专利名称:控制还原剂喷入内燃机废气中的方法
技术领域:
本发明涉及一种控制含有参与催化反应并吸附在催化剂上的成分的气流的方法。
本发明特别涉及还原剂喷入废气的控制,其中,形成的氮氧化物被有选择地催化还原,并且其中还原成分在催化剂表面得到吸附或脱附。还原成分和氮氧化物都必须避免出现在催化剂排出物中。
本发明对净化来自车辆内燃机的废气特别有用,其中,氮氧化物由可能作为氨或尿素水溶液喷射的氨来还原。
背景技术:
废气净化已经具有多种方式实施。一个方式在美国专利6,427,439中公开,其中废气净化通过催化还原氮氧化物NOx来实施。还原剂的添加由电子发动机控制器EEC来控制,当NOx浓度高于预定值时,该控制器根据与NOx浓度成比例的关系确定出要加入的还原剂数量。当NOx浓度较低并且吸附的氨数量比催化剂的氨容量小时,加入还原剂的数量为预定量。EEC使用来自测量NOx浓度、NH3浓度、温度、发动机速度和发动机载荷的信号,计算催化剂表面上吸附NH3的数量并计算出在进行计算的同时要添加的还原剂数量。然而,这意味着在发动机载荷频繁而迅速地增加和减小的车辆中,要进行多种不同的测量和计算。
在美国专利5,628,186中描述了添加还原剂的另一种方法。该添加通过探测发动机和废气中催化剂的工作参数、然后根据NOx测量值确定所需的NH3数量,再根据催化剂性能来调整所需数量来得到控制。温度根据发动机性能计算。这需要一些计算步骤。
美国专利6,119,448中还原剂添加过程的喷射策略使用了类似的测量,此外,参比发动机也包括在计算中。
美国专利5,950,422也公开一种废气净化方法。加入的还原剂数量的类似计算通过将催化剂体积划分成几个亚区域,然后对每个亚区域进行计算来执行。
尽管本领域已经公知具有许多控制在废气中添加还原剂的方法,但是仍然需要通过还原剂的受控添加来改善NOx的转化,以防止还原剂进入环境的有害泄漏。
发明内容
因此,本发明的目的是提供一种控制还原剂喷入内燃机废气中的方法和系统。该方法是基于简单而可靠的测量,以获得用于还原剂溶液流量调整的信号,其通常快速校正以和内燃机工况保持一致。
本发明涉及一种控制还原剂喷入来自内燃机的含NOx废气流中的方法,其中NOx在SCR催化剂存在时通过选择催化还原(SCR)得到还原。
该方法包括建立与废气流量、SCR催化剂上游废气流中的NOx浓度和SCR催化剂上游和下游的废气温度相关的信号的步骤。
该方法进一步包括计算SCR催化剂上游的废气流中NOx的摩尔流量、催化剂中的NOx转化、所需还原剂数量的步骤和对应于各信号调节所需还原剂数量的步骤。
该方法还进一步包括建立与NOx摩尔流量、NOx转化、所需还原剂数量相关的信号以及和还原剂的调节数量相关的信号。
所需还原剂数量是通过本发明的方法计算d(E*T)/dt的值并建立与d(E*T)/dt的值相关的信号来调节的,其中t是时间,E是废气流量,T是SCR催化剂上游的废气温度。该信号和对应于所需还原剂数量的信号用来计算还原剂调节数量。
与还原剂调节数量相关的信号用来计量喷射到废气中的还原剂调节数量。
本发明进一步涉及一种使用上述控制方法的废气系统,其中,该系统包括SCR催化剂、催化剂上游的喷嘴和传感设备,其中传感设备由测量催化剂上游NOx浓度的传感器测量燃烧空气质量流量、燃料质量流量和废气中O2浓度中两个参数的传感器,或者测量催化剂上游废气质量流量的传感器,和测量催化剂上游废气温度的另一个传感器及测量催化剂下游废气温度的传感器组成。
优点是通过使用仅五个仪器信号和一个描述废气流量和催化剂温度的乘积的变化率的参数,可获得非常快速且可靠的校正还原剂喷射的信号。这确保了最大的NOx转化,同时还避免了NH3从催化剂泄漏。
