专利名称:涡旋式机械的制作方法
技术领域:
本发明涉及涡旋式机械装置。更具体地说,本发明涉及涡旋式压缩机的容量调制。
背景技术:
涡旋式机械供作制冷系统及空调和热泵应用中的压缩机用,正变得越来越流行。涡旋式机械装置的流行,主要是由于它们极有效运转的能力。一般,这些机械包括一对相互啮合的螺旋型线(spiral wrap),使这对螺旋型线的其中之一相对于另一个作圆周轨道运动,以便限定一个或多个运动室,随着这些运动室从外部的吸气孔口朝中央的排气孔口移动,它们的尺寸逐渐缩小。通常是设置一台电动机,该电动机运转以便通过一合适的驱动轴来驱旋转涡旋件(scroll member)。在正常运转期间,这些涡旋式机械设计成具有固定的压缩比。
空调和制冷系统碰到很宽范围的负荷要求。对系统的设计人员来说,采用固定压缩比的压缩机来满足这种宽范围的负荷要求,可能存在各种各样的问题。使固定压缩比的压缩机适合宽范围负荷要求的一种方法,是将一容量调制系统加到压缩机中。现已证明,为了更好地适应系统可以承受的宽范围负荷,容量调制是加到空调和制冷系统中的理想部件。已经利用许多不同的方法来提供这种容量调制部件。这些现有技术系统的范围从控制吸气入口到使压缩的排气旁路直接回到压缩机的吸气区域中。在涡旋式压缩机情况下,容量调制常常是通过延迟吸气的方法来完成,该方法包括沿着压缩室的路线在不同位置处设置一些孔口,当这些孔口打开时,就能使相互啮合的涡旋型线之间形成的压缩室与吸气气源连通,因此延迟了开始压缩吸入气体的地点。这种容量调制的延迟吸气法实际上减小了压缩机的压缩比。尽管这类系统在减小压缩机的容量时是有效的,但它们只能提供一种预定的或分阶段的压缩机卸负荷量。卸负荷的量或阶段的尺寸依赖于卸负荷孔口沿着型线或压缩过程的定位。尽管通过在沿着压缩过程的不同位置处加入多个卸负荷孔口,能够提供多个分阶段的卸负荷,但随着孔口数量增加,这种方法变得费用越来越高,并且它要求有额外的空间,来适应对打开和关闭每组孔口上的每个孔口的单独控制。
发明内容
然而,本发明能利用一种无限可变的容量调制系统来克服这些缺点,该容量调制系统具有只用单组控制来将容量从100%的全容量调制降到实际上为零容量的能力。此外,本发明的系统能使压缩机和/或制冷系统的工作效率达到最大,用于任何所希望的压缩机卸负荷程度。
在本发明中,压缩机的卸负荷是通过在压缩机的运行周期中使两个涡旋件周期地进行轴向分离来完成的。更具体地说,本发明提供一种装置,其中利用一电磁阀使一个涡旋件相对于另一个涡旋件在轴向上运动,该电磁阀以脉冲宽度调制方式操纵。用于电磁阀的脉冲宽度调制操纵方式提供一个泄漏路线。该泄漏路线跨过涡旋型线的顶端从较高的压缩腔到达较低的压缩腔,并最终返回吸气,该较高的压缩腔由相互啮合的涡旋型线限定。通过控制脉冲宽度调制频率并因此控制涡旋型线顶端的密封和非密封之间的相对时间,可以用单个控制系统达到压缩机无限度的卸负荷。此外,通过检测制冷系统内部的各种状态,可以这样对规定的容量选定每个周期的压缩机加负荷和卸负荷持续时间,以使整个系统效率达到最大值。
本发明的技术方案如下根据本发明,提供一种涡旋式机械,其包括第一涡旋件,它具有第一端板和自所述第一端板延伸的第一涡旋型线;第二涡旋件,它具有第二端板和自所述第二端板延伸的第二涡旋型线,上述第一和第二涡旋件与相互交插的第一和第二涡旋型线一起定位;驱动件,它用于使上述涡旋件彼此相对地作圆周轨道运动,因而上述螺旋型线将在吸气压力区和排气压力区之间形成一些逐渐改变体积的腔;一种用于使上述第一和第二涡旋件在第一和第二关系之间运动的机构,在第一关系处,第一和第二涡旋件的密封表面处于密封关系,以便封闭上述各腔,而在第二关系处,第一和第二涡旋件的密封表面中的至少一个被隔开,以便限定所述腔之间的泄漏路线;和流体注入系统,它与上述涡旋件其中之一有关,用于将流体注入上述腔中的至少一个中。
