烯烃生产的制作方法

文档序号:5130616阅读:481来源:国知局
专利名称:烯烃生产的制作方法
技术领域
本发明涉及蒸汽裂化烃原料以生产含有轻质烯烃,尤其是丙烯的流出物的方法。尤其是来自精炼或石油化工装置的烯烃原料可选择性地转化以重新分布在得到的流出物中原料的烯烃含量。
利用烃原料的蒸汽裂化是现有技术中已知的。为生产含有丙烯的流出物,已知蒸汽裂化含有直馏(SR)石脑油的原料,所述直馏石脑油基本上不含烯烃,但含有直链和异链烷烃。然而,丙烯收率是相当低的,丙烯与乙烯的比率(低级烯烃)同样相当低。
在现有技术中,需要增加采用该蒸汽裂化装置生产丙烯的方法。
还已知使用结晶硅酸盐催化剂催化裂化含烯烃原料,例如由WO-A-99/29802可知。
还已知使用结晶硅酸盐裂化催化剂生产轻烯烃,例如乙烯。例如,WO-A-98/56877公开了轻质烃原料向轻烯烃的改善转化方法,其包括下列步骤,首先使烃原料与生产轻烯烃的裂化催化剂,例如ZSM-5沸石接触,随后热裂化未分离的物流以生产附加乙烯。
需要高收率丙烯生产方法,它可容易地结合入精练或石油化工装置,利用市场上低价值的原料(在市场上具有较少选择),并可增加由烃原料的蒸汽裂化的丙烯生产。
本发明的目的是提供在精练和石油化工装置中存在的烯烃的蒸汽裂化方法,它具有烯烃向轻质烯烃,尤其是丙烯的高转化率。
本发明的另一目的是提供具有高丙烯收率和纯度的生产丙烯的方法。
本发明的另一目的是提供一种可生产属于至少化学级质量的烯烃流出物的方法。
本发明的另一目的是提供生产烯烃的方法,该方法具有稳定的烯烃转化率和随时间的稳定产物分布。
本发明的另一目的是提供基于烯烃具有高的丙烯收率的转化烯烃原料的方法,与烯烃原料的来源和组成无关。
本发明的另一目的是提供一种用于含烯烃物流的催化裂化方法,从而通过分馏的分馏产物是经济上有用的。
本发明提供用于蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括将含有一种或多种烯烃的第一烃原料通过包含结晶硅酸盐的反应器以生产低分子量的烯烃含量高于原料的中间流出物,分馏中间流出物以提供低碳馏分和高碳馏分,将高碳馏分作为第二烃原料通过蒸汽裂化装置以生产蒸汽裂化流出物。
低碳馏分优选含有C3和低级烃和高碳馏分含有C4和高级烃。
第一烃原料优选含有氢化处理的粗C4原料、LCCS、抽余液2原料、抽余液1原料、来自甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)装置的抽余液2原料、烯烃复分解装置,尤其是用于由乙烯和丁烯生产丙烯的抽余液或来自FCC装置、减粘裂化炉或延迟焦化炉的含氢化处理烯烃的物流的至少一种。
优选合并蒸汽裂化装置的流出物和低碳馏分,合并的物流进行联合分馏。
蒸汽裂化装置优选还供给含链烷烃的烃原料。
含链烷烃的烃原料和第二烃原料优选是在通常蒸汽裂化装置不同加工深度的各个炉子中蒸汽裂化。
含链烷烃的烃原料优选是含有直链和/或异链烷烃的C5-C9石脑油。
结晶硅酸盐优选选自硅/铝原子比至少180的MFI型结晶硅酸盐和进行了蒸汽处理步骤的硅/铝原子比为150-800的MEL型结晶硅酸盐。
第一烃原料优选在500-600℃的入口温度和0.1-2巴烯烃分压和5-30h-1的LHSV通过结晶硅酸盐。
第二烃原料的蒸汽裂化优选在760-860℃的出口盘管温度下在蒸汽裂化装置中进行。
优选出口盘管温度为约780℃。
本发明还提供用于蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括将含有一种或多种烯烃的第一烃原料通过包含结晶硅酸盐的反应器以生产低分子量的烯烃含量高于原料的中间流出物,所述第一烃原料含有氢化处理的粗C4原料、LCCS、抽余液2原料、抽余液1原料、来自甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)装置的抽余液2原料、烯烃复分解装置,尤其是用于由乙烯和丁烯生产丙烯的抽余液,或来自FCC装置、减粘裂化炉或延迟焦化炉的含氢化处理烯烃的物流的至少一种,将中间流出物作为第二烃原料通过蒸汽裂化装置以生产蒸汽裂化流出物。
蒸汽裂化装置优选还供给含链烷烃的烃原料。
含链烷烃的烃原料和第二烃原料优选是在通常蒸汽裂化装置不同加工深度的各个炉子中蒸汽裂化。
蒸汽裂化装置可带有通常出口,从而生产合并的流出物。
含链烷烃烃原料优选是含有直链和/或异链烷烃的C5-C9石脑油。
结晶硅酸盐优选选自硅/铝原子比至少180的MFI型结晶硅酸盐和进行了蒸汽处理步骤的硅/铝原子比为150-800的MEL型结晶硅酸盐。
第一烃原料优选在500-600℃的入口温度和0.1-2巴烯烃分压和5-30h-1的LHSV通过结晶硅酸盐。
第二烃原料的蒸汽裂化优选在760-860℃的出口盘管温度下在蒸汽裂化装置中进行。
优选出口盘管温度为约780℃。
本发明还提供用于蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括蒸汽裂化含链烷烃的烃原料的第一烃原料和蒸汽裂化含有C4和以上烃的第二烃原料,第二烃原料含有一种或多种烯烃和含有在包含结晶硅酸盐的反应器中催化裂化第三烃原料产生的中间流出物的底馏分,以生产低分子量的烯烃含量高于第三原料的中间流出物,合并两个蒸汽裂化流出物以得到通常流出物。
第三烃原料优选含有氢化处理的粗C4原料、LCCS、抽余液2原料、抽余液1原料、来自甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)装置的抽余液2原料、烯烃复分解装置,尤其是用于由乙烯和丁烯生产丙烯的抽余液或来自FCC装置、减粘裂化炉或延迟焦化炉的含氢化处理烯烃的物流的至少一种。
蒸汽裂化装置的通常馏分和含有C3和以下烃的中间流出物的顶馏分被合并,合并的物流进行联合分馏。
含链烷烃烃原料优选是含有直链和/或异链烷烃的C5-C9石脑油。
结晶硅酸盐优选选自硅/铝原子比至少180的MFI型结晶硅酸盐和进行了蒸汽处理步骤的硅/铝原子比为150-800的MEL型结晶硅酸盐。
第三烃原料优选在500-600℃的入口温度和0.1-2巴烯烃分压和5-30h-1的LHSV通过结晶硅酸盐。
第二烃原料的蒸汽裂化优选在760-860℃的出口盘管温度下在蒸汽裂化装置中进行。
优选出口盘管温度为约780℃。
用于蒸汽裂化的复合原料含有5-95wt%第一烃原料和95-5wt%第二烃原料。
第一和第二烃原料优选在通常蒸汽裂化装置不同加工深度的各个炉子中蒸汽裂化。
因此,本发明可提供一种方法,其中来自精练和石油化工装置的富含烯烃烃物流(产物)不仅选择性地裂化成烃烯烃,而且尤其裂化成丙烯。
原料可以未稀释或用惰性气体,例如氮气稀释后供给,在后一情况下,原料的绝对压力构成惰性气体中烃原料的分压。
现在参考附图,通过实施例详细描述本发明的各个方面,附图中

图1表示根据本发明的一项实施方案用于加工精练和/或石油化工原料的工艺流程图解,该工艺流程图解包括用于在结晶硅酸盐催化剂存在下选择性地催化裂化烯烃生成轻烯烃的反应器和下游的蒸汽裂化装置;和图2-5表示对于本发明的各个实施例和比较例丙烯/乙烯重量比与原料和温度的关系。
根据本发明的一个方面,烯烃的催化裂化根据烃物流中的烯烃裂化为较轻烯烃,并且选择性地裂化为丙烯的方式进行。原料和流出物优选具有基本上相同的烯烃重量含量。通常流出物的烯烃含量在原料烯烃含量的±15wt%,更优选±10wt%之内。原料可含有任何种类的含烯烃烃物流。原料通常可含有10-100wt%烯烃,还可以未稀释或用稀释剂稀释后供给,稀释剂任选包括非烯烃。尤其是,含烯烃原料可以是烃混合物,其含有碳范围C4-C10,更优选碳范围C4-C6的正和支链烯烃,任选与碳范围在C4-C10的正和支链链烷烃和/或芳烃混合,含烯烃物流通常具有约-15-约180℃的沸点。
在本发明的尤其优选实施方案中,烃原料含有来自精练和蒸汽裂化装置的C4混合物。该蒸汽裂化装置裂化各种原料,包括乙烷、丙烷、丁烷、石脑油、汽油、燃料油等。最优选烃原料含有来自将重油转化为汽油和轻质产品的原油精练厂中流化床催化裂化(FCC)装置的C4馏分。该来自FCC装置的C4馏分通常含有约50wt%的烯烃。此外,烃原料可含有来自在生产甲基叔丁基醚(MTBE)(它由甲醇和异丁烯制备)的原油精炼装置的C4馏分。同样,该来自MTBE装置的C4馏分通常含有约50wt%烯烃。这些C4馏分在各自FCC或MTBE装置的出口分馏。烃原料还可含有来自石油化工厂石脑油蒸汽裂化装置的C4馏分,在石脑油蒸汽裂化装置中,含有沸点范围为约15-180℃的C5-C9物质的石脑油被蒸汽裂化与其它物质一起生产C4馏分。该C4馏分通常含有按重量计40-50%1,3-丁二烯,约25%异丁烯,约15%丁烯(丁-1-烯和/或丁-2-烯形式)和约10%正丁烷和/或异丁烷。含烯烃烃原料还可含有来自蒸汽裂化装置在丁二烯提取(抽余液1)或丁二烯氢化后的C4馏分,因此含有氢化处理的C4物流(在现有技术中称为“氢化处理的粗C4”物流),或粗C4原料,或来自MTBE或乙基叔丁基醚(ETBE)装置的抽余液2原料或烯烃复分解装置的抽余液。
