去除液化天然气中硫醇的方法

文档序号:5116110阅读:659来源:国知局

专利名称::去除液化天然气中硫醇的方法
技术领域
:本发明涉及将天然气液化的方法,更确切地说涉及自含硫醇的天然气原料流中将天然气液化的方法。供液化的原始天然气通常是相对纯净的。该原始天然气含例如水、二氧化碳和硫化氢等杂质,通常在液化前要处理该气体,以便去除这些杂质。世界上大多数天然气的生产都采用液化方式,以便于处理和运输,而原始天然气流中常常含有过量的硫醇。通常,通过采用物理的方法或化学溶剂或者分子筛来预处理该天然气原料流的方法已经能将硫醇除去。而当遇到高浓度硫醇时,除了处理二氧化碳和硫化氢的方法外,还必须使用专门去除硫醇的技术。使用物理或化学溶剂系统成本高,操作复杂。另一方面,使用分子筛需要非常大的床层,而且床层的再生会需要相当于天然气原料流80%体积量的再生气。由再生过程产生的废气也含很高浓度的硫醇。在再生废气中如此高浓度的硫醇对于可燃气系统来说是难以承受的。另外,大量分子筛的再生也使得进入可燃气系统的丙烷、丁烷和比其更重的烃类的量发生大的变化。所以,需要一种液化含硫醇的原始天然气的方法,它能避免由上述现有技术的天然气预处理方法上所引起的问题和不足。本发明的原理是通过蒸馏含硫醇的原始天然气原料流将硫醇浓缩到一个或一个以上的馏份中。这就不需要为了除去硫醇而对天然气原料流做任何专门的预处理工作。本方法所需除去硫醇的设备要小得多。因为硫醇已被浓缩到馏份中。其直接后果是除去硫醇的设备成本与现有技术的预处理方法中设备成本相比较被大大降低,而且操作该设备的费用也被大大降低。本发明提供一种从待液化的天然气原料流中分离硫醇的方法。该法包括如下步骤(a)将天然气原料流输入回流涤气塔以产生甲烷塔顶馏出物和富含乙烷和比其更重的烃类的液态塔底物料流;(b)将来自步骤(a)的塔底物料流分馏产生含戊烷和比其更重的烃类的天然气液流和一个或多个主要含乙烷、丙烷和丁烷的塔顶馏出物流;(c)从至少一个来自步骤(b)的塔顶馏出物流中除去硫醇以产生脱硫醇物料流;(d)部分冷凝和分离来自步骤(a)的塔顶馏出物以产生蒸气流和液流;(e)将至少一部分来自步骤(d)的液流作为要回流的至少一部分再循环回到步骤(a)中的涤气塔内;(f)冷却来自步骤(d)的蒸气流以产生液化天然气流。必要时,在进行步骤(a)前,通常可将该原料流预处理,以便除去酸性气体和水份。例如,该预处理步骤可包括去除硫化氢。本方法还优选包括加入至少一部分来自步骤(c)的脱硫醇馏出物到来自步骤(a)的甲烷塔顶馏出物中用于步骤(d)中的部分冷凝和分离。本方法适用于处理含硫醇浓度为至少约百万分之四(4ppm)的原料流,当该原料流含至少约50ppm的硫醇时,本方法尤为适用。来自步骤(d)的蒸气流优选包含的硫醇浓度为低于天然气原料流中原硫醇浓度的约20%(重量/重量),最优选包含的硫醇浓度为低于占来自步骤(d)的蒸气流重量的百万分之十。含一系列蒸馏段的分馏步骤(b)可包括一个先脱乙烷塔装置,即将来自步骤(a)的塔底物料流送到脱乙烷塔中,在塔中蒸馏该塔底物料流产生乙烷塔顶馏出物,在塔底物料流中基本上不含乙烷。然后将来自脱乙烷塔的塔底物料流输送到脱丙烷塔中,在塔中将其蒸馏产生丙烷塔顶馏出物和基本上不含丙烷的塔底物料流。同样,将来自脱丙烷塔的塔底物料流输到脱丁烷塔中,在塔中将其蒸馏产生丁烷塔顶馏出物和基本上不含丁烷的塔底天然气液流。优选将以上丙烷和丁烷的塔顶馏出物混合,以便在步骤(c)中去除硫醇,产生主要含丙烷和丁烷的脱硫醇馏出物。优选将来自步骤(b)的乙烷塔顶馏出物与来自步骤(d)的蒸气流混合,以便在步骤(f)中冷却,产生液化天然气液流。必要时,本方法也可包括步骤(g),即除去液化天然气流中的氮气产生液化天然气产品流。