优选的方案如下优选地,上述机构以脉冲宽度调制方式操纵。
优选地,上述注入所述腔中的所述至少一个中的流体是蒸气。
优选地,上述机构包括一个电磁阀。
优选地,上述电磁阀以脉冲宽度调制方式操纵。
优选地,上述机构包括一个流体操纵的活塞,该活塞固定到第一涡旋件上,上述活塞可以启动,以便将力施加到第一涡旋件上,使该第一涡旋件在上述第一和第二关系之间运动。
优选地,当第一涡旋件处于第二关系时,上述驱动件持续运行。
优选地,上述流体操纵的活塞以时间脉冲方式操纵,以便调制涡旋式机械的容量。
优选地,上述流体注入系统包括一个电磁阀,该电磁阀用于控制流体流到上述涡旋件中的所述一个的流量。
优选地,上述电磁阀以脉冲宽度调制方式操纵。
优选地,上述注入其中一个腔中的流体是蒸气。
优选地,上述注入所述腔中所述至少一个中的流体是蒸气。
优选地,上述流体注入系统包括电磁阀,该电磁阀用于控制流体流到上述涡旋件中的所述一个的流量。
优选地,上述电磁阀以脉冲宽度调制方式操纵。
优选地,上述注入所述腔中的一个中的流体是蒸气。
下面详述的本发明各种不同实施例,提供各种各样的装置,利用这些装置,一个涡旋件可以相对于另一个涡旋件在轴向上作往复运动,以便适应全范围的压缩机卸负荷。用单个控制系统提供全范围容量调制的能力,及选择加负荷和卸负荷运行持续时间的能力二者结合,以便以较低成本提供一种极有效的系统。
从后面的详细说明,所附权利要求和附图,对该领域的技术人员来说,本发明的其它优点和目的将变得很明显。
在附图中,图示出目前打算用于实施本发明的最佳方式,其中图1是在全容量下运行的本发明涡旋式制冷压缩机剖视图;图2是在减少容量下运行的图1所示涡旋式制冷压缩机剖视图;图3是在图2所示箭头3-3方向上所取的环形和偏置装置详图;图4是在全容量下运行的本发明另一实施例涡旋式制冷压缩机剖视图;图5是本发明另一实施例的涡旋式制冷压缩机剖视图;图6是图5所示压缩机的顶部剖视图;图7是图5所示活塞组件放大的剖视图;图8是图7所示排气接管的顶视图;图9是图5所示偏置弹簧的正视图;图10是图5所示非旋转涡旋件(non-orbiting scroll member)的侧视图;图11是图10所示非旋转涡旋件的横断面顶视图;图12是图5所示注射接管放大的剖视图;图13是图12所示接管的端视图;图14是利用本发明容量控制系统的制冷系统原理图;和图15是本发明另一实施例的制冷系统原理图;和图16是曲线图,它示出利用本发明容量控制系统的压缩机容量。
具体实施例方式
现在参看附图,在各附图中,同样的标号表示全部若干视图中同样或对应的部件,图1示出一种涡旋式压缩机,该涡旋式压缩机包括按照本发明的独特容量控制系统,并且它一般用标号10表示。涡旋式压缩机10一般是受让人的美国专利No.5,102,316中所述的类型,其公开内容在此处合在一起供参考。涡旋式压缩机10包括外部机壳12,在机壳12内部设置一台驱动电机,该驱动电机包括定子14和转子16;曲轴18,转子16固定到该曲轴18上;上轴承箱20和下轴承箱(未示出),它们用于支承曲轴18和压缩机组件24。