原料还可进一步含有氢化处理的富丁二烯C4馏分,它通常含有超过50wt%的烯烃。此外,烃原料还可含有在石油化工装置中生产的纯烯烃原料。
此外,含烯烃原料还可含有轻质裂化石脑油(LCN)(另称为轻质催化裂化汽油(LCCS))或来自蒸汽裂解装置或轻质裂化石脑油的C5馏分,如上所述,该轻质裂化石脑油由原油精练厂的FCC装置流出物分馏得到。两种原料均含有烯烃。含烯烃原料还可进一步含有来自该FCC装置的中等裂化石脑油或由在原油精练厂用于处理真空蒸馏装置残油的减粘裂化装置得到的减粘裂化石脑油或炼焦厂石脑油。含烯烃原料此外可含有抽余液2原料,其含有烯烃,但有高的异链烷烃含量。
含烯烃烃原料可含有一种或多种上述原料的混合物。
作为含烯烃烃原料或在含烯烃烃原料中使用C5馏分有特别的优点,因为在任何情况下需要由石油精练厂生产的汽油中除去C5物质。这是因为在汽油中存在C5可能增加臭氧,因此增加了生产汽油的光化学活性。在使用轻质裂化石脑油作为含烯烃烃原料的情况下,降低了残存汽油馏分的烯烃含量,从而降低了蒸汽压以及汽油的光化学活性。
根据本发明方法的优选方面,烯烃原料可在MFI型或MEL型催化剂存在下选择性地裂化以在得到的流出物中重新分配原料的烯烃含量。选择催化剂和工艺条件从而使得方法基于烯烃对原料中的特定烯烃有特定的收率。通常选择催化剂和工艺条件使得方法基于烯烃对丙烯有同样高的收率,与烯烃原料的来源,例如FCC装置的C4馏分、MTBE装置的C4馏分、轻质裂化石脑油或轻质裂化石脑油的C5馏分等无关。基于烯烃的丙烯收率基于原料烯烃含量通常为30-50%。基于烯烃的特定烯烃的收率定义为流出物中的烯烃重量含量除以最初总烯烃重量含量。例如,对于含有50wt%烯烃的原料,如果流出物含有20wt%丙烯,基于烯烃的丙烯收率是40%。这可以与产物的实际收率相对照,该收率定义为所生产的产物的重量除以进料的重量。根据本发明的优选方面,在原料中所包含的链烷烃和芳烃仅稍微转化。
根据本发明的优选方面,用于烯烃裂化的催化剂含有MFI族结晶硅酸盐,它可以是沸石、低氧化铝沸石(silicalite)或该族中任何其它硅酸盐,或MEL族,这可以是沸石或任何该族中的其它硅酸盐。三个字母符号的“MFI”或“MEL”分别表示由the Structure Commission of the International ZeoliteAssociation确定的特定结晶硅酸盐结构类型。MFI硅酸盐的实例是ZSM-5和低氧化铝沸石,MEL沸石的实例是本领域中已知的ZSM-11。其它实例是由International Zeolite Association(Atlas of zeolite structure types,1987,Butterworths)描述的Boralite D和低氧化铝沸石-2。
优选的结晶硅酸盐具有由十元氧环限定的孔或通道,和高硅/铝原子比。
结晶硅酸盐是基于由共享的氧离子彼此四面连接的XO4框架的微孔结晶无机聚合物,其中X可以是三价(例如铝、硼...)或四价(例如锗、硅...)。结晶硅酸盐的结晶结构由其中四面体单元的网络连接在一起的特定顺序限定。结晶硅酸盐孔开口的尺寸由四面体单元的数量确定,或由需要形成孔的氧原子和在孔中存在的阳离子的性质决定。它们具有如下性质的独特组合高内表面积、具有一个或多个不连续范围的均匀孔、离子交换能力、良好热稳定性;和吸附有机化合物的能力。由于这些结晶硅酸盐的孔与很多实际感兴趣的有机分子在尺寸上类似,它们控制反应物和产物的进入和外出,在催化反应中产生特定的选择性。具有MFI结构的结晶硅酸盐具有双向交叉的孔系,孔径为沿
的直通道0.53-0.56nm,沿[100]的正弦通道0.51-0.55nm。具有MEL结构的结晶硅酸盐具有双向交叉的直孔系,沿[100]的直通道具有0.53-0.54nm的孔径。
结晶硅酸盐催化剂具有结构和化学性质,在特定反应条件下使用,因此催化裂化容易地进行,可以在催化剂上进行不同的反应路径。在入口温度约500-600℃,优选约520-600℃,更优选540-580℃,烯烃分压约0.1-2巴,最优选约常压的工艺条件下,在原料中的烯烃双键的位移容易地实现,导致双键异构化。此外,该异构化趋向于达到热动力学平衡,例如丙烯可直接通过己烯或较高烯烃原料的催化裂化制备。烯烃催化裂化可理解为包括经键断裂产生较小分子的过程。
催化剂优选具有高硅/铝原子比,从而催化剂具有相对低的酸性。在此说明书中,术语“硅/铝原子比”是指整体材料中的硅/铝原子比,它可通过化学分析测定。尤其对于结晶硅酸盐材料,一定的Si/Al比不仅用于结晶硅酸盐的Si/Al框架,也用于整体材料。
氢转移反应直接与催化剂上酸位的强度和密度有关,该反应优选被抑制以避免在烯烃转化过程中结焦,还与烯烃原料的组成有关。该高比率降低了催化剂的酸性,从而增加催化剂的稳定性。此外,发现使用高Si/Al原子比增加了催化剂的丙烯选择性,即降低了所生产的丙烷的数量。这增加了生成的丙烯的纯度。
根据一个方面,第一类型的MFI催化剂具有高硅/铝原子比,例如至少约180,优选大于约200,最优选大于约300,从而催化剂具有相对低的酸性。氢转移反应直接与催化剂上酸位的强度和密度有关,该反应优选被抑制以避免在烯烃转化过程中结焦,从而将另外降低催化剂随时间的稳定性。该氢转移反应趋向于产生饱和物质,例如链烷烃,中间不稳定的二烯烃和环烯烃,和芳烃,它们都不易裂化为轻烯烃。环烯烃是芳香和结焦类分子的前体,尤其是在固体酸,即酸性固体催化剂存在下。催化剂的酸性可由在催化剂与氨接触后催化剂上残留的氨的数量测定,与催化剂接触后氨吸附于催化剂的酸位上,随后用差热重量分析法测量在高温下氨脱附。硅/铝原子比优选为180-1000,更优选300-500。
在结晶硅酸盐催化剂中具有该高硅/铝原子比,能够获得稳定的烯烃转化,基于烯烃具有30-50%的高丙烯收率,与烯烃原料的来源和组成无关。该高比率降低了催化剂的酸性,从而降低了催化剂的稳定性。
用于本发明的催化裂化方法的高硅/铝原子比MFI催化剂可由商业上获得的结晶硅酸盐通过除去铝制备。典型的商业上获得的硅酸盐具有约120的硅/铝原子比。商业获得的MFI结晶硅酸盐可通过蒸汽处理过程改性,蒸汽处理降低了结晶硅酸盐框架中的四面体铝,将铝原子转化为无定形氧化铝形式的八面体铝。虽然在蒸汽处理步骤中铝原子由结晶硅酸盐框架结构中化学除去以形成氧化铝微粒,但这些微粒导致框架中孔或通道的部分阻塞,这抑制了本发明的烯烃焦化过程。因此,在蒸汽处理步骤后,结晶硅酸盐进行提取步骤,其中无定形氧化铝从孔中除去,至少部分地恢复微孔体积。通过浸提步骤,通过形成水溶性铝络合物由孔中物理去除无定形氧化铝产生MFI结晶硅酸盐的整体脱铝效果。通过由MFI结晶硅酸盐框架除去铝和随后由孔中除去所形成的氧化铝的方法,达到实现在催化剂的总孔表面基本上均匀脱铝的目的。这降低了催化剂的酸性,从而降低了在裂化过程中氢转移反应的发生。酸性的降低理想地是在结晶硅酸盐框架限定的全部孔中基本上均匀地发生。这是因为在烯烃裂化过程中,烃物质可深入地进入孔中。因此,降低酸性,从而降低将导致MFI催化剂稳定性下降的氢转移反应在框架的整个孔结构中进行。用此方法,框架Si/Al比可增加到至少约180,优选约180-1000,更优选至少200,还优选至少300,最优选约480。
根据另一方面,第二类型的MFI催化剂具有大于约300的高硅/铝原子比,从而催化剂具有相对低的酸性,催化剂无需如上所述蒸汽处理或脱铝。
根据另一方面,用于催化裂化过程的MEL催化剂可通过蒸汽处理合成或商业获得的结晶硅酸盐制备。用于本发明的MEL结晶硅酸盐催化剂更常见包含ZSM-11催化剂,它可使用二氨基辛烷作为模板剂和硅酸钠作为硅源或四丁基溴化鏻作为模板剂和硅溶胶作为硅源合成。因此,ZSM-11催化剂可通过混合硅酸钠与1,8二氨基辛烷与硫酸铝一起形成水凝胶,然后使其结晶形成结晶硅酸盐而制备有机模板物质随后通过烧结除去。或者,ZSM-11催化剂通过使四丁基溴化鏻和氢氧化钠与由胶体氧化硅制备的硅溶胶一起反应制备。同样,进行结晶以生产结晶硅酸盐,随后烧结产物。
为降低MEL结晶硅酸盐的钠含量,结晶硅酸盐与盐进行离子交换,随后干燥该物质。通常结晶硅酸盐与铵离子进行离子交换,例如通过将结晶硅酸盐浸渍在氯化铵或硝酸铵的水溶液中。如果结晶硅酸盐中存在的钠离子数量过高,因而在结晶硅酸盐烧结后形成难以除去的结晶硅酸钠相,则需要该离子交换步骤。
最初的MEL结晶硅酸盐可通过蒸汽处理过程改性,尽管不限制于理论,但认为这降低了结晶硅酸盐框架中四面体铝,将铝原子转化为无定形氧化铝形式的八面体铝。虽然在蒸汽处理步骤中,由MEL结晶硅酸盐框架结构中用化学方法除去铝原子形成氧化铝微粒,但这些微粒似乎未迁移,从而未导致将附加地抑制本发明的烯烃裂化过程的框架中孔或通道的部分阻塞。蒸汽处理步骤被发现明显改善烯烃催化裂化过程中的丙烯收率、丙烯选择性和催化剂稳定性。