本方法采用的涤气塔与传统的涤气塔相比,可以按更高的回流/进料比和更多的平衡塔板数来操作。优选的回流/进料重量比至少为0.5,最优选回流进料重量比至少为1.0。通常,5个平衡塔板数已经足够,但优选8个或8个以上的平衡塔板数,以便降低来自涤气塔的塔顶馏出物中的硫醇含量。可以用分子筛组来实现除去硫醇的步骤。该分子筛组最好包括三个排列的床层,两个床层交替参与除去硫醇的运作,同时再生第三个床层,另一方面,也可以用寄性碱洗涤来实现去除硫醇的步骤。图1是按照本发明的一个实施例的天然气液化方法的示意流程图,它表明对脱丙烷塔和脱丁烷塔的塔顶馏出物做除硫醇处理和将它们的一部分再循环到涤气塔内。图2是按照本发明的另一实施例的天然气液化方法的示意流程图,它表明对每个分馏阶段的塔顶馏出物进行除硫醇处理和将它们的一部分再循环到涤气塔内。用分馏来处理天然气液化原料流,将硫醇杂质集中到某一馏份,而不需要为除去硫醇做专门初步预处理。将由此产生的富含硫醇的馏份进行除硫醇处理,且最好将它的一部分作为硫醇类的吸附剂再循环到蒸馏阶段。由于避免了专门的为除去液化原料流中的硫醇的预处理和设置下游处理硫醇类的程序,用于除硫醇的设备规模和运转费用都可以大大降低。由于使分子筛床的地方所生成的再生废气量较小,因而避免了可燃气系统因接受该废气所承受的负担。参见图1-2,其中同样的数字代表类似部分,本发明的天然气液化过程10和10’使用了涤气塔14下游的除去硫醇阶段12。原始的天然气料流包含高浓度的硫醇以及其它众所周知的杂质,例如水、二氧化碳、汞和硫化氢等。将原始天然气原料流直接从管道16送入预处理阶段18,以便去除非硫醇杂质。在此可以使用任何从气相中除杂质的方法。其中最常用的是吸附方法,例如采用分子筛、离子交换等吸附方法,和采用合适的液态化学或物理溶剂的吸收方法。继预处理阶段18后,将处理后的含硫醇的原料流通过管道20输送到涤气塔14。到达涤气塔14的供入液流20通常含硫醇的浓度为至少约百万分之四(摩尔),但最好硫醇的浓度为至少约百万分之五十(摩尔)。在涤气塔14中,C2烃和比其更高分子量的烃类基本上与甲烷和比其更轻的成分(如氮气)相分离。此外,在供入液流20中的硫醇浓度被降到作为液化天然气(LNG)产品可接受的浓度。将主要含甲烷的脱硫醇塔顶馏出物经管道24从塔14中转移出来,以便在低温冷却阶段26液化。将含大量C2烃和比其更重成分的富含硫醇的塔底物料流经管道28从塔14中转移出来,直接送入分馏阶段30,得到用于补充致冷过程的乙烷和丙烷,以及液化天然气(NGL)。涤气塔14的设计和操作为本领域技术人员所熟知。涤气搭设计标准指南包括所需热容量和LNG产品的硫醇浓度和去除包含在原始天然气液化原料流中耐冷冻成分所要达到的程度。典型的涤气塔具有5至8个或8个以上的塔板数,并且回流/进料重量比至少为约0.5,以至少为1.0为好。已发现在天然气供入液流20中高达80%(摩尔)或80%以上的硫醇随塔底物料流28离开涤气塔14,没有外加回流,而且该硫醇在分馏阶段30的脱丙烷塔和脱丁烷塔的塔顶馏出物中被浓缩,此时对去除硫醇最为有利,其流量,即被处理的硫醇的量最小。分馏阶段30最好包括脱乙烷塔32、脱丙烷塔34和脱丁烷塔36,它们可按常规方式操作,分别获得乙烷、丙烷、丁烷和NGL产品。脱乙烷塔32基本上可将乙烷和比其轻的成份与丙烷和比其重的包括硫醇类的成份分开。主要含乙烷和少量甲烷的脱硫醇的塔顶蒸气流经管道38从脱乙烷塔32中转移出来,加到LNG产品中。将含乙烷的侧线馏份经过管道40从脱乙烷塔32中移出,补充用作含乙烷的制冷剂。含丙烷和比其重的成份的富含硫醇的塔底馏出物直接从脱乙烷塔32经管道42进入脱丙烷塔34。脱丙烷塔34基本上可将丙烷与丁烷和比其重的烃类成份分开。原存在于供入液流20中的和现在含在脱丙烷塔供入液流42中的硫醇在塔顶馏出物和塔底物料流间分流,大部在硫醇集中在塔底物料流中。