压缩机组件包括一个旋转涡旋件(orbiting scroll member)26,该旋转涡旋件26支承在上轴承箱20上,并通过曲柄销28和驱动衬套30驱动式连接到曲轴18上。将一非旋转涡旋件32设置成与旋转涡旋件26啮合,并利用多个螺栓34和相关的套筒件36将其轴向运动式固定到上轴承箱20上。设置一个欧氏(Oldham)联轴节38,它与涡旋件26和32协同操作,以防止它们之间相对旋转。靠近机壳12的上端设置一个隔板40,并用该隔板40将机壳12内部分成排气室42和吸气室44,排气室42位于其上端处,而吸气室44位于其下端处。
在运行时,随着旋转涡旋件26相对于非旋转涡旋件32作圆周旋转运动,将吸入气体通过吸气接管46吸入机壳12的吸气室44中。从吸气室44,通过入口48将吸入气体吸进压缩机24中,该入口48设置在非旋转涡旋件32中。设置在涡旋件26和32上的相互啮合的涡旋型线限定气体的运动腔,由于涡旋件26作圆周轨道运动的结果,随着气体运动腔径向上向里运动,它们尺寸逐渐缩小,因此压缩由入口48进入的吸入气体。然后穿过毂体50和通道52将压缩的气体排入排气室42中,该毂体50设置在涡旋件36中,而通道52在隔板40中形成。敏感排气阀54最好是密封式设置在毂体50的内部。
非旋转涡旋件32还有一环形槽56,该环形槽56在非旋转涡旋件32的上表面中形成。一浮动密封件58设置在槽56内部,并被中等高压的气体从排气室42偏置贴着隔板40,以便密封吸气室44。通道60贯穿非旋转涡旋件32,以便将中等高压的气体供给到槽56中。
容量控制系统66示出与压缩机10相结合。控制系统66包括排气接管68、活塞70、壳体上的安装件72、三通电磁阀74、控制模件76和传感器阵列78,该传感器阵列具有一个或多个合适的传感器。排气接管68用螺纹拧入或用别的方法固定在毂体50内部。排气接管68限定一个内腔80和多个排气通道82。排气阀54设置在腔体80内部。因此,高压气体克服了排气阀54的偏置负荷以便打开排气阀54,并让高压气体流入腔体80,穿过通道82并流入排气室42。
现在参看图1和3,首先通过使排气接管68上的多个突出部(tab)84与活塞中形成的多个匹配槽86对准,将排气接管68装配到活塞70上。然后排气接管68旋转到图3所示的位置,以便使突出部84与槽86不再对准。定位销88保持突出部84和槽86不再对准,而盘簧90将两个元件偏置在一起。
壳体上的安装件72密封式固定到机壳12上,并滑动式容纳活塞70。活塞70和壳体上的安装件72限定一压力室92。压力室92通过管道94流动式连接到电磁阀74上。电磁阀74通过管道96与排气室42成流体连通形式,并通过管道98与吸入接管46并因此与吸气室44成流体连通形式。密封件100位于活塞70和壳体上的安装件72之间。活塞70、密封件100和壳体上的安装件72相结合,提供一种自动定心密封系统,以便提供活塞70和壳体上的安装件72之间的精确对准。
为了将非旋转涡旋件32偏置成与旋转涡旋件26密封接触,用于如图1所示的满负荷运行,利用控制模件76使电磁阀74停止启动(或使其启动)到图1所示的位置。在此位置,排气室42通过管道96、电磁阀74和管道94与室92直接连通。在室42和92排气压力下的高压流体将作用在活塞70相对的两侧上,因此能用于使非旋转涡旋件32正常的向旋转涡旋件26方向偏移,如图1所示,以便使每个涡旋件的轴向端部与对置涡旋件的对应端板密封式接触。两个涡旋件26和32的轴向密封使压缩机24能在100%容量下运行。
