专利名称:在含烃化合物燃烧过程中改善燃烧的方法和组合物的制作方法
本发明涉及在含烃化合物燃烧过程中改善燃烧效果的方法,其目的是降低排出气体或废气中的有害物质含量,在该方法中,将一种含有过氧化物或过氧-化合物和水的液体组合物加入到燃烧空气或燃料-空气混合物中。
近年来,已经注意到了造成森林死亡的环境污染问题和高的能源消耗问题。然而,在人口密集区,废气污染一直是一个严重的问题。尽管对发动机和燃烧技术进行了不断的改进以减少废气或排出气体,但是机动车辆和焚化工厂的不断增加仍然导致了排出气体的总量的上升。
引起不洁气体排出和高能量消耗的第一位的原因是不完全燃烧。燃烧过程的结构、点火系统的效率、燃料的质量和燃料-空气混合物的质量决定了燃烧效率和排出气体中含有多少未燃烧的和危险的物质。用于降低此类物质含量的各种技术,例如循环系统和公知的催化剂系统,都是使得废气在实际燃烧过程的外部燃烧。
燃烧是一种物质与氧气反应,放出热量。象碳、氢气、烃和硫这样的物质可产生足够的热量以保持其燃烧温度,而氮气在氧化时则需供给热量。
在高温(1200~2500℃)和足够数量的氧气下,可实现完全燃烧,这时每种燃烧物质消耗最大量的氧气,最终产物为CO2、H2O SO2和SO3以及少量的NO和NO2(NOx)。硫和氮的氧化物对环境的酸化起着很重要的作用,且吸入它们是有害的,不仅如此,特别是后者还会从燃烧过程中夺走能量。
还可能出现冷焰,例如象即将熄灭蜡烛的蓝色平淡火焰,这时的温度只有大约400℃。这时的氧化将是不完全的,最终产物可能含有H2O2(过氧化氢)、CO(一氧化碳)和C(碳黑)。上述后两种物质与NO一样有害,且在完全燃烧时还能释放出能量。
汽油是源于原油的一种烃类混合物,其沸点范围为40~200℃。含有大约2000多种4~9个碳原子的不同的烃。
即使是简单的物质,其详细的燃烧过程也是十分复杂的。燃料的分子分解为较小的单元,其中大多数被称为自由基,即可迅速与例如氧反应的不稳定分子。
最重要的基是氧原子O∶、氢原子H∶和羟基OH∶。特别是后者,无论是通过直接与燃料结合还是通过氢转移以形成水,对于分解和氧化燃料都是十分重要的。
在开始燃烧的初始阶段,水按下列反应式分解式中M是另一种分子,例如水所碰撞的氮或壁或火花塞电极面。由于水的分子极其稳定,使其分解需要高温。较好的可采用的办法是加入过氧化氢,该过氧化氢按与下面相似的式分解
这种反应更容易发生且温度较低,特别是在燃料一空气混合物点火较易发生和可控的表面上。表面反应的另一个有利作用是过氧化氢易于与壁和火花塞上的碳黑和焦油反应,生成二氧化碳,这使得电极面清洁,和较好地发火花。
如果将过氧化氢和水同时加入,根据下式,排出的废气中的CO明显降低
从上述反应2),可以看到,水通过被转化起到一种催化作用。由于过氧化氢含有比水高千万倍的OH-基,因此步骤3)的反应一定非常快,并可除掉绝大部分所形成的CO。由此释放出附加的能量,有助于维持燃烧。
NO和NO2是非常有毒的化合物,其毒性大约是一氧化碳的四倍。急性中毒时,肺组织将受到破坏。NO是燃烧时释放出的、并不想得到的副产物。在水的存在下,NO被氧化成HNO3,并以这种形式导致大约半数的酸化,另一半则是由H2SO4引起的。NOx能分解大气层上部的臭氧,这也是一个问题。
NO的大部分来自于高温下空气中氧和氮的反应,因此与燃料的组成是不相干的。产生多少NOx还与燃烧发生的条件有关。如果能使温度缓慢下降,那末这将导致在适当高温度和较低的最终NO浓度下的平衡。
下述方法可以用来使NO的形成量保持在低水平1.分两步燃烧富含燃料混合物2.通过下述方法保持低的燃烧温度a)高的过剩空气量b)强制冷却c)燃烧气体的循环在对火焰的化学分析中,曾经常观察到火焰中的NO的浓度比靠近火焰处的要高很多。这里有一个分解NO的过程,其可能的反应是
CH3: + NO ( )/() … HCN + H2O↓N2因此,N2的形成依靠这样的条件,即在该条件下能得到高的CH3∶浓度,非常适宜的富燃料热火焰。
以杂环烃形式(如吡啶)含氮的燃料根据试验会产生更多的NO不同燃料的N含量(大约)原油 0.65%沥青 2.30%重油 1.40%轻油 0.07%碳 1~2%在SE-B-429,201中,公开了一种含有1~10%(体积)过氧化氢的液体组合物,其余为水、脂族醇和润滑油以及还可能有防腐剂。将所述液体组合物供给到燃烧空气或燃料-空气混合物中。在这样低的过氧化氢含量下,形成不足以与燃料和所形成的CO进行反应的OH-基。此外,所得燃料不能自动点火,因此与仅添加水的方法相比,该方法对燃烧所做出的改进不大。