含丙烷的液态塔顶馏出物和大部分硫醇经管道44被转移出脱丙烷塔34,直接进入除硫醇装置12,将侧线馏份经管道45移出,用来补充丙烷制冷剂。将来自脱丙烷塔34的主要含丁烷和比其重的烃类的塔底物料流和原存在于供入液流20中的大部分硫醇经管道46直接进入脱丁烷塔36。脱丁烷塔36将基本上将作为液态塔顶馏出物的丁烷类与作为含NGL产品的塔底物料流的戊烷和比其重的烃类分开。此外,将存在于脱丁烷塔供入液流46中的硫醇在塔顶馏出物和塔底物料间分流,因而存在于供入液流46中的大部分硫醇被集中于塔顶馏出物中,少部分硫醇留在塔底物料流中。将含丁烷的液态塔顶馏出物和存在于供入液流46的大疗分硫醇经管道48从脱丁烷塔36中转移出来,直接进入除硫醇装置12。将含少量存在于脱丁烷塔进料中的硫醇的NGL产品经管道50从脱丁烷塔36中转移出来。优选将从脱丙烷塔34和脱丁烷塔36转移出来的含硫醇类的塔顶馏出物44和48混合,经过管道52进入除硫醇装置12。该除硫醇装置12可以包括任何现有技术中已知的适当的纯化手段,根据供入液流52的物理状态,采取分子筛吸附、碳吸附、碱吸附、物理溶剂吸附和化学溶剂吸附等方法。当使用分子筛时,优选三床层装置(未示出),运行中两个床层成并联或串联方式,另一个床层用来再生。将主要含液态丙烷和丁烷即〔液化丙烷气(LPG)〕的基本不含硫醇的液流经管道54从除硫醇装置12中转移出来。分子筛床层的再生产生富含硫醇的液流,它经管道56被转移出来,以便清除可燃气系统(未示出)。将脱硫醇LPG液流54的第一部分经管道58再注入涤气塔14中,作为贫油回流。将LPG液流54的第二部分经管道60直接送入冷却阶段26,以便加到下述脱硫醇液态馏出物中产生LNG产品。优选通过再注入冷却器(未示出)将再注入液流58冷却,并将其与来自涤气塔14的富含甲烷的塔顶馏出物24混合。然后,将混合物的再注入液流经管道64通过温热的冷凝器管束66,在低温冷却阶段26处理。将该冷凝器管束66在使混合后液流64部分冷凝的温度下运作。然后将自温热的冷凝器管束66转移出来的液流经管道68直接进入气-液分离器70(vapor-liquidseparationdrum),将回流液流与含甲烷的气体分开。将回流的液流经管道72输送到涤气塔14,作为吸附剂使硫醇更容易地分布到塔底物料流28中。将主要含甲烷的脱硫醇蒸气流从气-液分离器70直接经过管道74转移到冷的冷凝器管束76中,在低温冷却阶段26处理。将该冷凝器管束76在使用适用于冷凝富含甲烷的液流74的冷凝剂的温度下运作。将含大量LNG产品的脱硫醇液态甲烷液流经管道78从冷凝器管束76转移出来。优选将甲烷蒸气侧流经管道80从气-液分离器70中转移出来,作为在甲烷冷凝系统中(未示出)的补充冷凝剂。优选将未再注入涤气塔14中的LPG液流54的剩余部分经管道60与脱乙烷塔32的塔顶馏出物38混合后,经管道82输送到冷却阶段26,并与液态甲烷液流78混合在管道84产生脱硫醇的LNG液流。该液流84通常所含硫醇的浓度为低于供入液流20中的硫醇浓度的20%(重量)。因此,液流84所含硫醇的浓度为百万分之五十(摩尔)或更低,但优选的硫醇浓度为百万分之十(摩尔)或更低。在除去氮气的装置86中,优选将氮气从LNG液流84中除去,一般采用分馏或其它常用的除氮方法。将其所含硫醇浓度不高于标准要求的LNG成品经管道88从除去氮气的装置86中转移出来。在另一实施例中,参见图2,10’具有分馏阶段30’,优选将脱乙烷塔32在完全回流的条件下操作。将液态的塔顶馏出物101从脱乙烷塔32中转移出来,并与自脱丙烷塔和脱丁烷塔34和36的含硫醇的液态塔顶馏出物44和48混合,在管道102中产生液态1-4个碳的组合液流。在去除硫醇装置12中,将硫醇从组合液流102中除去,产生脱硫醇的组合液流。