为了给压缩机24卸负荷,将通过控制模件76使电磁阀74启动(或使其停止启动)到图2所示的位置。在此位置,吸气室44通过吸气接管46,管道98,电磁阀74和管道94与室92直接连通。在处于排气压力下的高压流体卸压以便从室92释放到吸气口的情况下,活塞70相对两侧上的压力差将使非旋转涡旋件32如图2所示向上运动,以便使每个涡旋件顶端的轴向端部与其对应的端板分开而形成间隙102,该间隙102能使较高的高压腔放气到较低的高压腔,并且实际上是放气到吸气室44。在这种情况下,驱动电机持续运行。一个波形弹簧104保持在调制非旋转涡旋件32期间浮动密封件58和隔板40之间的密封关系,该波动弹簧104在图9中示出。间隙102的形成将显著地消除了吸入气体的连续压缩。当这种卸负荷发生时,排气阀54将运动到它的闭合位置,因而防止高压流体从排气室42或下游制冷系统回流。当吸入气体的压缩作用重新开始时,将使电磁阀74停止启动(或使其启动)到图1所示的位置,在此位置,再次形成室92和排气室42之间的流体连通。这再次使处于排气压力下的流体能反抗活塞70,以便在轴向上接触涡旋件26和32。轴向密封接触重新形成压缩机24的压缩作用。
控制模件76与传感器阵列连通,以便提供控制模件76所需要的信息,来确定制冷系统特定条件所需要的卸负荷程度,该制冷系统包括那时已有的涡旋式压缩机10。根据此信息,控制模件76将以脉冲宽度调制方式操纵电磁阀74,以便可供选择地将室92安放成与排气室42和吸气室44连通。因此,被流体操纵的活塞以时间脉冲方式操纵,以便调制涡旋式压缩机的容量。以脉冲宽度调制方式操纵电磁阀74所用的频率将决定压缩机24运行的容量百分率。当检测条件改变时,控制模件76将改变电磁阀74的工作频率,并因此改变压缩机24在加负荷和卸负荷状态下运行时的相对时间周期。电磁阀74工作频率的改变能使压缩机在满负荷或100%容量及完全卸负荷或0%容量之间运行,或者是在根据系统需要之间无限量位置其中任一位置处运行。
现在参看图4,图4示出一种按照本发明另一实施例的独特容量控制系统,该容量控制系统一般用标号166表示。图4还示出容量控制系统与压缩机10相关联。容量控制系统166与容量控制系统66相同,但它用两通电磁阀174代替三通电磁阀74。控制系统166包括排气接管68、活塞170、壳体上的安装件72、电磁阀174、控制模件76和传感器阵列78。
活塞170除了限定一个通路106和管孔108之外,其余与活塞70相同,上述通路106和管孔108在压力室92和排气室42之间延伸。通路106和管孔108结合,能用两通电磁阀174代替三通电磁阀74,并省去管道96。由于省去了管道96,所以也省去接管和穿过机壳12的孔。密封件100位于活塞170和密封接管72之间,以便提供用于活塞170和接管72的自动对准式密封系统。
电磁阀174以与电磁阀74相同的方式操纵。压力室92通过管道94流动式连接到电磁阀174上。电磁阀174还通过管道98与吸气接管46并因此与吸气室44成流体连通。
为了将非旋转涡旋件32偏置成与旋转涡旋件26密封接触,用于正常的满负荷运行,利用控制模件76使电磁阀174停止启动(或使其启动),以便阻断流体在管道94和管道98之间流动。在此位置,室92通过通路106和管孔108与排气室42连通。在室42和92内的排气压力下,高压流体将作用在活塞170相对的两侧上,因此能使非旋转涡旋件32朝旋转涡旋件26方向正常偏置,以便使每个涡旋件的轴向端部与对置的涡旋件对应端板密封式接触。两个涡旋件26和32的轴向密封使压缩机24能在100%容量下运行。