在DE-A-2,362,082中,描述了一种用于燃烧的氧化剂,例如过氧化氢的混合物,然而,过氧化氢是在被供给到燃烧空气之前通过一种催化剂将其分解为水和氧气。
本发明的目的是提供一种改善燃烧的方法,使含烃化合物的燃烧过程中所产的有害气体的排出量降低,在该方法中,改进了燃烧的起始反应,在有利的条件下保持最佳和完全燃烧,这样使排出气中有害气体的含量大为降低。上述效果是通过采用含有10~80%(体积)过氧化物或过氧-化合物的液体组合物,将其在过氧化物或过氧化合物没有预先分解的条件下引入到燃烧室,或将其引入到预燃室,使燃料混合物和液体组合物在实际燃烧室外部引燃来实现的。
在碱性条件下,过氧化氢根据下式分解为羟基和过氧化物离子所形成的羟基,一方面可自相反应,另一方面与过氧化物离子反应或与过氧化氢反应。这些反应包括按照下列反应式依次形成过氧化氢、氧气和氢过氧化物基
众所周知,氢过氧化物基的pka(电解质电解常数倒数的对数)是4.88±0.10,这就是说所有的氢过氧化物基都可被离解成过氧化物离子。过氧化物离子也可以与过氧化氢和自相反应,或作为单态氧的接受体。
因此,形成了氧气和羟基和单态氧和过氧化氢和三态氧和22千卡放出的能量。同时也证明,催化分解过氧化氢时存在的重金属离子给出羟基和过氧化物离子。
从以上所述和已知,下面列出例如汽油中典型的烷烃的速度系数。
用H、O和OH与正丁烷反应的速度系数
K=Aexp(E/RT)反应 A(cm3/mol∶s) E(K J/mol)n-C8H18+H 7.1∶101435.3+O 1.8∶101419.0+OH 2.0∶10133.9从上例可以看出,用OH-基与其反应比用H和O反应速度快,且温度较低。
CO+OH→CO+H的速度系数,由于其负的活化能和高的温度系数,因而具有不一般的温度关系。可以写成4.4∶106T15exp(3.1/RT)。在温度低于1000°K,即直至室温的温度范围内,反应速度几乎恒定在大约1011cm3/mol.s。在高于1000°K时,反应速度增加几倍。因此这种反应在烃燃烧时将CO转化成CO2起着主导作用。CO早期的和完全的燃烧提高了热效率。
说明O2和OH之间的对抗性的实例是NH3-H2O2-NO反应,这时加入H2O2能使在无氧环境生成的NOx降低90%。如果存在O2,即使只有2%,也会大大阻止NOx的降低。
根据本发明提供OH-基,使用H2O2,它在大约500℃离解。OH-基的寿命最长为20毫秒。
乙醇在正常燃烧时,70%的燃料消耗是通OH-基反应,30%是通过H原子反应。本发明在初始燃烧时提供OH-基,通过立即与燃料反应而改善了燃烧。添加具有高含量过氧化氢(超过10%)的液体组合物,便具有足够的OH-基立即氧化所形成的CO。而过氧化氢含量低时,便不能形成足够的OH-基以与燃料和CO反应。
供给液体组合物应使得在液体容器至燃烧室之间没有化学反应发生,即不发生过氧化氢分解为水和氧气的反应,液体应以完整无损的状态直接进入燃烧室或进入预热室,预热室在实际燃烧室外面,液体和燃料的混合物在此被点火。
如果过氧化氢的浓度足够高(大约为35%),燃料可自燃并维持燃烧。液体-燃料混合物的点火可通过自动点火或与催化表面接触发生,不需要诸如火花塞之类的东西。但也可用热能,例如火花塞、燃体、明火等引燃。
脂族醇与过氧化氢的混合物可以引发自燃,特别是在预燃室系统中,这样做是需要的,这时在进入预燃室之前,不能将过氧化氢和醇混合。
为每个汽缸安置一个液体组合物喷射阀,可得到准确的,适应各种工作状态的液体投配量。用控制喷射阀的控制装置和许多信号传感器,信号传感器与发动机相连,向控制单元输送表示曲轴的位置、发动机转速和负载以及输入空气的温度等的信号,这使得有可能保持连续喷射和喷射阀的同步开启和关闭,液体的投入量不仅取决于负载和所需要的输出功率,而且还取决于发动机转速和喷射空气的温度,这使得在所有条件下都能得到良好的运行效果。液体混合物在某种程度上取代了空气的供给。