MEL催化剂的蒸汽处理在高温,优选在425-870℃,更优选在540-815℃,在常压和13-200kPa的水分压下进行。蒸汽处理优选在含有5-100%蒸汽的气氛中进行。蒸汽处理优选进行1-2000小时,更优选20-100小时。如上所述,蒸汽处理趋向于通过形成氧化铝降低结晶硅酸盐框架中四面体铝的数量。
在蒸汽处理步骤后,MEL催化剂,例如在400-800℃的温度下在常压烧结1-10小时。
在蒸汽处理步骤后,MEL催化剂可与铝的络合剂接触,络合剂可含有在水溶液中的有机酸或该有机酸的盐或两种或多种酸或盐的混合物。络合剂尤其可含有胺,例如乙二胺四乙酸(EDTA)或其盐,尤其是其钠盐。在MEL结晶硅酸盐与络合剂接触后,结晶硅酸盐可进行第二离子交换步骤以进一步降低结晶硅酸盐的钠含量,例如通过使催化剂与硝酸铵溶液接触。
MEL或MFI结晶硅酸盐催化剂可与粘合剂,优选无机粘合剂混合,成形为所需形状,例如挤出的小球。选择粘合剂从而以耐受在催化剂制备过程和随后的烯烃催化裂化过程中采用的温度和其它条件。粘合剂是选自粘土、氧化硅、金属氧化物,例如氧化锆和/或金属,或包括氧化硅和金属氧化物的混合物的凝胶。粘合剂优选是无铝的。如果用于与结晶硅酸盐结合的粘合剂本身是催化活性的,它可以改变催化剂的转化率和/或选择性。用于粘合剂的无活性材料可合适地用作稀释剂以控制转化率,因而能够经济和有序地得到产物,无需采用其它控制反应速率的其他手段。需要提供具有良好抗碎强度的催化剂。这是因为在工业使用中,需要避免催化剂破碎成粉末状物质。该粘土或氧化物粘合剂通常仅用于改善催化剂的抗碎强度。用于本发明催化剂的尤其优选的粘合剂含有氧化硅。
细粉碎的结晶硅酸盐材料和粘合剂无机氧化物基质的相对比例可以是非常宽泛的,通常粘合剂含量基于复合催化剂的重量,按重量计在5-95%,更常见为按重量计20-50%。该结晶硅酸盐和无机氧化物粘合剂混合物称为配制的结晶硅酸盐。
在催化剂与粘合剂混合时,催化剂可配制成小球、挤出成其它形状或成形为喷雾干燥粉末。
通常粘合剂和结晶硅酸盐催化剂通过挤出方法混合在一起。在该方法,粘合剂,例如凝胶形式的氧化硅与结晶硅酸盐催化剂材料混合,得到的混合物挤出成所需形状,例如小球。随后配制的结晶硅酸盐在空气或惰性气体中,通常在200-900℃温度下烧结1-48小时。
粘合剂优选不含有任何铝化合物,例如氧化铝。这是因为,如上所述优选的催化剂具有结晶硅酸盐选择的硅铝比。在粘合剂中存在氧化铝产生其它过量的氧化铝,如果粘合步骤在铝提取步骤之前进行。如果含铝粘合剂在铝提取后与结晶硅酸盐催化剂混合,这使催化剂重新铝酸盐化。在粘合剂中存在铝将趋向于降低催化剂的烯烃选择性,和降低催化剂随时间的稳定性。
此外,催化剂与粘合剂的混合可在任何蒸汽处理步骤之前或之前进行。
已发现各种优选的催化剂显示高稳定性,尤其是能够在几天以上,例如多达10天内得到稳定的丙烯收率。这使得烯烃裂化过程能够在两个平行的“定期交替”式反应器中连续地进行,其中当一个反应器正在操作时,另一个反应器正在进行催化剂的再生。催化剂还能够再生多次,而且催化剂是灵活的,它能够应用于裂化来自石油精练或石油化工装置的不同来源,含有不同组成的各种原料,无论是纯的或混合物。
在含烯烃烃原料中存在二烯烃的烯烃催化裂化过程中,二烯烃会导致催化剂更快地失活。它会大大降低催化剂基于烯烃生产所需烯烃,例如丙烯的收率,增加物流停留时间。当二烯烃存在于进行催化裂化的原料中时,它会在催化剂上形成由二烯烃产生的胶,因而降低催化剂活性,对催化剂需要具有一个随时间稳定的活性,通常至少10天。
根据这方面,在烯烃催化裂化之前,如果含烯烃烃原料含有二烯烃,原料进行选择性氢化过程以除去二烯烃。需要控制氢化过程以避免单烯烃的饱和。氢化过程优选包含镍基或钯基催化剂或其它通常用于第一级热解汽油(Pygas)氢化的催化剂。当该镍基催化剂用于C4馏分时,不能避免由于氢化单烯烃明显转化为链烷烃。因此,对二烯烃氢化是更选择性的钯基催化剂更适用于C4馏分。
尤其优选的催化剂是承载于例如氧化铝上的钯基催化剂,基于催化剂重量含有0.2-0.8wt%钯。氢化过程优选在5-50巴,更优选10-30巴绝对压力下,在40-200℃入口温度下进行。氢气/二烯烃的重量比通常是至少1,更优选1-5,最优选约3,液体时空速(LHSV)为至少2h-1,更优选2-5h-1。
优选除去原料中的二烯烃以提供原料中最大二烯烃含量为约0.1wt%,优选约0.05wt%,更优选约0.03wt%。
在催化裂化过程中,选择工艺条件以提供对丙烯的高选择性、随时间稳定的烯烃转化率和在流出物中稳定的烯烃产物分布。该目的通过使用低酸密度催化剂(即高硅/铝原子比),结合低压、高入口温度和短接触时间是有益的,所有工艺参数是相关的,提供总体累积效果(例如较高压力会抵销或补偿较高的入口温度)。选择工艺条件以不利于导致形成链烷烃、芳烃和焦前体的氢转移反应。因此,方法操作条件可采用高空速、低压力和高反应温度。LHSV在5-30h-1,优选10-30h-1。烯烃分压在0.1-2巴,优选0.5-1.5巴,尤其优选的烯烃分压是常压(即1巴)。烃原料优选以足以输送原料通过反应器的总入口压力进料。烃原料或以未稀释或用惰性气体,例如氮气稀释后进料,反应器中的总绝对压力在0.5-10巴范围。使用低烯烃分压,例如常压趋向于在裂化过程中降低氢转移反应的影响,从而降低了趋向于降低催化剂稳定性的结焦的可能性。烯烃裂化优选在500-600℃,更优选520-600℃,还优选540-580℃,通常约560-570℃的原料入口温度下进行。
催化裂化过程可在固定床反应器、移动床反应器或流化床反应器中进行。典型流化床反应器是在石油精练厂中用于流化床催化裂化的FCC型之一。典型移动床反应器是连续催化重整类型。如上所述,过程可使用一对平行的“定期交替”式固定床反应器连续进行。
由于催化剂在延长的时间,通常至少约10天内显示对烯烃转化的高稳定性,催化剂的再生频率低。因此,更具体地说,催化剂可具有超过1年的寿命。
例如,来自精练厂或石油化工装置的富烯烃物流裂化成轻质烯烃,尤其是丙烯。流出物的轻馏分,即C2和C3馏分,可含有超过92%的烯烃。该馏分的纯度足以用作化学级烯烃原料。在该过程中,基于烯烃的丙烯收率基于原料的烯烃含量可以在30-50%,原料含有一种或多种C4或以下的烯烃。在该过程中,与原料相比,流出物有不同的烯烃分布,但基本上相同的总烯烃含量。
参见附图1,它显示包括用于裂化富烯烃烃原料的反应器的工艺流程图解,它对流出物中的烯烃是选择性的,该工艺流程图解可以结合该反应器至原油精练厂中。
如附图1所示,该工艺流程图解包括用于选择性催化裂化富烯烃烃原料以形成轻质烯烃,例如丙烯的反应器2。反应器2通常是固定床反应器,包含如上所述的MFI或MEL型结晶硅酸盐催化剂。反应器2还在本文所述的用于选择性地催化裂化方法的温度、流速和压力条件下操作。反应器2经入口4输入一种或多种由石油化工装置产生的和/或石油精练厂产生的各种富烯烃烃原料。
沿入口4输入的石油化工原料,尤其含有氢化处理的粗C4原料、LCCS、抽余液2原料、抽余液1原料、来自甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)装置的抽余液2原料、烯烃复分解装置,尤其是用于由乙烯和丁烯生产丙烯的抽余液或来自FCC装置、减粘裂化炉或延迟焦化炉的含氢化处理烯烃的物流的至少一种。
在反应器2中选择性催化裂化过程,以及原料烯烃裂化成轻质烯烃,尤其是丙烯,还可通过分解(或裂化)任何硫醇(它会作为杂质存在于FCC原料中)脱除输入的烃原料的硫以得到有价值烯烃和硫化氢,硫化氢随后在反应器2中除去或用本领域已知技术由流出物中除去。采用对杂原子,例如硫中毒不是高度敏感的MFI型结晶硅酸盐,例如低氧化铝沸石与该脱硫过程相结合能够配备一个较小的脱硫装置(未示出)或配备在比用于处理含硫杂质的FCC原料所需的减负荷操作的脱硫装置。因此,采用用于含烯烃烃原料的选择性催化裂化的反应器附加地脱除输入的C4+FCC流出物的硫,从而降低已知用于FCC流出物的脱硫装置的投资和操作费用。
反应器2的流出物沿管线6输出至第一(脱-C3)分馏器8,其中流出物分馏成沿管线10输出的C2/C3顶馏分和沿管线12输出的C4+底馏分。C2/C3馏分,包括高比例丙烯,经普通输入管线16输入第二分馏器14。
由第一分馏器经管线12输出的C4+馏分经入口18输入蒸汽裂化装置20。
蒸汽裂化装置20是本领域已知的一般结构的装置,它包括许多在大多数蒸汽裂化装置的炉子中的加热盘管,原料与蒸汽在盘管上通过。原料在输入蒸汽裂化装置20之前加热到称为入口辐射温度的温度,通常在535-620℃,最常见约600℃。在蒸汽裂化装置20中,称为盘管出口温度的盘管温度通常为760-860℃,最常见为约780℃。用于蒸汽裂化装置的盘管入口压力通常为2-4巴,最常见为2.6-2.9巴,盘管出口压力最常见为2-3巴,最常见为约2.15巴。蒸汽以相对于输入蒸汽裂化装置的总烃原料0.1蒸汽∶1烃原料的重量比输入蒸汽裂化装置,最常见的重量比为约0.35蒸汽∶1烃原料。用于本发明的蒸汽裂化装置20的生产能力通常为约每小时14吨烃原料。