为了给压缩机24卸负荷,将利用控制模件76使电磁阀174启动(或使其停止启动)到图4所示的位置。在此位置,吸气室44通过吸气接管46、管道98、电磁阀174和管道94与室92直接连通。在高压流体卸压以便从室92吸气的排气压力情况下,活塞170相对两侧上的压力差将使非旋转涡旋件32向上运动,以便使每个涡旋件顶端的轴向端部与其对应的端板分开,并且较高的高压腔将放气到较低的高压腔,并实际上放气到吸气室44中。加入管孔108,以便控制排出气体在排气室42和室92之间的流动。因此,当室92连接到压缩机的吸气侧时,在活塞170相对两侧上将形成压力差。在本实施例中还加入波形弹簧104,以便在调制非旋转涡旋件32期间,保持浮动密封件58和隔板40之间的密封关系。当形成间隙102时,将消除连续压缩吸入的气体。当这种卸负荷发生时,排气阀54将运动到它的闭合位置,因而防止高压流体从排气室42回流到下游的制冷系统上。当重新开始压缩吸入气体时,将使电磁阀174停止启动(或使其启动),以便再次阻止流体在管道94和98之间流动,同时通过通路106和管孔108使室92被排气室42加压。与图1-3所示的实施例相同,控制模件76与传感器阵列78连通,以便提供控制模件76所需要的信息,来确定所要求的卸负荷程度,并因此确定以脉冲宽度调制方式操纵电磁阀174所用的频率。
现在参看图5,图5示出一种涡旋式压缩机,该涡旋式压缩机包括按照本发明另一实施例的独特容量控制系统,并且这一般用标号210表示。
涡旋式压缩机210包括机壳212,其内部设置一台驱动电机,该驱动电机包括定子214和转子216;曲轴218,转子216固定到该曲轴218上;上轴承箱220和下轴承箱222,它们用于旋转式支承曲轴218和压缩机组件224。
压缩机224包括一个旋转涡旋件226,该旋转涡旋件226支承在上轴承箱220上,并通过曲柄销228和驱动衬套230驱动式连接到曲轴218上。将非旋转涡旋件232定位成与旋转涡旋件226啮合,并利用多个螺栓(未示出)和相关联的套筒件(未示出)轴向滑动式固定到上轴承箱220上。设置一个欧氏联轴节238,该联轴节238与涡旋件226和232协同操作,以防止它们之间的相对旋转。在机壳212的上端附近设置一块隔板240,并用该隔板240将机壳212内部分成排气室242和吸气室244,该排气室242位于机壳212上端处,而吸气室244位于机壳212的下端处。
在运行时,随着旋转涡旋件226相对于非旋转涡旋件232作圆周轨道运动,吸入气体通过吸气接管246引入机壳212的吸气室244中。从吸气室244中,通过入口248将吸入气体吸入到压缩机224内,入口248设置在非旋转涡旋件232中。设置在涡旋件226和232上的相互啮合的涡旋型线限定气体的运动腔,随着它们径向向里运动,由于涡旋件226作圆周轨道运动,气体运动腔的尺寸逐渐缩小,因此压缩通过入口248进入的吸入气体。然后通过排气孔口250和通道252将压缩后的气体排出到排气室242中,该排气孔口250设置在涡旋件226中,而通道252在隔板240中形成。压敏排气阀254最好是密封式设置在排气孔口250内部。
非旋转涡旋件232还有一环形槽256,该环形槽在非旋转涡旋件232的上表面中形成。一浮动密封件258设置在槽256的内部,并被中等的高压气体偏置压着隔板240,以便密封吸气室244。通道260贯穿非旋转涡旋件232,以便将中等的高压气体供给到槽256中。