将该脱硫醇组合液流的第一部分经管道104再注入涤气塔中,作为贫油回流,而将第二部分或剩余部分经管道106输送到液态甲烷液流78中,产生低硫醇LNG产品。实施例本发明的天然气液化过程是通过计算机模拟分析来确定硫醇物料衡算、优化设计标准和估计权衡系数的。各个计算的根据是天然气原料流进入涤气塔14的流量为22100千摩尔/小时。该天然气原料流的组成为约80%(摩尔)的甲烷、7%(摩尔)的乙烷、2%(摩尔)的丙烷、2%(摩尔)的丁烷、1%(摩尔)的C5+烃、8%(摩尔)的氮气和320ppm的硫醇。涤气塔14的操作标准为C1/C2比为0.94,塔顶温度为-51℃。在物料平衡中硫醇组成为20%的甲硫醇、60%的乙硫醇、16%的丙基硫醇、3%的丁基硫醇和1%的硫化碳。关于物料平衡的一个简单假设是在涤气塔底的全部C1-2烃从脱乙烷塔顶离去,脱丙烷塔顶馏出物含全部的C3烃;脱丁烷塔顶馏出物含全部的C4烃类。致冷动力的估算是基于已知的动力与温度曲线,它预测每增加1千瓦(KW)温热冷凝器管束66的致冷功率,要增加1千瓦致冷动力和每增加1千瓦再注入冷凝器(未示出)的丙烷致冷功率,要增加0.5千瓦的致冷动力。泵的动力和冷却水排量的影响可忽略不计。洗涤塔14可根据有关参数在最佳条件下运行,该参数包括再循环注入点(recycleinjectionpoint)、塔板数和再循环方式例如分馏阶段30’的全部C1-4塔顶馏出物的再循环或只限于脱丙烷塔34和脱丁烷塔36的C3-4塔顶馏出物的再循环。试验的其它参数是再循环物的组成和流量。模拟分析结果表明要求的再注入点是在洗涤塔14的顶部。三个附加的塔板也被加到供给点下方,并做了5个和8个塔板的模拟分析。该附加的塔板使要求增加的致冷动力降低了约10%。再循环C1-4塔顶馏出物与仅再循环C3-4塔顶馏出物在要求增加分馏塔盘直径和致冷动力方面无显著差异。有限的再循环C3-4塔顶馏出物降低了除硫醇装置12的规模和不需要除硫醇阶段12的上游程序冷凝脱乙烷塔顶馏出气体38。可确定再循环液流58中C3与C4的最佳比例。开始C3-4塔顶馏出物按常规比例组合,增加C3的比例,获得更高的收率,但也增加了丙烷在涤气塔顶馏出液24中的损失量。但是,通过保持C3/C4比为一定值,只是增加再循环的速度(但不超过限度),可满足LNG的技术要求且可产生充足的丙烷用于补充致冷剂。对于特定的C3/C4比0.82(正如物料平衡所示),要求再循环流速为534千摩尔/小时(kmol/hr),以满足LNG技术要求即硫醇浓度为8ppm(摩尔)及丙烷在涤气塔顶馏出液24中的损失处于控制以下。硫醇浓度与再循环流速的关系表明增加再循环流速对模拟结果的影响较小。在下表中对模拟结果做了比较。如图1所示的C3-4脱丙烷塔/脱丁烷塔的塔顶馏出物的再循环方式只要求对755千摩尔/小时(kmol/hr)的液化石油气(LPG)液流做除硫醇处理及只要求再循环该被处理液流的70%回到涤气塔14和分馏阶段30。与包括除硫醇前处理的现有技术相比,所用分子筛吸附剂的体积和再生气的流量可降低80%,并可省去现有技术中液体萃取装置。作为权衡研究534千摩尔/小时的LPG液流再循环到涤气塔顶,在分馏阶段30中的塔直径增加60-80%,而液化过程的致冷动力增加约3.7兆瓦(MW),这包括用于温热冷凝器管束66的1.7兆瓦,用于LPG再注入冷凝器(未示出)的0.9兆瓦和用于脱乙烷塔顶冷凝器(未示出)的0.1兆瓦。致冷动力的增加意味着LNG的产量下降约3%,但是这可以从基本投资和操作费用的节省上得到补偿。表</tables>本发明的天然气液化方法用上述说明书和实施例阐明。上述说明书是一个非限制性的介绍,因为各种更改对于本
技术领域