根据本发明举例说明的实施方案,但不是本发明方法所必需的,输入蒸汽裂化装置20的烃原料还包括第二烃原料馏分,它通常可含有直馏石脑油,它沿管线12经许多平行入口24、26、28输入蒸汽裂化装置20。因此,用于蒸汽裂化装置20的复合原料含有经入口18输入的C4+馏分与经入口24、26和28输入的原料。
根据优选方面,经入口18、24、26和28输入的各个烃原料在通常蒸汽裂化装置20的各个炉子内蒸汽裂化,因此,每个原料优选在蒸汽裂化装置20的专用炉子内蒸汽裂化。
尤其需要烯烃在低加工深度(温度)下裂化,而石脑油优选在较高加工深度(温度)下裂化。
当经管线22输入的烃原料含有直馏石脑油时,直馏石脑油通常含有C5-C9直链和/或异链烷烃,基本上没有烯烃含量,但可附加地存在C9+链烷烃。
蒸汽裂化装置20的流出物沿输出管线30输出,经通常输入管线16输入第二分馏器14中。第二分馏器14通常分馏分别经管线10和30的合并流出物,第二分馏器14的输出物流含有C2、C3等的单个馏分,并回收。
回收的C3馏分含有高比例,通常大于94wt%的丙烯。该化学级的丙烯可用作随后过程例如生产聚丙烯中的原料。
因此,根据本发明,烯烃原料进行催化裂化过程,它选择性地催化裂化原料中的烯烃,随后流出物在通常分馏过程中分离成回收的C2-和C3-混合产物和C4+产物,它输送到专用的蒸汽裂化炉子,蒸汽裂化炉子的流出物随后输送到通常分馏部分。蒸汽裂化装置可任选输入基本上不含有烯烃的附加烃原料,例如直馏石脑油。
根据本发明,已经发现使用烯烃裂化步骤作为烯烃原料蒸汽裂化的进料预处理使得在蒸汽裂化流出物中丙烯/乙烯比率转变至高于在直馏石脑油进行蒸汽裂化时所观察的正常范围。在现有蒸汽裂化装置中,蒸汽裂化炉子的生产能力具有最大值,因此,本发明提供了优点,无需增加蒸汽裂化装置所允许的最大生产能力,采用蒸汽裂化装置丙烯收率的增加可通过改变用于蒸汽裂化装置的原料明显增加,尤其是通过采用烯烃裂化作为用于至少部分蒸汽裂化的预处理,采用来自烯烃裂化过程的流出物的附加预分馏,以至由用于蒸汽裂化装置的原料中主要除去丙烯和乙烯。某些现有石油化工装置通常产生含有烯烃的粗C4烃物流,它通常需要被循环。本发明的方法使得该含有烯烃的粗C4烃物流输入蒸汽裂化过程中以提供有价值的流出物。
在蒸汽裂化装置操作方面,已经发现在蒸汽裂化装置中最适宜于丙烯生产的最佳状况,由丙烯/乙烯重量比测量,在蒸汽裂化装置在低加工深度,通常在760-860℃,最常见约780℃下操作时产生。还发现当蒸汽裂化装置在此低加工深度下操作时,蒸汽裂化装置降低了盘管的结焦,即减少了在盘管上碳沉积的不断增加,这对于炉子在关闭和检修之间较长时间运行是有利的。
本发明现参考如下非限制实施例详细说明。
比较实施例1-4这些比较实施例是采用本领域已知的SPYRO模拟软件计算机模拟的,其中具有模拟组成的直馏石脑油在蒸汽裂化装置中进行模拟蒸汽裂化。
在比较实施例1中,示于表1的模拟组合物(NPAR、IPAR、NAP和ARO分别表示N-链烷烃、异链烷烃、环烷烃和芳烃)在蒸汽裂化装置中蒸汽裂化,装置的盘管出口温度780℃,入口辐射温度535℃,每小时生产能力14.2吨,每公斤烃原料用0.35kg的蒸汽稀释,盘管入口压力2.67巴,盘管出口压力2.15巴,停留时间为515毫秒,裂化装置的功率是9.6兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2872kg乙烯和每小时2520kg丙烯,得到丙烯/乙烯的重量比为0.878。
在比较实施例2-4中,相同的石脑油原料采用恒定的蒸汽裂化装置进料速度(每小时14.2吨),分别在800、820和840℃的盘管出口温度下类似地进行模拟蒸汽裂化。
在比较实施例2中,模拟条件改变成盘管入口压力2.69巴,停留时间为500毫秒,裂化装置的功率是10.5兆瓦特。在入口流量每小时14200kg时,流出物含有每小时3312kg乙烯和每小时2571kg丙烯,得到丙烯/乙烯的重量比为0.776。
在比较实施例3中,模拟条件改变成盘管入口压力2.71巴,停留时间为487毫秒,裂化装置的功率是11.3兆瓦特。在入口流量每小时14200kg时,流出物含有每小时3693kg乙烯和每小时2486kg丙烯,得到丙烯/乙烯的重量比为0.673。
在比较实施例4中,模拟条件改变成盘管入口压力2.72巴,停留时间为477毫秒,裂化装置的功率是12.0兆瓦特。在入口流量每小时14200kg时,流出物含有每小时4007kg乙烯和每小时2281kg丙烯,得到丙烯/乙烯的重量比为0.569。
从这些比较实施例可以看出,直馏石脑油的蒸汽裂化在780℃时丙烯/乙烯重量比最大值是0.878,随盘管出口温度增加而降低。结果示于附图2中。
比较实施例5-8在这些比较实施例中,具有示于表2的模拟组成的LCCS在如下概述的条件下在780、800、820和840℃盘管出口温度下进行模拟蒸汽裂化,在恒定蒸汽裂化装置进料速度下流出物的丙烯/乙烯重量比总结在图2中。
在比较实施例5中,示于表2的模拟组合物在蒸汽裂化装置中蒸汽裂化,该装置的盘管出口温度780℃,入口辐射温度535℃,每小时生产能力14.2吨,每公斤烃原料用0.35kg的蒸汽稀释,盘管入口压力2.64巴,盘管出口压力2.15巴,停留时间为540毫秒,裂化装置的功率是7.7兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1874kg乙烯和每小时1952kg丙烯,得到丙烯/乙烯的重量比为1.041。
在比较实施例6-8中,相同LCCS原料采用恒定的蒸汽裂化装置进料速度(每小时14.2吨),分别在800、820和840℃的盘管出口温度下类似地进行模拟蒸汽裂化。
在比较实施例6中,模拟条件改变成盘管入口压力2.66巴,停留时间为527毫秒,裂化装置的功率是8.3兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2135kg乙烯和每小时1940kg丙烯,得到丙烯/乙烯的重量比为0.908。
在比较实施例7中,模拟条件改变成盘管入口压力2.67巴,停留时间为516毫秒,裂化装置的功率是8.8兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2376kg乙烯和每小时1841kg丙烯,得到丙烯/乙烯的重量比为0.775。
在比较实施例8中,模拟条件改变成盘管入口压力2.68巴,停留时间为505毫秒,裂化装置的功率是9.3兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2592kg乙烯和每小时1666kg丙烯,得到丙烯/乙烯的重量比为0.643。
比较实施例9-12在这些比较实施例中,具有示于表3的模拟组成的抽余液2在如下概述的条件下在780、800、820和840℃盘管出口温度下进行模拟蒸汽裂化,在恒定蒸汽裂化装置进料速度下流出物的丙烯/乙烯重量比总结在图2中。
在比较实施例9中,示于表3的模拟组合物在蒸汽裂化装置中蒸汽裂化,该装置的盘管出口温度780℃,入口辐射温度535℃,每小时生产能力14.2吨,每公斤烃原料用0.35kg的蒸汽稀释,盘管入口压力2.67巴,盘管出口压力2.15巴,停留时间为497毫秒,裂化装置的功率是6.2兆瓦特。在入口流量每小时14200kg时,流出物含有每小时859kg乙烯和每小时2523kg丙烯,得到丙烯/乙烯的重量比为2.95。
在比较实施例10-12中,相同抽余液2原料采用恒定的蒸汽裂化装置进料速度(每小时14.2吨),分别在800、820和840℃的盘管出口温度下类似地进行模拟蒸汽裂化。
在比较实施例10中,模拟条件改变成盘管入口压力2.68巴,停留时间为481毫秒,裂化装置的功率是7.1兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1260kg乙烯和每小时2808kg丙烯,得到丙烯/乙烯的重量比为2.228。
在比较实施例11中,模拟条件改变成盘管入口压力2.69巴,停留时间为467毫秒,裂化装置的功率是7.8兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1679kg乙烯和每小时2824kg丙烯,得到丙烯/乙烯的重量比为1.682。
在比较实施例12中,模拟条件改变成盘管入口压力2.70巴,停留时间为455毫秒,裂化装置的功率是8.5兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2087kg乙烯和每小时2631kg丙烯,得到丙烯/乙烯的重量比为1.261。
