专利名称:Ft合成油的精制方法及混合原油的制作方法
技术领域:
本发明涉及将通过费托合成反应合成的FT合成油精制,制造石脑油、煤油、轻油、 重油等液体燃料、蜡、浙青等各种产品的FT合成油的精制方法以及将该FT合成油与原油混合得到的混合原油。本申请基于2009年1月30日在日本申请的专利申请2009-020856并主张优先权, 将其内容引用于此。
背景技术:
近年来,作为用于从天然气合成液体燃料的方法之一,开发了 GTL(Gas To Liquids:液体燃料合成)技术,该技术将天然气重整而制造以一氧化碳气体(CO)和氢气 (H2)为主成分的合成气,以该合成气为原料气通过费托合成反应(以下有时称为“FT合成反应”)合成由烃混合物组成的合成油(以下有时称为“FT合成油”),进而通过对该FT合成油进行加氢处理及分馏来制造石脑油(粗汽油)、煤油、轻油、蜡等液体燃料及其它产品。 以该FT合成油为原料的液体燃料产品,链烷烃含量多,几乎不含硫成分,因此,例如,如专利文献1所示,作为环保燃料备受关注。然而,为了从FT合成油制造液体燃料产品,需要专用的设备,因此,FT合成油的利用受到限制。另外,通过FT合成反应得到的FT合成油含有很多正链烷烃,具有凝固点高、缺乏流动性的性质,在常温下不能通过泵等输送,处理困难。因此,在专利文献2中,提出了通过将该FT合成油(FT蜡)和原油在特定的温度下混合,使FT蜡以细微的晶体均勻分散在原油中,形成在周围温度下能够抽吸的混合物,并在此基础上将其输送的技术。现有技术文献专利文献专利文献1 日本特开2004-323626号公报专利文献2 日本特表2003-531008号公报
发明内容
发明想要解决的课题在一般的原油中,根据开采地不同而存在差异,但是如图6所示,有正链烷烃的含量较少的趋势。另一方面,如图3所示,上述的FT合成油除了作为FT合成反应的副产物的烯烃或醇,基本上由正链烷烃构成。因此,将该FT合成油直接与原油混合的情况下,混合原油的性状与最初的原油有很大不同,在炼油厂将该混合物精制时,不再能够进行与一般的原油同样的处理。另外,专利文献2公开的使FT蜡以细微晶体均勻分散到原油中而成的混合物,如专利文献2的表1所记载的那样,即使相对于原油混合了百分之十几的FT蜡的情况下,与原油相比,流动点大幅度升高。因此,以高配合率混合了 FT合成油的该混合物实际很难在周围温度下输送。另外,在加热下输送该混合物的情况下,需要将其温度保持在比分散的FT蜡晶体的熔解温度低的温度,要求在狭窄范围内的温度管理,其操作困难。并且,该技术利用FT蜡为硬质的特点,其是以输送后将FT蜡作为蜡来利用为前提的,并非以将其转化为液体燃料为前提。
本发明鉴于上述的情况而作出,其目的在于提供不需要大规模的专用设备,利用已有的炼油厂的设备,能够从通过FT合成反应得到的FT合成油制造液体燃料及其它产品的FT合成油的精制方法;以及用所述炼油厂的设备能够处理的、以高含有率混合了 FT合成油的FT合成油与原油形成的混合原油。用于解决课题的手段为了解决上述课题,实现这样的目的,本发明提出了以下的手段。本发明的合成油的精制方法为通过费托合成反应合成的合成油的精制方法,该精制方法具备下述工序加氢异构化工序,其将所述合成油加氢异构化,除去醇和烯烃,并使碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃,得到加氢异构化合成油;原油混合工序,其将所述加氢异构化合成油和原油混合得到混合原油;混合原油输送工序,其将所述混合原油输送到炼油厂的原油蒸馏装置;以及,混合原油精制工序,其将所述输送的混合原油在至少具有原油蒸馏装置的炼油厂的石油精制设备中进行处理。在该构成的合成油的精制方法中,将合成油加氢异构化,除去FT合成油中所含的醇和烯烃,并使碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃,形成加氢异构化合成油,因此,能够通过控制该加氢异构化的程度来调整加氢异构化合成油中的正链烷烃与异链烷烃的含量比率。