图示出容量控制系统266与压缩机210相关联。控制系统266包括排气接管268、活塞270、壳体上的安装件272、电磁阀174、控制模件76和传感器阵列78,该传感器阵列78具有一个或多个合适的传感器。排气接管268用螺纹拧入或是用其它方法固定到排气孔口250的内部。排气接管268限定一个内腔280和多个排气通道282。排气阀254设置在接管268下面和内腔280下面。因此,高压气体克服了排气阀254的偏置负荷,以便打开排气阀254并让高压气体流入内腔280,穿过通道282并流入排气室242。
现在参看图5、7和8,它们更详细地示出排气接管268和活塞270的组件。排气接管268限定一个环形凸缘284。压着凸缘284密封的是唇形密封件286和浮动止动器288。将活塞270压配合或是用其它方法固定到排气接管268上,并且活塞270限定一个环形凸缘290,该环形凸缘290将密封件286和止动器288夹在凸缘290和凸缘284之间。排气接管268限定通路106和管孔108,它们贯穿排气接管268,以便使排气室242与压力室292流动式连接,该压力室由排气接管268、活塞270、密封件286、止动器288和机壳212限定。壳体上的安装件272固定一个孔的内部,该孔由机壳212限定并滑动式容纳排气接管268、活塞270、密封件286和止动器288的组件。压力室292通过管道94流动式连接到电磁阀174上,并且以上述用于控制系统166相同的方式,通过管道98与吸气接管246及因此与吸气室244连接。活塞270、密封件286和浮动止动器288的组合,提供一种自动定心的密封系统,以便提供与壳体上的安装件272的内孔精确对准。密封件286和浮动止动器包括足够的径向柔量(radial compliance),以便接管272的内孔和排气孔口250内孔之间的任何对不准情况都被密封件286和浮动止动器288适应,排气接管268固定在上述排气孔口250的内部。
为了将非旋转涡旋件232偏置成与旋转涡旋件226密封接触用于正常的满负荷运行,利用控制模件76使电磁阀174停止启动(或使其启动),以便阻止流体在管道94和管道98之间流动。在此位置,室292通过通路106和管口108与排气室242连通。在室242和292内处于排气压力下的高压流体将压着活塞270相对的两侧起作用,因此能用于使非旋转涡旋件232正常偏向旋转涡旋件226,以便使每个涡旋件的轴向端部与对置的涡旋件端板密封式接触。两个涡旋件226和232的轴向密封使压缩机224能在100%的容量下运行。
为了使压缩机224卸负载,将利用控制模件76使电磁阀174启动(或使其停止启动)到图4所示的位置。在此位置,吸气室244通过吸气接管246、管道98、电磁阀174和管道94与室292直接连通。在高压流体卸压以便从室292吸气的排气压力情况下,活塞270相对两侧上的压力差将使非旋转涡旋件232朝上运动,以便使每个涡旋件顶端的轴向端部与其对应的端板分开,并且较高的高压腔将放气到较低的高压腔,而实际上是放气到吸气室244。加入管孔108,以便排出气体在排气室242和室292之间的流动。因此,当室292连接到压缩机的吸气侧时,在活塞270相对的两侧上将形成压力差。在该实施例中还加入波形弹簧104,以便在调制非旋转涡旋件232期间,保持浮动密封件258和隔板240之间的密封关系。当形成间隙102时,将省去连续压缩吸入的气体。当这种卸负荷发生时,排气阀254将运动到它的闭合位置,因此防止高压流体从排气室242回流到下游的制冷系统上。当重新开始压缩吸入的气体时,电磁阀174将停止启动(或使其启动)到再次阻止流体在管道94和98之间流动,同时让室292通过通路106和管孔108被排气室242加压。与图1-3所示的实施例相同,控制模件76与传感器阵列78连通,以便提供控制模件76所需要的信息,来确定所需要的卸负荷程度,并因此确定以脉冲宽度调制方式操纵电磁阀174所用的频率。