比较实施例13-16在这些比较实施例中,具有示于表4的模拟组成的氢化处理的粗C4原料在如下概述的条件下在780、800、820和840℃盘管出口温度下进行模拟蒸汽裂化,在恒定蒸汽裂化装置进料速度下流出物的丙烯/乙烯重量比总结在图2中。
在比较实施例13中,示于表4的模拟组合物在蒸汽裂化装置中蒸汽裂化,该装置的盘管出口温度780℃,入口辐射温度535℃,每小时生产能力14.2吨,每公斤烃原料0.35kg的稀释蒸汽,盘管入口压力2.66巴,盘管出口压力2.15巴,停留时间为502毫秒,裂化装置的功率是5.0兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1373kg乙烯和每小时2141kg丙烯,得到丙烯/乙烯的重量比为1.560。
在比较实施例14-16中,相同氢化处理的粗C4原料采用恒定的蒸汽裂化装置进料速度(每小时14.2吨),分别在800、820和840℃的盘管出口温度下类似地进行模拟蒸汽裂化。
在比较实施例14中,模拟条件改变成盘管入口压力2.67巴,停留时间为491毫秒,裂化装置的功率是5.4兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1676kg乙烯和每小时2233kg丙烯,得到丙烯/乙烯的重量比为1.333。
在比较实施例15中,模拟条件改变成盘管入口压力2.68巴,停留时间为480毫秒,裂化装置的功率是5.8兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1964kg乙烯和每小时2172kg丙烯,得到丙烯/乙烯的重量比为1.106。
在比较实施例16中,模拟条件改变成盘管入口压力2.70巴,停留时间为471毫秒,裂化装置的功率是6.2兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2236kg乙烯和每小时1982kg丙烯,得到丙烯/乙烯的重量比为0.886。
实施例1-4在这些实施例中,比较实施例5-8的模拟LCCS首先进行模拟烯烃催化裂化过程以生产示于表5组成的模拟流出物。随后流出物在如下概述的条件下在780、800、820和840℃的4个温度下进行模拟蒸汽裂化,得到各自的丙烯/乙烯重量比为1.521、1.242、1.009和0.805,总结在附图3中。
在实施例1中,示于表5的模拟组合物在蒸汽裂化装置中蒸汽裂化,该装置的盘管出口温度780℃,入口辐射温度535℃,每小时生产能力14.2吨,每公斤烃原料0.35kg的稀释蒸汽,盘管入口压力2.65巴,盘管出口压力2.15巴,停留时间为523毫秒,裂化装置的功率是6.3兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1729kg乙烯和每小时2629kg丙烯,得到丙烯/乙烯的重量比为1.521。
在实施例2-4中,相同模拟催化裂化的LCCS原料采用恒定的蒸汽裂化装置进料速度(每小时14.2吨),分别在800、820和840℃的盘管出口温度下类似地进行模拟蒸汽裂化。
在实施例2中,模拟条件改变成盘管入口压力2.66巴,停留时间为510毫秒,裂化装置的功率是6.9兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2029kg乙烯和每小时2521kg丙烯,得到丙烯/乙烯的重量比为1.242。
在实施例3中,模拟条件改变成盘管入口压力2.68巴,停留时间为499毫秒,裂化装置的功率是7.5兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2302kg乙烯和每小时2323kg丙烯,得到丙烯/乙烯的重量比为1.009。
在实施例4中,模拟条件改变成盘管入口压力2.70巴,停留时间为489毫秒,裂化装置的功率是7.9兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2545kg乙烯和每小时2048kg丙烯,得到丙烯/乙烯的重量比为0.805。
在实施例1中,在蒸汽裂化装置的盘管上结焦的形成作为模拟的部分评价。在Spyro模拟模型中,炉子中的盘管形状为W,有4个盘管位置可进行测量或评价结焦。对于盘管位置1,计算值为每月0.4当量mm,对于盘管位置2,为0.5当量mm,对于盘管位置3,为0.7当量mm,和对于盘管位置4,为0.8当量mm。相反,在实施例2,相应结焦值为每月0.5、0.6、0.9和1.2当量mm,对于实施例3,相应结焦值为每月0.6、0.7、1.1和1.6当量mm,和对于实施例4,相应结焦值为每月0.7、0.9、1.4和2.1当量mm。
这些数值显示在蒸汽裂化装置在低加工深度,尤其是在约780℃下操作时结焦降低。
实施例5-8实施例5-8是实施例1-4的改变,在这些实施例中,模拟LCCS首先进行模拟烯烃催化裂化过程以生产示于表5组成的流出物,随后附加地进行模拟分馏,由流出物中的C3和C2流出物产生表6的组合物,随后在与相应实施例1-4的基本上相同的条件下进行模拟蒸汽裂化,蒸汽裂化装置的进料速度是每小时14.2吨,烯烃催化裂化装置的最初入口进料速度是16938.9kg/h,这是因为分馏器的C3/C2顶馏分旁路了蒸汽裂化装置。
对于实施例5,在输送至联合分馏器的复合流出物中,丙烯/乙烯的重量比为1.802。
对于实施例6、7和8,在复合流出物中相应的丙烯/乙烯的重量比为1.608、1.428和1.262。
由每个温度下得到的总丙烯/乙烯重量比总结在附图3中。
如同实施例1-4评价在蒸汽裂化装置的盘管上结焦的形成,对于实施例5,相应结焦值为每月0.0、0.1、0.2和0.4当量mm,对于实施例6,相应结焦值为每月0.,0、0.2、0.4和0.6当量mm,对于实施例7,相应结焦值为每月0.1、0.3、0.6和1.0当量mm,和对于实施例8,相应结焦值为每月0.1、0.4、0.8和1.5当量mm。
这些数值显示在蒸汽裂化装置在低加工深度,尤其是在约780℃下操作时结焦降低。
实施例9-12在这些实施例中,比较实施例9-12的模拟抽余液2首先进行模拟烯烃催化裂化过程以生产示于表7组成的模拟流出物。随后流出物在如下概述的条件下在780、800、820和840℃的4个温度下进行模拟蒸汽裂化,得到各自的丙烯/乙烯重量比为2.031、1.666、1.332和1.036。
在实施例9中,示于表5的模拟组合物在蒸汽裂化装置中蒸汽裂化,该装置的盘管出口温度780℃,入口辐射温度535℃,每小时生产能力14.2吨,每公斤烃原料0.35kg稀释蒸汽,盘管入口压力2.69巴,盘管出口压力2.15巴,停留时间为483毫秒,裂化装置的功率是6.0兆瓦特。在入口流量每小时14200kg时,流出物含有每小时1714kg乙烯和每小时3481kg丙烯,得到丙烯/乙烯的重量比为2.031。
在实施例10-12中,相同模拟的催化裂化抽余液2原料采用恒定的蒸汽裂化装置进料速度(每小时14.2吨),分别在800、820和840℃的盘管出口温度下类似地进行模拟蒸汽裂化。
在实施例10中,模拟条件改变成盘管入口压力2.70巴,停留时间为469毫秒,裂化装置的功率是6.8兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2059kg乙烯和每小时3430kg丙烯,得到丙烯/乙烯的重量比为1.666。
在实施例11中,模拟条件改变成盘管入口压力2.72巴,停留时间为457毫秒,裂化装置的功率是7.6兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2426kg乙烯和每小时3232kg丙烯,得到丙烯/乙烯的重量比为1.332。
在实施例12中,模拟条件改变成盘管入口压力2.74巴,停留时间为446毫秒,裂化装置的功率是8.3兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2790kg乙烯和每小时2890kg丙烯,得到丙烯/乙烯的重量比为1.036。
这些实施例也显示在蒸汽裂化装置在低加工深度操作时结焦降低。
实施例13-16实施例13-16是实施例9-12的改变,在这些实施例中,模拟抽余液2首先进行模拟烯烃催化裂化过程以生产示于表7组成的模拟流出物,随后附加地进行模拟分馏,由流出物中的C3和C2流出物产生表8的组合物,随后在与相应实施例9-12的基本上相同的条件下进行模拟蒸汽裂化,蒸汽裂化装置的进料速度是每小时14.2吨,烯烃催化裂化装置的最初入口进料速度是19192.9kg/h,这是因为分馏器的C3/C2顶馏分旁路了蒸汽裂化装置。
对于实施例13,在输送至联合分馏器的复合流出物中,丙烯/乙烯的重量比为2.831。
对于实施例14、15和16,在复合流出物中相应的丙烯/乙烯的重量比为2.518、2.188和1.880。
由每个温度下得到的总丙烯/乙烯重量比总结在图3中。
这些实施例还显示在蒸汽裂化装置在低加工深度下操作时结焦降低。