图1是向催化剂上游的废气流中喷射反应物溶液的内燃机废气系统的示意图。
图2是表示用于计算待喷射到废气流中的反应物数量的测量和原理的框图。
具体实施例方式
内燃机中燃料CHx的完全燃烧应该是(1)其中O2是燃烧空气中的氧气。
在柴油机驱动的车辆中,燃烧通常发生在一定量的过量空气情况下。这就导致了废气中氮氧化物NOx的形成,这对环境是严重污染。
NOx可以被氨NH3还原,然而氨难以存储在车辆中,因此,优选是采用氨或尿素H2NCONH2的水溶液作为还原剂。
当尿素喷射到热废气中根据如下反应分解时就形成了氨(2)废气和还原剂氨的混合物然后穿过催化剂,在这里,氮氧化物,一氧化氮NO和二氧化氮NO2与氨根据至少如下的反应式进行反应从而形成氮气和水
和还原过程是平衡反应(equilibrium reaction),且平衡取决于温度、催化剂体积、催化剂活性和存在成分的浓度。因此,不可能转化所有NOx,仅有理论上最大数量可以被转化。
正如反应式(3)和(4)显示的那样,重要的是将正确数量的氨或尿素溶液喷射到热废气中。为了获得尽可能高的转化必须有足够的氨。
另一方面,必须避免过量的氨,其会导致催化剂中氨的泄漏并进入大气。
反应过程中,特定数量的氨吸附在催化剂表面上。当反应条件,尤其是废气流量和温度由于发动机载荷/工况的改变而改变时,脱附或增大吸附将导致氨缺乏或过剩。这会导致NOx的不完全转化或NH3泄漏到大气中。因此,重要的是将正确数量的尿素/氨喷射到废气中,并在发动机工况的变化过程中能非常快速而精确地调节该数量。
本发明提供了一种用于将尿素溶液以精确数量喷射到废气中的方法和系统。该方法包括五个测量和四个步骤,以确定主参数并建立用于尿素溶液流控制阀、计量泵或其它控制设备的正确的、更新的信号。
第一步骤是废气中NOx流量的计算,第二步骤是NOx转化的计算,第三步骤是确定理论上所需的还原剂数量,第四步骤是通过使用根据事件的筛选程序确定还原剂实际需要数量。涉及的计算以5-30Hz的频率执行,如以33-200ms执行一个计算循环。
本发明的具体应用的实施例显示在图1中。燃烧发生在柴油引擎1中,燃料2和空气3燃烧形成废气流4,由于加入的过量空气的作用,该废气流中包括一定数量的NOx和O2。优选为尿素水溶液5的还原剂贮存在箱中并通过喷嘴6喷射到废气流中。热废气流中的尿素溶液立即根据反应式(2)分解成NH3和CO2,成为废气流7,该气流流经催化剂8,在这里发生选择性催化还原反应,使NOx通过NH3成为N2。
从空气压缩机9至尿素中的空气用于将尿素溶液通过喷嘴6推射出去,并获得溶液的良好雾化。
气流4中的O2含量由分析仪11测量,NOx含量由分析仪12测量,而催化剂的入口和出口温度分别由温度仪器14和15测量。
流向马达1的空气3的流量由流量仪器17测量,尿素溶液流由阀18调节。测量仪器的各信号由电控单元ECU19接收,其产生用于控制阀18的更新精确信号。
本发明的具体实施方案显示在图2中。步骤1是燃烧所产生的NOx数量的化学当量计算,并且以摩尔/小时计。该计算是基于以kg/h计的燃烧空气的测量结果、以体积比%计的废气中O2浓度的测量结果和以体积ppm计的NOx浓度进行的。