已经作过一些对比试验,以找出水和过氧化氢混合物(23~35%)之间在效果上的差别。所选择的行驶道路相当于公路和市区道路。试验车型是水压制动的B20E。试验开始前,先将机器预热。
在公路负载试验中,将过氧化氢换为水时,放出的NOx以及CO和HC量增加。随着过氧化氢量的加大,NOx释放量降低。水也可降低NOx含量,但在此负苛下要取得相同的NOx含量的降低效果,需要的水量为23%过氧化氢水溶液量的4倍。
在市区负载试验中,先使用35%过氧化氢,转速和力矩有些增加(20~30RPM/0.5-1Nm)。
换成23%过氧化氢时,转速和力矩降低,同时NOx含量增加。当供给纯水时,很难使发动机运转,HC含量显著增加。
因此,过氧化氢改善了燃烧,同时降低了有害的NOx的含量。在Swedish Motor-vehicle Inspectorate所做的试验,在SAAB900i和Volvo 760 Turbo上,燃料中使用和不使用35%过氧化氢混合物,得到下列释放CO、HC、NOx和CO2的结果。所列百分比表示使用与不使用过氧化氢混合物所得结果进行对比所得的数据。
表Ⅰ(SAAB900i)冷起动 热起动 热驶 怠速 HCD(路驶)CO∶-23% CO∶-54% CO∶-76% CO∶-90% CO∶-41%HC∶+6% HC∶±0% HC∶-7% HC∶-50% HC∶+8%NOx∶-25% NOx∶-12% NOx∶-23% NOx∶-15%CO2∶+33% CO2∶+4% CO2∶+5% CO2∶+3%表Ⅱ(Volvo 760 Turbo)怠速 热驶CO∶-73% CO∶-54.3%HC∶-18% HC∶-2.3%NOx∶-21% NOx∶-8.3%
在用Volvo 245GL 4FK/84进行试验时,不用脉动空气(废气净化),汽车怠速时CO含量为4%,HC含量为65ppm。使用35%过氧化氢溶液混合物时,CO含量减为0.05%,HC含量减为10ppm。在上述两种情况下,点火时间为10°,怠速为950R.P.M。
由特隆赫姆的挪威海洋技术研究所A/S(Norwegian Marine Technical Research Institute A/S)用Volvo 760 Turbo,依照ECE(欧洲经济委员会)所做的试验检查了燃烧中加入和不加入35%过氧化氢溶液混合物时HC、CO和NOx的排出情况(有关发动机热起动规则No15.03)。
表Ⅲ(试验结果)ECE15.03 怠速不加入 HC 4.3克/试验 340ppm过氧化氢 CO 70克/试验 0.64%NOx 4.8克/试验 92ppm加入35% HC 4.2克/试验 280ppm过氧化氢 CO 32克/试验 0.17%溶液 NOx 4.4克/试验 73ppm以上只提到了使用过氧化氢,可以认为,使用其它的过氧化物和过氧化合物,无论是无机的还是有机的,都可以取得相应的效果。
除过氧化物和水,液体组合物中还可含有高达70%的C1-C8脂族醇和5%的含有一种腐蚀抑制剂的油。
液体组合物相对于燃料的用量是可变的,从占燃料量的千分之几至百分之几百。对于不易点火的燃料,如柴油,该用量较高。
本发明的液体组合物意在用于内燃机和其它含烃化合物如油、煤、生物能等的燃烧过程以及燃烧炉,以提供更完全的燃烧,降低排出废气体中有毒物质的含量。
在内燃机中使用醇,例如甲醇、乙醇以及更高级的醇做为燃料已有增加,这种应用将来还会增长。醇可以是纯的(有一定量的水),也可以与汽油或柴油混合应用。含有至少1%过氧化物或过氧-化合物的液体组合物与醇的混合物将降低排出的废气中有害物的含量,特别是碳灰和NOx。
在由螺旋浆制动的柴油发动机MD1上进行了试验。将液体组合物引进进入管,测定了乙醇和过氧化氢与柴油的不同混合物释放碳灰和NOx的情况。试验结果如下表Ⅳ所示,其中E代表乙醇,P代表过氧化氢。
表Ⅳ试 液体组合物 RPM 柴油(%) 液体组合物 碳灰 NOx验 E(%重量)1 - 800 100 0 5.30 5002 - 1000 100 0 7.60 5003 P(40%)/E50/50(体积) 820 4.92 40.84 0.90 1004 P(40%)/E50/50 1000 31.71 40.84 6.90 3005 P(35%) 800 25.58 0 7.00 1006 P(35%) 1000 38.78 0 8.60 2007 E 750 22.22 100 0.80 5008 E235℃ 1005 35.00 100 3.20 5009 P/E(40%)25/75 995 39.36 62.40 5.50 50010 P/E(40%)25/75 1000 23.01 62.40 3.20 50011 P/E(40%)25/75 1000 16.92 75.75 1.90 500
