份有限公司