实施例17-20在这些实施例中,比较实施例13-16的模拟的氢化处理的粗C4原料首先进行模拟烯烃催化裂化过程以生产示于表9组成的模拟流出物,随后该流出物在如下概述的条件下在780、800、820和840℃的4个温度下进行模拟蒸汽裂化,得到各自的丙烯/乙烯重量比为2.080、1.671、1.316和1.007。
在实施例17中,示于表9的模拟组合物在蒸汽裂化装置中蒸汽裂化,该装置的盘管出口温度780℃,入口辐射温度535℃,每小时生产能力14.2吨,每公斤烃原料0.35kg稀释蒸汽,盘管入口压力2.68巴,盘管出口压力2.15巴,停留时间为486毫秒,裂化装置的功率是4.9兆瓦特。在入口流量每小时14200kg时,流出物含有每小时17874kg乙烯和每小时3898kg丙烯,得到丙烯/乙烯的重量比为2.080。
在实施例18-20中,相同模拟的催化裂化氢化处理的粗C4原料采用恒定的蒸汽裂化装置进料速度(每小时14.2吨),分别在800、820和840℃的盘管出口温度下类似地进行模拟蒸汽裂化。
在实施例18中,模拟条件改变成盘管入口压力2.69巴,停留时间为475毫秒,裂化装置的功率是5.4兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2170kg乙烯和每小时3627kg丙烯,得到丙烯/乙烯的重量比为1.671。
在实施例19中,模拟条件改变成盘管入口压力2.71巴,停留时间为466毫秒,裂化装置的功率是5.9兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2478kg乙烯和每小时3260kg丙烯,得到丙烯/乙烯的重量比为1.316。
在实施例20中,模拟条件改变成盘管入口压力2.72巴,停留时间为456毫秒,裂化装置的功率是6.4兆瓦特。在入口流量每小时14200kg时,流出物含有每小时2783kg乙烯和每小时2802kg丙烯,得到丙烯/乙烯的重量比为1.007。
这些实施例也显示在蒸汽裂化装置在低加工深度操作时结焦降低。
实施例21-24实施例21-24是实施例17-20的改变,在这些实施例中,模拟氢化处理的粗C4原料首先进行模拟烯烃催化裂化过程以生产示于表9组成的模拟流出物,随后附加地进行模拟分馏,由流出物中的C3和C2流出物产生表10的组合物,随后在与相应实施例17-20的基本上相同的条件下进行模拟蒸汽裂化,该蒸汽裂化装置的进料速度是每小时14.2吨,烯烃催化裂化装置的最初入口进料速度是122775kg/h,这是因为分馏器的C3/C2顶馏分旁路了蒸汽裂化装置。
对于实施例21,在输送至联合分馏器的复合流出物中,丙烯/乙烯的重量比为3.166。
对于实施例22、23和24,在复合流出物中相应的丙烯/乙烯的重量比为2.881、2.614和2.356。
由每个温度下得到的总丙烯/乙烯重量比在附图3中概述。
这些实施例还显示在蒸汽裂化装置在低加工深度操作时结焦降低。
比较实施例17-32在这些比较实施例中,用于上述比较实施例的直馏石脑油、LCCS、抽余液2和氢化处理的粗C4原料在780、800、820和840℃的盘管出口温度下进行蒸汽裂化,蒸汽裂化装置没有如上述比较实施例那样在恒定蒸汽裂化装置进料速度下操作,而是在恒定蒸汽裂化装置炉子功率下操作。为进行模拟,炉子几何形状保持未变,因此盘管压力降增加,而停留时间下降。因此,模拟需要被认为是“最大”情况,在实际炉子中同样需要以已知方式对炉子和盘管装配的改变。对于这些比较实施例的丙烯/乙烯重量比结果总结于图4中。
实施例25-40对于这些实施例,如比较实施例17-32,炉子在恒定炉子功率下操作,如实施例5-8、13-16和21-24,分别含有LCCS、抽余液2或氢化处理的粗C4的最初原料进行模拟催化裂化,分馏除去C3/C2顶馏分,随后蒸汽裂化,再合并蒸汽裂化流出物和C2/C3顶馏分,蒸汽裂化在恒定炉子功率下在780、800、820或840℃进行。得到的合并流出物总丙烯/乙烯重量比总结在附图5中。
实施例41和42在这些实施例中,用于催化裂化装置的条件和原料分别与实施例5和13相同,但蒸汽裂化装置输入来自催化裂化装置的未分馏流出物,还输入直馏石脑油。对于每个实施例,催化裂化装置的流出物直馏石脑油的重量比为15∶85,在每个实施例中用于蒸汽裂化装置的每个复合原料的组成示于表11和12中。
采用基本上各自与相应实施例5和13相同的蒸汽裂化条件,最终流出物中丙烯/乙烯重量比是0.937(实施例41)和0.972(实施例42)。这些数值高于仅蒸汽裂化直馏石脑油的实施例1的相应数值。这表明当蒸汽裂化装置用于裂化直馏石脑油时,为增加丙烯的生产,尤其是为增加流出物中丙烯/乙烯重量比,部分石脑油原料可用含烯烃烃原料,例如用于裂化原料中的烯烃的催化裂化装置的流出物,例如LCCS或抽余液2替代。用于蒸汽裂化装置的复合原料可含有5-95wt%,最常见约15wt%含烯烃烃原料,和95-5wt%,最常见约85wt%直馏石脑油原料。
实施例43-48对于实施例43、44和45,重复实施例41,但在800、820和840℃下进行,得到在最终流出物中丙烯/乙烯重量比分别为0.821、0.707和0.594。对于实施例46、47和48,重复实施例42,但在800、820和840℃下进行,得到在最终流出物中丙烯/乙烯重量比分别为0.851、0.733和0.616。同样,这些数值高于仅蒸汽裂化直馏石脑油的实施例1的相应数值。
对比实施例和比较实施例可以看出,采用烯烃催化裂化过程作为用于生产含烯烃流出物的蒸汽裂化装置原料的预处理,与仅蒸汽裂化相同原料或蒸汽裂化直馏石脑油相比,得到较大的丙烯/乙烯重量比。此外,当含有C3/C2顶馏分的低级烯烃由烯烃催化裂化过程的流出物分馏,将C4+底馏分输入蒸汽裂化装置时,丙烯/乙烯重量趋向于更大的增加。此外,蒸汽裂化装置可附加地输入直馏石脑油。
此外,可以看出当蒸汽裂化装置在低加工深度,在约780℃的盘管出口温度下运行,丙烯/乙烯重量比高,此外,这些条件缓和了蒸汽裂化装置盘管的结焦问题。
对于抽余液2结果,表明与其它原料相比丙烯/乙烯重量比趋向于生产特别高的丙烯含量。尽管不限制于理论,但认为这些结果由与其它原料相比抽余液2中高异链烷烃含量和相对低的烯烃含量得到,这趋向于在蒸汽裂化步骤中更有利于生产丙烯,而不是乙烯。
表1石脑油NPARIPARNAPARO合计4 2.000.000.00 0.00 2.005 21.58 15.77 0.70 0.00 38.036 13.27 15.87 3.89 1.80 34.837 5.897.785.69 2.10 21.468 0.802.100.80 0.00 3.709 0.000.000.00 0.00 0.00100.000.000.00 0.00 0.00110.000.000.00 0.00 0.00120.000.000.00 0.00 0.00合计 43.52 41.52 11.08 3.90 100.02100.02表2富含ARO的LCCS进料NPAR IPAR NAP ARO 烯烃 二烯 合计1 0.00 0.00 0.00 0.00 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.003 0.00 0.00 0.00 0.00 0.00 0.00 0.004 0.52 0.43 0.00 0.00 3.82 0.00 4.775 0.99 8.76 0.20 0.00 13.18 0.00 23.116 0.70 11.72 2.88 0.67 10.21 0.01 26.197 0.92 5.88 3.16 3.75 6.47 0.01 20.188 1.04 5.49 4.08 5.80 2.38 0.01 18.709 0.13 2.63 0.52 2.67 0.27 0.00 6.21100.00 0.25 0.00 0.48 0.00 0.00 0.73110.00 0.00 0.00 0.03 0.00 0.00 0.03120.00 0.00 0.00 0.00 0.00 0.00 0.00合计 4.29 35.16 10.8413.3936.29 0.04 100.00100.00