因此,能够使该加氢异构化合成油的凝固点降低,能够在常温下且以任意的比例混合到原油中,并能够防止原油中混合FT合成油而得到的混合原油的性状与最初的原油的性状明显不同。并且,将该混合原油输送到炼油厂的原油蒸馏装置中, 在至少具有原油蒸馏装置的炼油厂的石油精炼设备中进行处理,因此,通过在炼油厂的通常的处理,能够从所述混合原油、即间接地从FT合成油制造汽油、煤油、轻油、重油等液体燃料、蜡、浙青等各种产品。在此,在所述加氢异构化工序中,优选使所述加氢异构化合成油的凝固点为60°C 以下。此时,将FT合成油加氢异构化处理得到的加氢异构化合成油即使在常温附近的温度下也为液体状态,流动性得以确保,因而大幅提高操作性。另外,加氢异构化合成油的凝固点为60°C以下时,能够用通常的保温船进行运输。另外,通过使所述加氢异构化合成油的凝固点为40°C以下,能够在常温下以任意的比例与液态的原油混合。进而,通过使所述加氢异构化合成油的凝固点为30°C以下,能够使加氢异构化合成油本身在常温下作为液体进行处理。另外,此处,凝固点是指通过基于JIS K 2269的方法测定的凝固点。另外,在所述加氢异构化工序中,以所述加氢异构化合成油的质量为基准,可以使所述加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下。此时,由于正链烷烃的含量降低,因此能够使加氢异构化合成油的凝固点降低,能够在常温下并以任意的比例混合到原油中,并能抑制与原油混合的混合原油的性状与最初的原油的性状明显不同,能够适当地进行在炼油厂的处理。另外,通过使所述加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下,能够使加氢异构化合成油的凝固点为60°C以下。进而,通过使所述加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为20质量%以下,能够使加氢异构化合成油的凝固点为30°C以下。本发明涉及的混合原油是将通过费托合成反应合成的合成油与原油混合而得到的,其中,该混合原油由下述加氢异构化合成油和原油混合而成,所述加氢异构化合成油是通过将所述合成油加氢异构化,除去醇和烯烃,并使碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃而成的。在该构成的合成油中,由于将除去了在FT合成油中所含的醇和烯烃、并且碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃的加氢异构化合成油与原油混合,因此,能够在常温下以任意的比例混合加氢异构化合成油,并且,能够防止混合原油的性状与最初的原油的性状明显不同。因此,通过在炼油厂的通常的处理,能够制造石脑油、煤油、轻油、重油等液体燃料、蜡、浙青等各种产品。在此,可以使所述加氢异构化合成油的凝固点为60°C以下。另外,可以使所述加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下。发明效果根据本发明,能够提供不需要大规模的专用设备,利用已有的炼油厂的设备,就能够从FT合成油制造液体燃料及其它产品的FT合成油的精制方法,以及能用上述炼油厂的设备进行处理的、以高含量混合了 FT合成油的由FT合成油和原油形成的混合原油。