NOx流量计算可以使用不同方法实现。一种方法是如上那样基于使用进入发动机的空气质量流量、废气的氧含量和废气中的NOx,即NO和NO2浓度。这些可以由传感器或发动机图谱(maps)给出。化学当量计算是基于以CHx为通式的燃料和空气根据反应式1进行完全燃烧形成CO2和H2O的假设进行的。当燃料组成已知,废气的氧含量和通往发动机中的空气质量流量或燃料流之一已知时,废气流量可以计算出来。废气流量还可以以燃料和燃烧空气流量的测量值或催化剂两边的压力降的测量值为基础。此外,废气的质量流量可以由安装在高温气体内的传感器直接测量。或者,NOx浓度可以直接提供给发动机控制系统的步骤1。
步骤2基于和步骤1相同的三个测量值并加上催化剂废气入口和出口温度测量值,计算出可能的或所需的NOx的最大转化。得出作为催化剂数据和反应动态参数的设定点,任选地也得出所需的最大转化。
喷射策略的动态计算以管状反应器模型为基础,其除了化学反应计算外,还包括向外传质(薄膜传递)的计算和催化剂内部的气孔扩散计算。动态反应器模型计算出对于发动机工况的给定点可以获得的整个催化剂中最大可能的NOx转化。计算的输入参数是废气流量、NOx流量、O2浓度、温度和预先确定的NH3泄漏。废气流量和NOx流量用与步骤1相同的方法如在步骤1中确定废气流量那样确定。NH3泄漏和催化剂数据如催化剂体积、长度、空隙、水力直径、催化剂活性和上述反应用的动态参数一起设定。在动态部分中,允许的最大转化可以设定为喷射策略的一部分。
允许的最大转化可以用来调节发动机系统,此时需要不同的NOx还原,以达到法定目标。或者,通过在用于计算的数据设置中假设降低催化剂体积,可以用该系统实现降低的NOx还原效率。
步骤1和步骤2的结果用于步骤3中,以获得在特定时刻理论上需要喷射的尿素溶液的数量。
该理论数量在根据事件的筛选程序步骤4中以催化剂入口废气温度的测量值、空气流量测量值和O2测量值和如步骤2中废气流量的确定为基础做进一步调整,以避免氨或NOx在瞬间状态下的泄漏。
催化剂表面吸附的氨的数量尤其随着废气流量和温度的改变而改变。筛选程序考虑到催化剂的历史数据,以预测催化剂上NH3的吸附/脱附能力。如果催化剂的状态是可以发生氨的大量脱附,那么部分所计算的(步骤3)尿素喷射被保留并存储在喷射算法的存储器中。另一方面,如果各种状态是利于催化剂上NH3的吸附,那么实际的尿素喷射可以增加,直到用完存储在存储器中的尿素数量。这样可确保整个时间内质量平衡都是正确的。
筛选程序确定任何时间处废气流量和温度的乘积的改变d(E*T)/dt,其中E为废气流量;T为温度;t为时间。
如果d(E*T)/dt为正,流量和/或温度增加,利于氨从催化剂上脱附,然后,计算出的尿素的一部分被保留并存储起来以备后用。当为负时,即流量和/或温度减少,保留下来的尿素再次喷射,有利于氨吸附到催化剂上。
上述测量由市场上可以获得的传感器实现。
依据本发明的方法,所喷射的尿素溶液的数量可以即时调整,避免NH3从催化剂泄漏,同时,在马达的任何变化载何的情况下可获得NOx的最大转化。
可以对喷射策略进行调整,以便通过调节根据事件的筛选程序的参数来获得改善的瞬时操作。
原则上,对任何类型的发动机可以使用相同的喷射算法,对排放法规的遵守是通过催化剂体积的确定来控制的,这取决于特定发动机废气的质量流。
本发明特别适用于由柴油发动机驱动的汽车、客车、卡车、火车、轮船或发电机,其中废气系统装备有选择性催化还原系统。本发明确保即使在发动机载荷有大的和/或频繁改变时,有毒的NH3和NOx都能以非常低的程度排放到环境中。
权利要求