根据表Ⅳ所列结果,与100%柴油比较可得出如下结论。
乙醇(试验7和8)NOx含量未受影响。碳灰含量在800rpm时降低了85%,在1000rpm时降低了54%。800rpm时的柴油量为22%,1000rpm时的柴油量为35%。
过氧化氢(35%)(试验5和6)800rpm时NOx含量降低了80%,1000rpm时降低了60%。800rpm时碳灰含量增加了28%,1000rpm时增加了23%。800rpm时的柴油量为26%,1000rpm时柴油量为39%。
过氧化氢(40%)/乙醇50/50(试验3和4)800rpm时NOx含量降低了80%,1000rpm时降低了40%。800rpm时碳灰含量降低了84%,1000rpm时降低了1%。800rpm时柴油量为5%,1000rpm时柴油量为32%。
过氧化氢(40%)/乙醇25/75(试验9~11)a)39%(重量)柴油(试验9)1000rpm时NOx含量未改变,碳灰含量降低了21%。
b)23%(重量)柴油(试验10)1000rpm时NOx含量未改变,碳灰含量降低了54%。
c)17%(重量)柴油(试验11)1000rpm时NOx含量未改变,碳灰含量降低了73%。
下列表Ⅴ列出了以不同的比例使用各种水、过氧化氢和乙醇的混合物在柴油发动机中燃烧的试验,试验是在MD1上进行的。E表示乙醇,W表示水,P表示过氧化氢。在催化净化之前和之后测定了碳灰、NOx、HC和CO的排出量(分别列于a栏和b栏)。
可以看到,在试验6和9中,NOx和碳灰的含量很低。当在乙醇加入一定量的过氧化氢时,可以发现以下两个显著的事实1)降低了NOx的含量;
2)氧化催化剂使NOx含量降低了50%上述两种效果说明,与100%柴油相比,NOx的含量低大约90%。
权利要求
1.在含烃化合物燃烧过程中改善燃烧以降低排出的废气中有害物质的含量的方法,在该方法中,将一种含有过氧化物或过氧-化合物的液体组合物加入到燃烧空气或燃料-空气混合物中,其特征在于所述液体组合物含有10-80%(体积)过氧化物或过氧-化合物;所述液体组合物在过氧化物或过氧-化合物未预先分解时引入燃烧室或引入燃料和液体组合物的混合物在实际燃烧室外面点火的预燃室。
2.根据权利要求
1所述的方法,其特征在于将1-8个碳原子的脂族醇单独引入预燃室,当所述的醇与液体组合物混合时导致燃料的自动点火。
3.在含烃化合物燃烧过程中改善燃烧所用的组合物,其特征在于该液体组合物含有10-80%(体积)的过氧化物或过氧-化合物。
4.根据权利要求
3所述的组合物,其特征在于该组合物含有可达70%的1-8个碳原子的醇。
5.根据权利要求
3或4所述的组合物,其特征在于该组合物含有可达5%的一种含有防腐剂的油。
6.根据权利要求
3-5所述的任一组合物,其特征在于该液体组合物至少含有30%的过氧化物或过氧化合物。
7.根据权利要求
3-6所述的任一组合物,其特征在于所述的过氧化物是过氧化氢。
8.在以一种或多种醇为主要成分的燃烧过程中改善燃烧以降低排出的废气中有害物质的含量的方法,其特征在于将一种至少含有1%(体积)的过氧化物或过氧化合物的液体组合物加入到燃烧空气或燃料-空气混合物中。
9.根据权利要求
8所述的方法,其特征在于将所述液体组合物在过氧化物或过氧化合物未预先分解的条件下引入燃烧室。
10.根据权利要求
8所述的方法,其特征在于燃料和液体组合物的混合物在实际燃烧室外面点火。
专利摘要
在含烃化合物燃烧过程中改善燃烧以降排出的废气中有害物质含量的方法和所用的组合物,在该方法中将含有10—80%(体积)过氧化物或过氧化合物的组合物加入到燃烧空气或燃料空气混合物中。
文档编号C10L1/18GK87107774SQ87107774
公开日1988年7月20日 申请日期1987年11月12日
发明者林德斯特罗姆·阿恩 申请人:林德斯特罗姆·阿恩导出引文BiBTeX, EndNote, RefMan