图1为表示本发明的实施方式涉及的FT合成油的精制方法的流程图。图2是表示用于本发明的实施方式涉及的FT合成油的精制方法的烃合成系统的整体构成的概略图。图3是表示FT合成油的组成的说明图。图4是表示加氢异构化合成油的组成的说明图。图5A是表示用于说明加氢异构化前后的组成变化的加氢异构化前的FT合成油的组成的图。图5B是表示用于说明加氢异构化前后的组成变化的加氢异构化后的加氢异构化合成油的组成的图。图6是表示原油的组成的一个例子的说明图。图7是表示加氢异构化合成油和原油混合得到的混合原油(加氢异构化合成油的含量为50质量%)的组成的说明图。 图8是表示加氢异构化合成油中的碳原子数为20以上的正链烷烃含量与加氢异构化合成油的凝固点的关系的图。图9是表示加氢异构化合成油和原油混合得到的混合原油(加氢异构化合成油的含量为90质量%)的组成的说明图。图10是表示加氢异构化合成油和原油混合得到的混合原油(加氢异构化合成油的含量为10质量%)的组成的说明图。具体实施 方式下面,参照添加的附图,对本发明的适宜的实施方式进行说明。在本实施方式的FT 合成油的精制方法和混合原油中,使用通过从天然气制造以一氧化碳气体(CO)和氢气(H2) 为主成分的合成气并以该合成气为原料气体进行FT合成反应得到的FT合成油。第一,参照图1所示的流程图,对本发明的实施方式的FT合成油的精制方法的概略进行说明。首先,将天然气重整,制造以一氧化碳气体(CO)和氢气(H2)为主成分的合成气 (合成气生成工序Si)。以该合成气(CCHH2)为原料,进行FT合成反应,合成FT合成油(FT合成反应工序 S2)。使用氢气和催化剂将合成的FT合成油加氢异构化,除去FT合成油中所含的醇和烯烃、并使碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃,得到加氢异构化合成油(加氢异构化工序S3)。在此,在本实施方式中,使加氢异构化合成油的凝固点为 60°C以下,以加氢异构化合成油的质量为基准,使加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下。另外,实施加氢异构化工序S3的加氢异构化反应装置例如可以设置于在陆地上设置的通常的FT合成单元之后、与海上的天然气田的平台并列设置的FT合成单元之后、或者输送FT合成油和原油时使用的油船上等。接着,将该加氢异构化合成油与从地下等开采的原油(矿物系原油)混合来制造混合原油(原油混合工序S4)。在此,混合原油中的加氢异构化合成油的混合比例能够任意地设定,在本实施方式中,加氢异构化合成油的以混合原油的质量为基准的含量设为50质量%。在此,加氢异构化合成油和原油的混合方法没有特别的限定,能够采用通常所实施的任意的方法,例如管道调和和罐内调和。将所得的混合原油向后述的炼油厂的原油蒸馏装置91输送(混合原油输送工序 S5)。在此,混合原油的输送方法没有特别的限定,能够采用陆地上的管线输送、罐输送等通常所实施的方法。并且,在原料蒸馏装置91中,将混合原油分馏,进而根据需要通过炼油厂的各种设备对每种所得的各个馏分分别进行处理,制造各种产品(混合原油精制工序S6)。这样,从FT合成油可制造石脑油、煤油、轻油、重油等液体燃料、蜡、浙青等的各种产品。
第二,参照图2,对本发明的实施方式的FT合成油的精制方法及可使用混合原油的FT合成油精制系统1的整体构成及工序进行说明。如图2所示,本实施方式涉及的FT合成油精制系统1由合成气生成单元3、FT合成单元5、混合原油制造单元8、以及炼油厂单元9构成。合成气生成单元3将烃原料即天然气重整来制造含有一氧化碳气体和氢气的合成气。即,合成气生成单元3是进行图1中的合成气生成工序Sl的单元。FT合成单元5从所制造的合成气通过FT合成反应来合成液体烃。S卩,FT合成单元5是进行图1中的FT合成工序S2的单元。
混合原油制造单元8将通过FT合成反应所合成的FT合成油加氢异构化,形成加氢异构化合成油,将该加氢异构化合成油和原油混合,制造混合原油。即,混合原油制造单元8是进行图1中的加氢异构化工序S3、原油混合工序S4、混合原油输送工序S5的单元。炼油厂单元9将上述的混合原油精制来制造石脑油、煤油、轻油、重油等液体燃料、蜡、浙青等各种产品。即,炼油厂单元9是进行图1中的混合原油精制工序S6的单元。 下面,对这些各单元的构成要素进行说明。合成气生成单元3主要具备脱硫反应器10、重整器12、废热锅炉14、气液分离器 16及18、脱碳酸装置20以及氢分离装置26。脱硫反应器10由加氢脱硫装置等构成,从原料即天然气中除去硫成分。