现在参看图6、10和11,它们更详细地示出用于压缩机210的流体注入系统。压缩机210包括具有在吸气室244和排气室242中间某一点处将流体注入中高高压运动室的能力。流体注射接管310贯穿机壳212并流动式连接到注射管312上,该注射管312再流动式连接到注射接管314上,而注射接管314固定到非旋转涡旋件232上。非旋转涡旋件232限定一对径向通道316,其中每个径向通道316,都在注射接管314和一对轴向通道318之间延伸。轴向通道318通向压缩机非旋转涡旋件232相对侧边上的运动室,以便象该技术中众所周知的那样,按照控制系统的要求,将流体注入这些运动室中。
现在参看图12和13,它们更详细地示出接管310。接管310包括里面部分320和外面部分322。里面部分320包括一L形通道324,该L形通道324在其末端处密封式容纳注射管312。外面部分322从机壳212的外部延伸到机壳212的内部,此处它是单独的或是与里面部分320成为整体。焊接或钎焊连接将接管310固定并密封到机壳212上。外面部分322限定一个孔330,该孔330是L形通道324的延伸部分。外面部分322还限定一个圆筒形孔332,制冷系统的管道固定到该圆筒形孔332上。
图14示出一种蒸气注入系统,该系统提供压缩机210的流体注入系统用的流体。压缩机210在制冷系统中示出,该制冷系统包括冷凝器350、第一膨胀阀或节流阀352、闪蒸罐(flash tank)或节热器(economizer)354、第二膨胀阀或节流阀356、蒸发器358和一系列将各元件相互连接的管道360,如图14所示。压缩机210用电动机操纵,以便压缩制冷剂气体。然后用冷凝器350使压缩的气体液化。液化的制冷剂通过膨胀阀352并在闪蒸罐354中膨胀,在此处它分成气体和液体。气态的致冷剂进一步通过管道362,再通过接管310引入压缩机210中。另一方面,剩余的液体制冷剂在膨胀阀356中进一步膨胀,然后在蒸发器358中蒸发并再引入压缩机210中。
闪蒸罐354与蒸气注入系统的其余部分相结合,能使压缩机的容量增加到超过压缩机210的固定容量。典型的是,在标准空调状态下,压缩机的容量能增加约20%,以便提供具有其容量120%的压缩机,如图16中的曲线图所示。为了能控制压缩机210的容量,将电磁阀364设置在管道362的内部。压缩机210容量的百分率增加量可以通过以脉冲宽度调制方式操纵电磁阀364进行控制。电磁阀364当与压缩机210的容量控制系统266相结合,以脉冲宽度调制方式操纵时,能将压缩机210的容量设置在沿着图16所示线路的任何地方。
图15示出按照本发明另一实施例的制冷系统原理图。除了闪蒸罐354已被热交换器354’代替之外,图15所示的制冷系统与图14所示的制冷系统相同。压缩机210用电动机操纵,以便压缩制冷剂气体。然后用冷凝器350将压缩后的气体液化。然后将液化的制冷剂送到热交换器354’的液体侧,而其中第二部分液化的制冷剂通过膨胀阀352,然后以汽态和液态送到热交换器354’的蒸气侧。通过膨胀阀352的这部分制冷剂被直接通过热交换器的这部分制冷剂加热,以便提供注入压缩机210的蒸气。然后这种汽态制冷剂通过管道362,以便由接管310引入压缩机210中。另一方面,直接通过热交换器354’的液体制冷剂在膨胀阀356中膨胀,然后在蒸发器358中蒸发,以便再引入压缩机210的吸气侧中。与图14所示的系统相同,电磁阀364设置在管道362的内部,以便当和容量控制系统结合使用时,能将压缩机210的容量设置在沿着图16所示路线的任何地方。