表3RAF2进料 NPAR IPAR NAP ARO 烯烃 二烯 合计10.00 0.00 0.00 0.000.00 0.00 0.0020.00 0.00 0.00 0.000.00 0.00 0.0030.49 0.00 0.00 0.000.20 0.01 0.70412.9931.930.00 0.0053.800.12 98.8450.00 0.29 0.00 0.000.16 0.00 0.4560.00 0.00 0.00 0.000.00 0.00 0.0070.00 0.00 0.00 0.000.00 0.00 0.0080.00 0.00 0.00 0.000.00 0.00 0.0090.00 0.00 0.00 0.000.00 0.00 0.0010 0.00 0.00 0.00 0.000.00 0.00 0.0011 0.00 0.00 0.00 0.000.00 0.00 0.0012 0.00 0.00 0.00 0.000.00 0.00 0.00合计 13.4832.220.00 0.0054.160.13 100.00100.00表4HT粗C4 NPAR IPAR NAP ARO 烯烃 二烯 合计10.00 0.00 0.00 0.000.00 0.00 0.0020.00 0.00 0.00 0.000.00 0.00 0.0030.01 0.00 0.00 0.000.00 0.00 0.0146.96 1.86 0.00 0.0090.980.02 99.8550.00 0.00 0.00 0.000.00 0.00 0.0060.00 0.00 0.00 0.000.14 0.00 0.1470.00 0.00 0.00 0.000.00 0.00 0.0080.00 0.00 0.00 0.000.00 0.00 0.009 0.00100.00110.00120.00合计 6.97 1.89 0.00 0.0091.120.03 100.00100.00
表5用富含ARO的LCCS作为进料的FBC流出物NPAR IPAR NAP ARO 烯烃 二烯 合计1 0.29 0.00 0.00 0.00 0.00 0.00 0.292 0.14 0.00 0.00 0.00 2.94 0.00 3.083 0.73 0.00 0.00 0.00 12.07 0.00 12.804 0.81 0.80 0.00 0.00 11.01 0.00 12.615 1.07 8.73 0.37 0.00 5.82 0.15 16.146 0.84 13.03 2.26 0.61 2.14 0.07 18.767 0.52 4.80 3.40 5.24 1.25 0.01 15.228 0.73 4.37 2.45 4.51 1.15 0.00 13.209 0.10 2.52 0.24 3.08 0.42 0.00 6.3610 0.02 0.48 0.04 0.81 0.00 0.00 1.3611 0.00 0.00 0.00 0.10 0.00 0.00 0.1012 0.01 0.00 0.00 0.03 0.00 0.00 0.0413 0.03 0.00 0.00 0.00 0.00 0.00 0.03合计5.08 34.73 8.76 14.3838.81 0.23 100.00100.00表6用富含ARO的LCCS作为进料的FBC流出物+C4+SPLITNPAR IPAR NAP ARO 烯烃 二烯 合计1 0.00 0.00 0.00 0.00 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.003 0.00 0.00 0.00 0.00 0.00 0.00 0.004 0.96 0.95 0.00 0.00 13.13 0.00 15.045 1.26 10.42 0.44 0.00 6.94 0.18 19.266 0.76 15.55 2.70 0.73 2.56 0.09 22.387 0.62 5.72 4.06 6.25 1.50 0.01 18.158 0.87 5.21 2.92 5.38 1.37 0.00 15.759 0.11 3.01 0.28 3.68 0.51 0.00 7.5910 0.03 0.58 0.05 0.97 0.00 0.00 1.6211 0.00 0.00 0.00 0.12 0.00 0.00 0.1212 0.01 0.00 0.00 0.03 0.00 0.00 0.0413 0.04 0.00 0.00 0.00 0.00 0.00 0.04合计4.68 41.43 10.4517.1526.00 0.28 100.00100.0083.83
表7用RAF2作为进料的FBC流出物NPAR IPAR NAP ARO 烯烃 二烯 合计1 0.30 0.00 0.00 0.00 0.00 0.00 0.302 0.16 0.00 0.00 0.00 5.12 0.00 5.283 1.41 0.00 0.00 0.00 19.01 0.00 20.434 13.87 31.96 0.00 0.00 15.72 0.11 61.665 0.17 0.53 0.35 0.00 5.30 0.15 6.486 0.06 0.03 0.32 0.55 2.15 0.00 3.097 0.01 0.06 0.18 0.91 0.63 0.00 1.788 0.00 0.08 0.02 0.86 0.00 0.00 0.969 0.00 0.00 0.00 0.00 0.00 0.00 0.0010 0.00 0.00 0.00 0.00 0.00 0.00 0.0011 0.00 0.00 0.00 0.00 0.00 0.00 0.0012 0.00 0.00 0.00 0.00 0.00 0.00 0.0013 0.00 0.00 0.00 0.00 0.00 0.00 0.00合计15.97 32.66 0.86 2.31 47.93 0.26 100.00100.00表8用RAF2作为进料的FBC流出物+C4+SPLITTERNPAR IPAR NAP ARO 烯烃 二烯 合计1 0.00 0.00 0.00 0.00 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.00 0.00 0.003 0.00 0.00 0.00 0.00 0.00 0.00 0.004 18.75 43.20 0.00 0.00 21.25 0.15 83.355 0.22 0.71 0.47 0.00 7.16 0.20 8.776 0.07 0.04 0.43 0.74 2.90 0.00 4.187 0.01 0.08 0.24 1.22 0.85 0.00 2.418 0.00 0.11 0.02 1.16 0.00 0.00 1.309 0.00 0.00 0.00 0.00 0.00 0.00 0.0010 0.00 0.00 0.00 0.00 0.00 0.00 0.0011 0.00 0.00 0.00 0.00 0.00 0.00 0.0012 0.00 0.00 0.00 0.00 0.00 0.00 0.0013 0.00 0.00 0.00 0.00 0.00 0.00 0.00合计19.05 44.14 1.17 3.12 32.16 0.35 100.00100.0073.99
表9用HT粗C4作为进料的FBC流出物NPAR IPAR NAP ARO 烯烃 二烯 合计1 0.32 0.00 0.00 0.00 0.00 0.00 0.322 0.28 0.00 0.00 0.00 6.49 0.00 6.763 0.92 0.00 0.00 0.00 29.65 0.00 30.574 8.29 3.65 0.00 0.00 28.80 0.08 40.835 0.19 0.37 0.46 0.00 10.56 0.28 11.866 0.09 0.04 0.39 0.99 4.09 0.00 5.617 0.00 0.13 0.25 1.15 1.13 0.00 2.678 0.00 0.18 0.03 1.10 0.00 0.00 1.389 0.00100.00110.00120.00130.00合计10.09 4.38 1.14 3.30 80.72 0.37 100.00100.00表10用HT粗C4作为进料的FBC流出物+C4+SPLITTERNPAR IPAR NAP ARO 烯烃 二烯 合计1 0.002 0.003 0.004 13.30 5.85 0.00 0.00 46.19 0.14 65.485 0.31 0.59 0.74 0.00 16.94 0.45 19.036 0.15 0.06 0.63 1.59 6.56 0.00 8.997 0.01 0.21 0.40 1.85 1.81 0.00 4.288 0.00 0.31 0.05 1.86 0.00 0.00 2.229 0.00100.00110.00120.00130.00合计13.77 7.02 1.82 5.30 71.50 0.59 100.00100.0062.35