重整器12对从脱硫反应器10供给的天然气进行重整,制造含有一氧化碳气体 (CO)和氢气(H2)作为主成分的合成气。废热锅炉14将在重整器12中生成的合成气的废热回收,产生高压蒸汽。气液分离器16将在废热锅炉14中通过与合成气的热交换被加热的水分离成气体 (高压蒸汽)和液体。气液分离器18从被废热锅炉14冷却的合成气中除去冷凝部分,将气体部分供给到脱碳酸装置20。脱碳酸装置20具有采用吸收剂从由气液分离器18供给的合成气中除去碳酸气的吸收塔22、和从含有该碳酸气的吸收剂中使碳酸气散发而使吸收剂再生的再生塔24。氢分离装置26从被脱碳酸装置20分离了碳酸气的合成气中分离一部分在该合成气中所含的氢气。但是,上述脱碳酸装置20根据情况有时不需要设置。FT合成单元5例如主要具备泡罩塔型反应器(泡罩塔型烃合成反应器)30、气液分离器34、分离器36以及气液分离器38。泡罩塔型反应器30是从合成气合成液体烃的反应器的一个例子,作为通过FT合成反应从合成气合成液体烃(FT合成油)的FT合成用反应器发挥功能。该泡罩塔型反应器 30例如由在塔型的容器内部存积了浆料的泡罩塔型浆料床式反应器构成,所述浆料通过在液体烃(FT合成反应的产物)中悬浮固体催化剂粒子而成。该泡罩塔型反应器30使在上述合成气生成单元3中制造的合成气(一氧化碳气体和氢气)进行反应而合成液体烃。气液分离器34将在配设于泡罩塔型反应器30内的传热管32内流通而被加热的水分离成水蒸气(中压蒸汽)和液体。分离器36将存积在泡罩塔型反应器30的内部的浆料中的催化剂粒子和液体烃分罔。气液分离器38连接于泡罩塔型反应器30的塔顶,将未反应合成气和气体烃产物冷却。混合原油生成单元8主要具备储存罐81、加氢异构化反应器82、原油供给部83以及混合罐84。储存罐81与FT合成单元5的分离器36和气液分离器38连接,储存从分离器36 抽出的FT合成油的重质成分和从气液分离器38抽出的FT合成油的轻质成分。加氢异构化反应器82将从储存罐81供给的FT合成油进行加氢异构化而得到加氢异构化合成油。原油供给部83将从地下等开采的原油(矿物系原油)输送到混合罐84中。混合罐84将从加氢异构化反应器82输送的加氢异构化合成油和从原油供给部83 输送的原油混合。炼油厂单元9是对原油进行精制的通常的炼油厂设备,对原油进行精制来制造石脑油、煤油、轻油、重油等液体燃料、蜡、浙青等各种产品。在该炼油厂单元9中,设置有对各种组成的烃化合物根据沸点进行分馏的原油蒸馏装置91。并且,虽未图示,设置有将通过该原油蒸馏装置91分馏的各种烃馏分进行精制的处理装置组。接着,对通过以上那样的构成的FT合成油精制系统1,从天然气制造石脑油、煤油、轻油、重油等液体燃料、蜡、浙青等各种产品的工序进行说明。FT合成油精制系统1中,从天然气田或天然气工厂等外部的天然气供给源(未图示)来供给作为烃原料的天然气(主成分为CH4)。上述合成气生成单元3对该天然气进行重整来制造合成气(以一氧化碳气体和氢气为主成分的混合气体)。首先,上述天然气与通过氢分离装置26分离得到的氢气一起被供给到脱硫反应器10。脱硫反应器10使用该氢气通过加氢脱硫催化剂将天然气中所含的硫分转化为硫化氢,通过例如ZnO吸附除去所生成的硫化氢。通过这样预先对天然气进行脱硫,可以防止在重整器12和泡罩塔型反应器30等中使用的催化剂的活性因硫成分而降低。这样经脱硫的天然气在混合由二氧化碳供给源(未图示)供给的二氧化碳(CO2) 气体和在废热锅炉14中产生的水蒸气后,被供给到重整器12。重整器12例如通过上述的水蒸气_碳酸气重整法,使用二氧化碳和水蒸气对天然气进行重整,制造以一氧化碳气体和氢气为主成分的高温的合成气。如此在重整器12中生成的高温的合成气(例如,900°C、2. OMPaG)被供给到废热锅炉14,通过与在废热锅炉14内流通的水的热交换而被冷却(例如400°C)。此时,将在废热锅炉14中被合成气加热的水供给到气液分离器16,从该气液分离器16将气体部分以高压蒸汽(例如3. 