1.一种控制还原剂喷入来自内燃机的含NOx废气流中的方法,其中NOx在SCR催化剂存在时通过选择性催化还原SCR而还原,该方法包括以下步骤建立与废气流量有关的信号;建立与SCR催化剂上游的废气流中的NOx浓度有关的信号;建立与SCR催化剂上游的废气温度有关的信号;建立与SCR催化剂下游的废气温度有关的信号;计算SCR催化剂上游的废气流中的NOx摩尔流量,并建立与所述NOx摩尔流量有关的信号;计算催化剂中NOx转化率,并建立与所述NOx转化率有关的信号;计算所需还原剂数量,并建立与所需还原剂数量有关的信号;调节还原剂的所需数量;建立与还原剂的调节数量有关的信号;使用与还原剂的调节数量有关的信号来计量还原剂的调节数量;和喷射调节数量的还原剂到废气中;其中所需还原剂数量通过计算值d(E*T)/dt并建立与值d(E*T)/dt有关的信号来调节,其中t为时间,E为废气流量,T为SCR催化剂上游的废气温度;和利用对应还原剂和值d(E*T)/dt的所需数量的信号计算还原剂的调节数量。
2.如权利要求1的方法,其中建立与废气流量有关的信号,包括建立与燃烧空气的质量流量、燃料的质量流量的两个参数和废气流中O2浓度有关的信号;计算对应于这些信号的废气流量。
3.如权利要求1或2的方法,其中计算催化剂中的NOx转化包括计算对应于与废气流量、废气流中NOx浓度和催化剂上游和下游温度有关的信号,和与针对催化剂尺寸、催化剂床尺寸的输入数据以及针对催化剂和NOx转化反应的动态数据有关的信号的NOx转化。
4.一种控制还原剂喷入来自内燃机的含NOx废气流中的方法,其中NOx在存在SCR催化剂时通过选择性催化还原SCR来还原,该方法包括以下步骤(a)建立与燃烧空气的质量流量、燃料的质量流量和与废气流中的O2浓度中的两个参数有关的信号,建立与催化剂上游的废气流中的NOx浓度有关的信号,建立与SCR催化剂上游的废气温度有关的信号,和建立与SCR催化剂下游的废气温度有关的信号;(b)计算废气流中对应于燃烧空气质量流量、燃料质量流量和废气流中O2浓度中的两个参数的信号及废气流中NOx浓度的信号的NOx摩尔流量;(c)计算对应于废气流中NOx浓度、SCR催化剂上游和下游的废气温度的NOx在催化剂中的转化,并计算要燃烧的空气质量流量、燃料质量流量和废气流中O2浓度中的两个信号;(d)计算对应于废气流中NOx摩尔流量的信号和催化剂中NOx转化的信号所需的还原剂数量;(e)计算对应于所需还原剂数量、SCR催化剂上游的废气温度T的信号,和待燃烧空气的质量流量、燃料的质量流量和废气流中O2浓度中的两个参数的信号的还原剂的调节数量,该计算包括计算值d(E*T)/dt,其中t为时间,E为废气流量,T为SCR催化剂上游废气温度;和(f)喷射调节数量的还原剂到废气流中。
5.如权利要求1或4的方法,其中还原剂为氨、氨的水溶液或尿素的水溶液。
6.如权利要求1或4的方法,其中发动机为柴油发动机。
7.一种用于前述任一权利要求所述控制还原剂喷入来自内燃机的含NOx废气流中的方法的废气系统,其中装备有选择性催化还原SCR系统,包括SCR催化剂;催化剂上游的喷嘴;电控单元;和测量催化剂上游NOx浓度的传感器;测量待燃烧空气的质量流量、燃料的质量流量和O2浓度中的两个参数的传感器或一个测量催化剂上游的废气质量流量的传感器;一个测量催化剂上游的废气温度的传感器;和一个测量催化剂下游的废气温度的传感器;其中电控单元通过包括计算值d(E*T)/dt的程序,计算出要喷射的还原剂数量,其中t为时间,E为废气流量,T为SCR催化剂上游的废气温度。
全文摘要
本发明涉及一种控制还原剂喷入来自内燃机的含NO
文档编号F01N3/10GK1800598SQ200510136379
公开日2006年7月12日 申请日期2005年12月16日 优先权日2004年12月18日
发明者P·加布里尔松, I·格卡斯, M·托尔豪格 申请人:赫多特普索化工设备公司