技术人员来说是显而易见的。因此,只要不违背所附的权利要求书的范围和精神,所有的更改都为本发明所包括。权利要求1.从待液化的天然气原料流中分离硫醇的方法,包括如下步骤(a)将天然气原料流输入回流涤气塔以产生甲烷塔顶馏出物和富含乙烷和比其更重的烃类的液态塔底物料流;(b)将来自步骤(a)的塔底物料流分馏产生含戊烷和比其更重的烃类的天然气液流和一个或多个主要含乙烷、丙烷和丁烷的塔顶馏出物流;(c)从至少一个来自步骤(b)的塔顶馏出物流中除去硫醇以产生脱硫醇物料流;(d)部分冷凝和分离来自步骤(a)的塔顶馏出物以产生蒸气流和液流;(e)将至少一部分来自步骤(d)的液流作为要回流的至少一部分再循环回到步骤(a)中的涤气塔内;(f)冷却来自步骤(d)的蒸气流以产生液化天然气流。2.权利要求1的方法,包括在进行步骤(a)前预处理该原料,以除去酸性气体和水份的步骤。3.权利要求2的方法,其中该预处理步骤包括去除硫化氢。4.权利要求1的方法,其中该原料流所含硫醇的浓度至少为约4ppm,且来自步骤(e)的蒸气流包含的硫醇占原料流中所含硫醇的不到约20%(重量)。5.权利要求1的方法,其中该原料流所含硫醇的浓度至少为约50ppm。6.权利要求1的方法,其中来自步骤(d)的蒸气流所含硫醇的浓度低于约100ppm。7.权利要求1的方法,其中来自步骤(d)的蒸气流所含硫醇的浓度低于约10ppm。8.权利要求1的方法,还包括将至少一部分来自步骤(c)的脱硫醇馏出物加到来自步骤(a)的甲烷塔顶馏出物中用于步骤(d)中的部分冷凝和分离的步骤。9.权利要求8的方法,其中的分馏步骤(b)包括(1)将来自步骤(a)的塔底物料流送到脱乙烷塔中,产生塔顶乙烷馏出物和基本不含乙烷的塔底物料流;(2)将来自步骤(1)的塔底物料流送到脱丙烷塔中,产生丙烷塔顶馏出物和基本不含丙烷的塔底物料流;(3)将来自步骤(2)的塔底物料流送到脱丁烷塔中,产生丁烷塔顶馏出物和液化天然气流。10.权利要求8的方法,其中将来自步骤(b)的丙烷和丁烷塔顶馏出物混合在步骤(c)中除硫醇,产生主要含丙烷和丁烷,基本不含乙烷的脱硫醇物料流。11.权利要求8的方法,其中将来自步骤(b)的乙烷塔顶馏出物与来自步骤(d)的蒸气流混合,在步骤(f)中冷却,产生液化天然气流。12.权利要求1的方法,包括从来自步骤(f)的液化天然气流中除去氮气,产生LNG产品流的步骤。13.权利要求1的方法,其中涤气塔以至少为0.5的回流1进料重量比操作,具有至少5个平衡塔板数。14.权利要求1的方法,其中涤气塔以至少为1.0回流的1进料重量比操作,具有至少8个平衡塔板数。15.权利要求1的方法,其中除硫醇步骤(c)包括使塔顶馏出物通过分子筛装置。16.权利要求15的方法,其中分子筛装置包括三个排列的床层,两个床层交替参与除去硫醇的运作,同时再生第三个床层。17.权利要求1的方法,其中除硫醇步骤(c)包括使塔顶馏出物通过碳吸收装置。18.权利要求1的方法,其中除硫醇步骤(c)包括使塔顶馏出物与苛性碱接触。19.权利要求1的方法,其中除硫醇步骤(c)包括使塔顶馏出物与物理溶剂接触。20.权利要求1的方法,其中除硫醇步骤(c)包括使塔顶馏出物与化学溶剂接触。全文摘要液化含硫醇天然气的方法。通过蒸馏天然气原料流可将硫醇浓缩到一个馏分中,而不需要专门的预处理除去硫醇。因而,去除硫醇的设备要小得多,因为本法中硫醇的处理可选择在其流量很低的情况下进行。一部分被处理后的馏分可被再注入上游蒸馏阶段以促进硫醇的吸收。文档编号C10L3/10GK1168914SQ9711296公开日1997年12月31日申请日期1997年6月4日优先权日1996年6月4日发明者F·J·F·迪拉维格,C·A·杜尔申请人:凯洛格总公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1