4 10. OMPaG)的形式供给到重整器12或其它外部装置,将液体部分的水返回到废热锅炉14。由此,来自高温的合成气的废热被回收。另一方面,在废热锅炉14中被冷却的合成气当在气液分离器18中分离、除去冷凝液部分后,被供给到脱碳酸装置20的吸收塔22、或泡罩塔型反应器30。吸收塔22通过将在合成气中所含的碳酸气吸收到储存的吸收液内,从该合成气中分离碳酸气。将该吸收塔 22内的含有碳酸气的吸收液导入到再生塔24中,例如用蒸汽对该含有碳酸气的吸收液进行加热,进行汽提处理,将释放的碳酸气从再生塔24送入到重整器12中,再利用于上述重整反应。这样,在合成气生成单元3中制造的合成气被供给到上述FT合成单元5的泡罩塔型反应器30中。此时,供给到泡罩塔型反应器30的合成气的组成比被调整为适合FT合成反应的组成比(例如,H2 CO = 2 1 (摩尔比))。此外,通过上述脱碳酸装置20分离了碳酸气的合成气的一部分也被供给到氢分离装置26。氢分离装置26通过利用压力差的吸附、脱附(氢PSA),将合成气中所含的氢气分离。该分离的氢从储气罐(未图示)等经由压缩机(未图示)而连续地供给到在液体燃料合成系统1内利用氢进行规定反应的各种氢利用反应装置(例如,脱硫反应器10、加氢异构化反应器82等)。 接着,上述FT合成单元5从由上述合成气生成单元3制造的合成气通过FT合成反应合成液体烃(FT合成油)。在上述合成气生成单元3中制造的合成气从泡罩塔型反应器30的底部流入,在存积于泡罩塔型反应器30内的催化剂浆料内上升。此时,在泡罩塔型反应器30内,通过上述的FT合成反应使该合成气中所含的一氧化碳与氢气反应,生成烃。进而,在该合成反应时, 通过使水在泡罩塔型反应器30的传热管32内流通,从而将FT合成反应的反应热除去,通过该热交换而被加热的水发生气化而成为水蒸气。该水蒸气在气液分离器34中液化的水被返回到传热管32,气体部分以中压蒸汽(例如1. 0 2. 5MPaG)的形式被供给到外部装置。这样,将在泡罩塔型反应器30中合成的液体烃以浆料的形式与催化剂粒子一起导入到分离器36中。分离器36将浆料分离成催化剂粒子等固体成分和包含液体烃的液体部分。分离的催化剂粒子等固体成分的一部分返回到泡罩塔型反应器30中,液体部分(FT 合成油)被输送到混合原油生成单元8。此外,将未反应的合成气和生成的在泡罩塔型反应器30的条件下为气态的烃从泡罩塔型反应器30的塔顶导入到气液分离器38中。气液分离器38将这些气体冷却,将冷凝的液体烃分离,导入到混合原油生成单元8中。另一方面, 对于在气液分离器38中分离的气体部分、即以未反应的合成气(⑶和压)和碳原子数少(C4 以下)的烃气体为主成分的混合气体被再循环到泡罩塔型反应器30中,混合气体所含的未反应的合成气再次被供给到FT合成反应。此外,为了防止因上述混合气体的再循环而导致作为主成分的C4以下的气态烃在FT合成反应体系内高浓度蓄积,所述混合气体的一部分不再循环到泡罩塔型反应器30中,而被导入到外部的燃烧设备(火炬烟道(flare stack), 未图示),在燃烧后被释放到大气中。输送到混合原油生成单元8的FT合成油储存在储存罐81中,供向加氢异构化反应器82。在加氢异构化反应器82中,利用从上述氢分离装置26供给的氢气进行加氢异构化,除去FT合成油中所含的醇和烯烃,并将碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃,得到加氢异构化合成油。在该加氢异构化反应中,利用催化剂和热,将正链烷烃转化为异链烷烃。从该加氢异构化反应器82流出的加氢异构化合成油向混合罐84输送。另外,在该混合罐84中,从地下等开采的原油(矿物系原油)由原油供给部83输送,使加氢异构化合成油和原油混合来制造混合原油。如上述那样得到的混合原油向炼油厂单元9的原油蒸馏装置91输送。在此,混合原油向炼油厂单元9输送的方法没有特别的限定,能够采用陆地上的管线输送、罐输送等通常所实施的任意的方法。