尽管上述详细说明描述了本发明的优选实施例,但应该理解,不脱离所附权利要求的范围和全部意思,本发明可以进行修改,变动和变换。
权利要求
1.一种涡旋式机械,其包括第一涡旋件,它具有第一端板和自所述第一端板延伸的第一涡旋型线;第二涡旋件,它具有第二端板和自所述第二端板延伸的第二涡旋型线,上述第一和第二涡旋件与相互交插的第一和第二涡旋型线一起定位;驱动件,它用于使上述涡旋件彼此相对地作圆周轨道运动,因而上述螺旋型线将在吸气压力区和排气压力区之间形成一些逐渐改变体积的腔;一种用于使上述第一和第二涡旋件在第一和第二关系之间运动的机构,在第一关系处,第一和第二涡旋件的密封表面处于密封关系,以便封闭上述各腔,而在第二关系处,第一和第二涡旋件的密封表面中的至少一个被隔开,以便限定所述腔之间的泄漏路线;和流体注入系统,它与上述涡旋件其中之一有关,用于将流体注入上述腔中的至少一个中。
2.按照权利要求1所述的涡旋式机械,其特征在于上述机构以脉冲宽度调制方式操纵。
3.按照权利要求2所述的涡旋式机械,其特征在于上述注入所述腔中的所述至少一个中的流体是蒸气。
4.按照权利要求1所述的涡旋式机械,其特征在于上述机构包括一个电磁阀。
5.按照权利要求4所述的涡旋式机械,其特征在于上述电磁阀以脉冲宽度调制方式操纵。
6.按照权利要求1所述的涡旋式机械,其特征在于上述机构包括一个流体操纵的活塞,该活塞固定到第一涡旋件上,上述活塞可以启动,以便将力施加到第一涡旋件上,使该第一涡旋件在上述第一和第二关系之间运动。
7.按照权利要求6所述的涡旋式机械,其特征在于当第一涡旋件处于第二关系时,上述驱动件持续运行。
8.按照权利要求6所述的涡旋式机械,其特征在于上述流体操纵的活塞以时间脉冲方式操纵,以便调制涡旋式机械的容量。
9.按照权利要求8所述的涡旋式机械,其特征在于上述流体注入系统包括一个电磁阀,该电磁阀用于控制流体流到上述涡旋件中的所述一个的流量。
10.按照权利要求9所述的涡旋式机械,其特征在于上述电磁阀以脉冲宽度调制方式操纵。
11.按照权利要求10所述的涡旋式机械,其特征在于上述注入其中一个腔中的流体是蒸气。
12.按照权利要求6所述的涡旋式机械,其特征在于上述注入所述腔中所述至少一个中的流体是蒸气。
13.按照权利要求1所述的涡旋式机械,其特征在于上述流体注入系统包括电磁阀,该电磁阀用于控制流体流到上述涡旋件中的所述一个的流量。
14.按照权利要求13所述的涡旋式机械,其特征在于上述电磁阀以脉冲宽度调制方式操纵。
15.按照权利要求14所述的涡旋式机械,其特征在于上述注入所述腔中的一个中的流体是蒸气。
全文摘要
涡旋式压缩机,它包括一个容量调制系统。容量调制系统有一活塞,该活塞与非旋转涡旋件连接,当压力室配置成与压缩机的吸气室连通时,该非旋转涡旋件与旋转涡旋件脱离接触。当压力室配置成与排气室连通时,非旋转涡旋件运动到与旋转涡旋件接触。当压力室配置成与来自吸气室的流体连通时,两个涡旋件之间的接触被断开。电磁阀控制压力室和吸气室之间的连通。通过以调制脉冲宽度的方式操纵阀,压缩机的容量能在0和100%之间无限地改变。
文档编号F01C1/04GK1995756SQ200710002368
公开日2007年7月11日 申请日期2000年9月21日 优先权日1999年9月21日
发明者罗伊·J·德普克, 马克·巴斯, 詹姆斯·F·福格特, 杰弗里·A·赫德尔斯顿 申请人:科普兰公司