表1115wt%用富含ARO的LCC作为进料的FBC流出物和85%wt%石脑油的共裂解NPAR IPAR NAP ARO 烯烃 二烯 合计1 0.04 0.00 0.00 0.00 0.00 0.00 0.042 0.02 0.00 0.00 0.00 0.44 0.00 0.463 0.11 0.00 0.00 0.00 1.81 0.00 1.924 1.82 0.12 0.00 0.00 1.65 0.00 3.595 18.49 14.71 0.65 0.00 0.87 0.02 34.756 11.38 15.44 3.65 1.62 0.32 0.01 32.427 5.08 7.33 5.35 2.57 0.19 0.00 20.528 0.79 2.44 1.05 0.68 0.17 0.00 5.139 0.01 0.38 0.04 0.46 0.06 0.00 0.9510 0.00 0.07 0.01 0.12 0.00 0.00 0.2011 0.00 0.00 0.00 0.01 0.00 0.00 0.0112 0.00 0.00 0.00 0.00 0.00 0.00 0.0113 0.00 0.00 0.00 0.00 0.00 0.00 0.00合计37.75 40.50 10.735.47 5.52 0.03 100.02100.02表1215%wt%用RAF2作为进料的FBC流出物和85%石脑油的共裂解NPAR IPAR NAP ARO 烯烃 二烯 合计1 0.05 0.00 0.00 0.00 0.00 0.00 0.052 0.02 0.00 0.00 0.00 0.77 0.00 0.793 0.21 0.00 0.00 0.00 2.85 0.00 3.064 3.78 4.79 0.00 0.00 2.36 0.02 10.955 18.35 13.48 0.65 0.00 0.79 0.02 33.306 11.29 13.49 3.35 1.61 0.32 0.00 30.077 5.01 6.62 4.86 1.92 0.09 0.00 16.518 0.68 1.60 0.66 0.13 0.00 0.00 3.299 0.00 0.00 0.00 0.00 0.00 0.00 0.0010 0.00 0.00 0.00 0.00 0.00 0.00 0.0011 0.00 0.00 0.00 0.00 0.00 0.00 0.0012 0.00 0.00 0.00 0.00 0.00 0.00 0.0013 0.00 0.00 0.00 0.00 0.00 0.00 0.00合计39.39 40.19 9.55 3.66 7.19 0.04 100.02100.0权利要求
1.一种蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括将含有一种或多种烯烃的第一烃原料通过包含结晶硅酸盐的反应器以生产低分子量的烯烃含量高于原料的中间流出物,分馏中间流出物以提供低碳馏分和高碳馏分,将高碳馏分作为第二烃原料通过蒸汽裂化装置以生产蒸汽裂化流出物。
2.权利要求1的方法,其中低碳馏分含有C3和低级烃,和高碳馏分含有C4和高级烃。
3.权利要求1或2的方法,其中第一烃原料含有氢化处理的粗C4原料、LCCS、抽余液2原料、抽余液1原料、来自甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)装置的抽余液2原料、烯烃复分解装置,尤其是用于由乙烯和丁烯生产丙烯的抽余液或来自FCC装置、减粘裂化炉或延迟焦化炉的含氢化处理烯烃的物流的至少一种。
4.上述任一权利要求的方法,其中合并蒸汽裂化装置的流出物和低碳馏分,合并的物流进行联合分馏。
5.上述任一权利要求的方法,其中蒸汽裂化装置还供给链烷烃原料。
6.权利要求5的方法,其中链烷烃和第二烃原料是在通常蒸汽裂化装置不同加工深度的各个炉子中蒸汽裂化。
7.权利要求5或6的方法,其中链烷烃原料是含有直链烷烃和/或异链烷烃的C5-C9石脑油。
8.上述任一权利要求的方法,其中结晶硅酸盐选自硅/铝原子比至少180的MFI型结晶硅酸盐和进行了蒸汽处理步骤的硅/铝原子比为150-800的MEL型结晶硅酸盐。
9.权利要求8的方法,其中第一烃原料在500-600℃的入口温度和0.1-2巴烯烃分压和5-30h-1的LHSV通过结晶硅酸盐。
10.上述任一权利要求的方法,其中第二烃原料的蒸汽裂化在760-860℃的出口盘管温度下在蒸汽裂化装置中进行。
11.权利要求10的方法,其中出口盘管温度为约780℃。
12.一种蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括将含有一种或多种烯烃的第一烃原料通过包含结晶硅酸盐的反应器以生产低分子量的烯烃含量高于原料的中间流出物,所述第一烃原料含有氢化处理的粗C4原料、LCCS、抽余液2原料、抽余液1原料、来自甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)装置的抽余液2原料、烯烃复分解装置,尤其是用于由乙烯和丁烯生产丙烯的抽余液,或来自FCC装置、减粘裂化炉或延迟焦化炉的含氢化处理烯烃的物流的至少一种,和将中间流出物作为第二烃原料通过蒸汽裂化装置以生产蒸汽裂化流出物。
13.权利要求12的方法,其中蒸汽裂化装置还供给含链烷烃的烃原料。
14.权利要求13的方法,其中含链烷烃的烃原料和第二烃原料是在通常蒸汽裂化装置不同加工深度的各自炉子中蒸汽裂化。
15.权利要求13或14的方法,其中含链烷烃烃原料是含有直链和/或异链烷烃的C5-C9石脑油。
16.权利要求12-15的任一的方法,其中结晶硅酸盐选自硅/铝原子比至少180的MFI型结晶硅酸盐和进行了蒸汽处理步骤的硅/铝原子比为150-800的MEL型结晶硅酸盐。
17.权利要求16的方法,其中第一烃原料在500-600℃的入口温度和0.1-2巴烯烃分压和5-30h-1的LHSV通过结晶硅酸盐。
18.权利要求12-17的任一的方法,其中第二烃原料的蒸汽裂化在760-860℃的出口盘管温度下在蒸汽裂化装置中进行。
19.权利要求18的方法,其中出口盘管温度为约780℃。
20.一种蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括蒸汽裂化含链烷烃的烃原料的第一烃原料和蒸汽裂化含有C4和以上烃的第二烃原料,第二烃原料含有一种或多种烯烃和含有在包含结晶硅酸盐的反应器中催化裂化第三烃原料产生的中间流出物的底馏分,以生产低分子量的烯烃含量高于第三烃原料的中间流出物,合并两个蒸汽裂化流出物以得到通常流出物。
21.权利要求20的方法,其中第三烃原料含有氢化处理的粗C4原料、LCCS、抽余液2原料、抽余液1原料、来自甲基叔丁基醚(MTBE)或乙基叔丁基醚(ETBE)装置的抽余液2原料、烯烃复分解装置,尤其是用于由乙烯和丁烯生产丙烯的抽余液或来自FCC装置、减粘裂化炉或延迟焦化炉的含氢化处理烯烃的物流的至少一种。
22.权利要求19或21的方法,其中将通常流出物和含有C3和以下烃的中间流出物的顶馏分合并,合并的物流进行联合分馏。
23.权利要求20-22的任一的方法,其中含链烷烃的烃原料是含有直链和/或异链烷烃的C5-C9石脑油。
24.权利要求20-23的任一的方法,其中结晶硅酸盐选自硅/铝原子比至少180的MFI型结晶硅酸盐和进行了蒸汽处理步骤的硅/铝原子比为150-800的MEL型结晶硅酸盐。
25.权利要求24的方法,其中第三烃原料在500-600℃的入口温度和0.1-2巴烯烃分压和5-30h-1的LHSV通过结晶硅酸盐。
26.权利要求20-25的任一的方法,其中第二烃原料的蒸汽裂化在760-860℃的出口盘管温度下在蒸汽裂化装置中进行。
27.权利要求26的方法,其中出口盘管温度为约780℃。
28.权利要求20-27的任一的方法,其中用于蒸汽裂化的复合原料含有5-95wt%第一烃原料和95-5wt%第二烃原料。
29.权利要求20-28的任一的方法,其中第一和第二烃原料是在通常蒸汽裂化装置不同加工深度的各个炉子中蒸汽裂化。
全文摘要
本发明公开了一种蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括将含有一种或多种烯烃的第一烃原料通过包含结晶硅酸盐的反应器以生产低分子量的烯烃含量高于原料的中间流出物,分馏中间流出物以提供低碳馏分和高碳馏分,将高碳馏分作为第二烃原料通过蒸汽裂化装置以生产蒸汽裂化流出物。本发明还公开了一种蒸汽裂化含烯烃的烃原料以提供在蒸汽裂化流出物中增加的轻烯烃的方法,该方法包括将含有一种或多种烯烃的第一烃原料通过包含结晶硅酸盐的反应器以生产低分子量的烯烃含量高于原料的中间流出物,所述第一烃原料含有氢化处理的粗C
文档编号C10G11/05GK1665911SQ03816274
公开日2005年9月7日 申请日期2003年5月22日 优先权日2002年5月23日
发明者雅克·格鲁特詹斯, 瓦莱丽·范里塞尔伯格, 沃尔特·弗迈伦 申请人:托塔尔石油化学产品研究弗吕公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1