在该原油蒸馏装置91中,对混合原油进行分馏,得到排气、LPG、 石脑油馏分、煤油馏分、轻质轻油馏分、重质轻油馏分、残油等。并且,LPG通过回收装置回收,制成LPG产品。石脑油馏分、煤油馏分、轻质轻油馏分、重质轻油馏分通过分别实施各种处理,制成汽油、煤油、轻油(柴油机燃料油)等液体燃料产品。残油经实施脱硫处理等制成重油、浙青等各种产品。在此,图3表示在FT合成单元5 (FT合成反应工序S2)中合成的FT合成油的组成。 如图3所示,FT合成油除了少量的醇和烯烃以外基本上由正链烷烃构成。因此,凝固点高,在常温附近缺乏流动性。将该FT合成油加氢异构化的加氢异构化合成油的组成表示在图4中。如图4所示,存在于FT合成油中的烯烃通过加氢转化为链烷烃,醇通过加氢脱氧转化为链烷烃。同时,正链烷烃的至少一部分转化为异链烷烃。特别是,重质的正链烷烃的近5成转化为异链烷烃。在此,在本实施方式中,加氢异构化合成油的凝固点为60°C以下,加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下。图5A和图5B表示在加氢异构化前后的组成的变化。图5A表示加氢异构化前、即在FT合成单元5中制造的FT合成油的组成。图5B表示加氢异构化后、即通过加氢异构化反应器82加氢异构化而成的加氢异构化合成油的组成。FT合成油在碳原子数为24以下的区域含有醇或烯烃等,在碳原子数为25以上的区域几乎由正链烷烃构成。另一方面,在加氢异构化合成油中,完全不含醇或烯烃,正链烷烃大多转化为异链烷烃。另外,作为整体被轻质化。另外,关于FT合成油的加氢异构化的条件,如上所述,只要FT合成油的碳原子数为5以上的正链烷烃的至少一部分异构化成异链烷烃,优选加氢异构化合成油的凝固点为 60°C以下,碳原子数为20以上的正链烷烃的含量为40质量%以下,就没有特别的限定,优选在下面的条件下进行实施。加氢异构化反应器82能够使用将规定的加氢异构化催化剂填充到固定床的流通式反应器中的公知的反应塔,将FT合成油进行加氢异构化。此处所谓的加氢异构化,如前所述,除了从正链烷烃向异链烷烃异构化以外,还包括通过通过加氢从烯烃向链烷烃的转化、通过加氢脱氧从醇向链烷烃的转化、异链烷烃向轻质烃的分解等。作为加氢异构化催化剂,例如可以列举出在含有固体酸的载体上作为活性金属担载了属于周期表第8族、第9族、以及第10族的金属而成的催化剂。并且此处所谓的元素周期表是指基于IUPAC(国际纯粹与应用化学联合会)的规定的长周期型的元素周期表。作为合适的载体,可以列举出含有选自氧化硅氧化铝、氧化硅氧化锆以及氧化铝氧化硼等具有耐热性的无定形金属氧化物中的一种以上的固体酸的载体。催化剂载体可以通过将含有上述固体酸和粘合剂的混合物成型后进行烧结来制造。以载体总量为基准,固体酸的配合比例优选为1 70质量%,更优选为2 60质量%。作为粘合剂(binder),没有特别的限制,优选为氧化铝、氧化硅、氧化硅氧化铝、二氧化钛、氧化镁,更优选为氧化铝。以载体的总重为基准,粘合剂的配合比例优选为30 99 质量%,更优选为40 98质量%。混合物的烧结温度优选为300 550°C的范围内,更优选为350 530°C的范围内,进 一步优选为400 530°C的范围内。作为第8族、第9族、以及第10族的金属,具体地可举出钴、镍、铑、钯、铱、钼等。其中,将选自镍、钯以及钼中的金属单独使用1种或组合两种以上使用。这些金属能够通过浸渍或离子交换等常规方法担载到上述的载体上。担载的金属量没有特别的限制,相对于载体,金属的总量优选为0. 1 3. 0质量%。另外,FT合成油的加氢异构化能够在下面的反应条件下进行。氢分压优选为 0. 5 12MPa,更优选为1. 0 5. OMPa。中间馏分的液体时空速(LHSV)优选为0. 1 10. Oh—1,更优选为0. 3 3. 51Γ1。氢/油比没有特别的限制,优选为50 1000NL/L,更优选为 70 800NL/L。并且,在本说明书中,“LHSV(liquid hourly space velocity ;液体时空速)”是指相对于催化剂层的每单位容量的、在标准状态(25°C,101325Pa)下的原料油的体积流量, 单位“IT1”表示小时(hour)的倒数。另外,氢/油比中氢容量的单位即“NL”表示标准状态 (0°C,101325Pa)下的氢容量(L)。另外,加氢异构化的反应温度优选为180 400°C,更优选为200 370°C,进一步优选为250 350°C,进一步优选为280 350°C。在此,反应温度超过400°C时,由于将烃分解成轻质成分的副反应增加,因而不优选。另一方面,反应温度低于180°C时,加氢异构化的进行变得不充分,另外,醇不能除完而残留,因而不优选。其次,从地下等开采的原油(矿物系油)的组成表示在图6中。并且,由于原油的组成根据开采地不同而存在差异,因此图6中示出了代表性的原油的组成的一个例子。如图6所示,原油混合存在各种成分,特别是具有重质的正链烷烃的含量少的趋势。因此,与图3所示的FT合成油在组成上有很大不同,其性状也完全不同。并且,将图4所示的加氢异构化合成油与图6所示的原油混合而成的混合原油的组成示于图7中。另外,混合比率为加氢异构化合成油原油=50 50(质量比)。由于加氢异构化合成油中特别是重质的正链烷烃转化成了异链烷烃,因此可知混合原油的组成如图7所示,与最初的原油的组成没有很大变化。在上述构成的本实施方式涉及的FT合成油的精制方法和混合原油中,将在FT合成单元5中合成的FT合成油加氢异构化,除去了 FT合成油中所含的醇和烯烃,并将碳原子数为5以上的正链烷烃的至少一部分转化成了异链烷烃,形成加氢异构化合成油。在此,通过控制FT合成油的加氢异构化的程度,能够调整加氢异构化合成油中的正链烷烃与异链烷烃的含量比率。因此,通过考虑混合的原油的组成或性状,能够调整加氢异构化合成油的组成或性状,能够防止混合原油相比最初的原油的组成和性状发生较大变化。并且,由于将上述的混合原油输送到炼油厂的原油蒸馏装置91中进行精制,因此能够从FT合成油通过炼油厂的通常的处理来制造汽油、煤油、轻油、重油等液体燃料、蜡、 浙青等各种产品。另外,在加氢异构化反应器82 (加氢异构化工序S3)中制造的加氢异构化合成油的凝固点为60°C以下。因此,该加氢异构化合成油即使在常温附近的温度下也能够确保流动性,能够用泵等输送,其操作性得到大幅提高。进而,由于上述的加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下,因此,能够降低加氢异构化合成油的凝固点,能够确保流动性。进而,能够抑制混合原油的性状相比最初的原油的性状较大地变化,能够在炼油厂单元9适当地处理混合原油。 进而,在原油混合工序S3中,相对于混合原油,加氢异构化合成油能够以任意的比例混合,但是在本实施方式中,由于加氢异构化合成油的含量为50质量%,充分确保了 FT合成油的使用量,并且混合原油的性状相比最初的原油没有很大变化,通过在通常的炼油厂单元9进行精制,能够制造汽油、煤油、轻油、重油等液体燃料、蜡、浙青等各种产品。
以上参照附图对本发明的实施方式进行了详述,但是具体的构成并不限于该实施方式,还包括在不脱离本发明的宗旨的范围内的设计变更等。例如,对经由FT合成单元的分离器抽出FT合成油的重质成分、经由气液分离器抽出FT合成油的轻质成分、将它们输送到混合原油制造单元的构成进行了说明,但是并不限于此,也可以以不在FT合成反应单元将FT合成油分离成轻质成分和重质成分的方式输送到混合原油制造单元。另外,对加氢异构化合成油的凝固点为60°C以下、碳原子数为20以上的正链烷烃的含量为40质量%以下的实施方式进行了说明,但并不限于此。在此,图8表示加氢异构化合成油中的碳原子数为20以上的正链烷烃含量与加氢异构化合成油的凝固点的关系。 在加氢异构化合成油中,通过变更碳原子数为20以上的正链烷烃的含量,能够调整其凝固点。因此,优选考虑混合的原油的组成或性状、炼油厂单元9的构成、输送手段等对加氢异构化合成油的凝固点和碳原子数为20以上的正链烷烃的含量进行调整。
进而,对混合原油中的加氢异构化合成油的含量为50质量%的实施方式进行了说明,但并不限于此。在此,图9表示加氢异构化合成油的含量为90质量%时的混合原油的组成,另外,图10表示加氢异构化合成油的含量为10质量%时的混合原油的组成。这样, 通过调整混合原油中的加氢异构化合成油的含量,能够调整混合原油的组成。因此,优选考虑混合的原油的组成或性状、炼油厂单元9的构成、输送手段等对加氢异构化合成油的含量进行适当设定。另外,对于FT合成油的组成或原油的组成,并不限于本实施方式中图示的组成, 可以使用各种组成的FT合成油和原油。进而,对于合成气生成单元和FT合成单元的构成,也不限于本实施方式,也可以利用其它构成的单元来合成FT合成油。产业上的可利用性根据本发明的FT合成油的精制方法和混合原油,不需要大规模的专用设备,利用已有的炼油厂的设备,能够从通过FT合成反应得到的FT合成油制造液体燃料及其它产品, 可得到能用上述炼油厂的设备进行处理的、以高含量混合了 FT合成油的由FT合成油与原油形成的混合原油。符号说明IFT合成油精制系统3合成气生成单元5FT合成单元8混合原油混合单元9炼油厂单元82加氢异构化反应器83原油供给部84混合罐91原油蒸馏装置
权利要求
1.一种合成油的精制方法,该精制方法为通过费托合成反应合成的合成油的精制方法,该精制方法具备下述工序加氢异构化工序,其将所述合成油加氢异构化,除去醇和烯烃,并使碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃,得到加氢异构化合成油;原油混合工序,其将所述加氢异构化合成油和原油混合而得到混合原油; 混合原油输送工序,其将所述混合原油输送到炼油厂的原油蒸馏装置;以及, 混合原油精制工序,其将所述输送的混合原油在至少具有原油蒸馏装置的炼油厂的石油精制设备中进行处理。
2.根据权利要求1所述的合成油的精制方法,其中,在所述加氢异构化工序中,使所述加氢异构化合成油的凝固点为60°C以下。
3 根据权利要求1或2所述的合成油的精制方法,其中,在所述加氢异构化工序中,以所述加氢异构化合成油的质量为基准,使所述加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下。
4.一种混合原油,其是通过将通过费托合成反应合成的合成油与原油混合而得到的, 该混合原油由下述加氢异构化合成油和原油混合而成,所述加氢异构化合成油是通过将所述合成油加氢异构化,除去醇和烯烃,并使碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃而成的。
5.根据权利要求4所述的混合原油,其中,所述加氢异构化合成油的凝固点为60°C以下。
6.根据权利要求4或5所述的混合原油,其中,以所述加氢异构化合成油的质量为基准,所述加氢异构化合成油中的碳原子数为20以上的正链烷烃的含量为40质量%以下。
全文摘要
本发明的合成油的精制方法为通过费托合成反应合成的合成油的精制方法,其具备下述工序加氢异构化工序,其将所述合成油加氢异构化,除去醇和烯烃,并使碳原子数为5以上的正链烷烃的至少一部分转化为异链烷烃,得到加氢异构化合成油;原油混合工序,其将所述加氢异构化合成油和原油混合而得到混合原油;混合原油输送工序,其将所述混合原油输送到炼油厂的原油蒸馏装置;以及,混合原油精制工序,其将所述输送的混合原油在至少具有原油蒸馏装置的炼油厂的石油精制设备中进行处理。
文档编号C10G45/60GK102300960SQ20108000583
公开日2011年12月28日 申请日期2010年1月21日 优先权日2009年1月30日
发明者田中祐一 申请人:克斯莫石油株式会社, 吉坤日矿日石能源株式会社, 国际石油开发帝石株式会社, 新日铁工程技术株式会社, 日本石油天然气·金属矿物资源机构, 石油资源开发株式会社