陶瓷结构体及其制造方法

文档序号:5175620阅读:153来源:国知局

专利名称::陶瓷结构体及其制造方法
技术领域
:本发明是关于通过担载催化剂能成为用来净化由汽车发动机等排出的废气中所含的一氧化碳(CO)等被净化成分的陶瓷催化剂体的陶瓷结构体,及其制造方法。
背景技术
:为了净化各种发动机等排出的废气,例如一直利用在具有蜂窝状结构的陶化剂体)。图4~图6是表示这种陶资催化剂体的一个例子的图。具有^^奪窝结构的陶瓷催化剂体如图6所示,具有在形成小室3的隔壁4表面上担载催化剂层15的结构。如图4、5所示,通过使废气从陶瓷催化剂体60(陶瓷结构体11)的一个端面2a侧流入小室3内,使其与隔壁4表面的催化剂层(未图示)接触,从另一端面2b侧流出至外部,可使废气得到净化(例如参照专利文献1)。使用陶瓷催化剂体净化废气时,为了提高净化效率,最好减小小室的水力直径,增大隔壁的表面积,尽可能促进废气中所含被净化成分从废气向隔壁表面的催化剂层传递。这样,为了实现这一目的,可采用增加每单位面积的小室数(小室密度)的方法。被净化成分从废气向隔壁表面的催化剂层的传递率,可知与小室的水力直径平方成反比例地增加,越使小室密度增加,越能提高被净化成分的传递率。然而,与小室的水力直径平方成反比例,压力损失也趋于增力口,所以产生的问题是伴随着被净化成分传递率的提高,压力损失也在增力口。另外,对于防止压力损失增加的策略,作为在先文献,例如有专利文献2和专利文献3。另外,当催化剂层内被净化成分扩散的速度不充分时,可知陶瓷催化剂体的净化效率趋于降低。由此,为了提高废气的净化效率,优选不仅增加催化剂层的表面积,通常还减小身为数十Mm左右的隔壁表面催化剂层厚度,以提高被净化成分在催化剂层内的扩散速度。然而,当如此作时,虽然很容易地增加了小室密度和催化剂层的表面积,提高了被净化成分的传递率,但是,压力损失增加的问题仍没有解决。进而,通过增大陶瓷催化剂体的流入径,降低废气的流通速度,既能维持或提高废气的净化效率,又能减小压力损失。然而,将陶瓷催化剂体大型化时,因为搭载空间受到限制,所以难以向汽车搭载仍是个问题。专利文献日本特开2003-33664号公才良专利文献日本特开2002-219319号公报专利文献日本特开2002-301323号公报
发明内容本发明就是鉴于上述现有技术中存在的问题而进行的,作为其课题就是提供一种能实现净化效率优良、压力损失又小、即使在有限的空间内也能搭载陶瓷催化剂体的最佳陶瓷结构体,及其制造方法。经过深入研究的结果,想到通过将催化剂层担载在陶瓷结构体的气孔的内表面上,就能得到净化效率优良、即使在有限的空间内也能搭载的陶瓷催化剂体。并且,发现为了满足压力损失小的要求,并得到用于实现较高净化效率所必要的表面积,最重要的就是增大作为催化剂担载对象的陶瓷结构体的气孔径,以达到废气能通过隔壁的程度,并减小气孔径的偏差,从而完成本发明。具体讲,4艮据本发明可提供以下解决课题的方法。首先,根据本发明提供一种控制气孔分布的、以堇青石为主晶相的材料所形成的陶瓷结构体,该陶瓷结构体的气孔分布是气孔径小于20,的气孔容积占总气孔容积的15%以下,气孔径20~1OOpm的气孔容积占总气孔容积的70%以上。本发明的陶瓷结构体,虽然是以堇青石为主晶相,但也可以含有莫来石、锆石、钛酸铝、粘土结合碳化硅、氧化锆、尖晶石、印度石、假蓝宝石、刚玉、二氧化钛等其他结晶相。并且,这些结晶相,可只含有1种或同时含有2种以上。本发明的陶瓷结构体中,气孔分布优选气孔径超过100|im的气孔容积占总气孔容积的25%以下。其中,气孔径小于20pm的气孔容积和气孔径20~100pm的气孔容积和气孔径超过lOOjxm的气孔容积的总和等于总气孔容积。本发明的陶瓷结构体中,气孔率优选为50~70%,本iJt明书中所i兌的气孔率是〗吏用水4艮压入式孔率计测定的。本发明的陶瓷结构体中,40800。C下的热膨胀系数优选为1.0xl(rV。C以下。本发明的陶乾结构体优选具有由隔壁形成连通二个端面间的多个小室的蜂窝状结构,即,最好是蜂窝状结构体。以下,根据本发明,提供一种陶瓷结构体的制造方法,其为使用以堇青石化原料为主原料的陶瓷原料制造陶瓷结构体的方法,堇青石化原料含有5~35质量%的平均粒径在13pm以上的氧化铝。本说明书中所说的平均粒径是用激光式粒度分布测定机测定的。氧化铝的平均粒径优选为13~30(im,更优选为15-20,作为主原料的堇青石化原料,是按照堇青石结晶的理论组成(作为化学组成,是氧化硅(Si02)42-56质量份、氧化铝(A1203)30~45质量份、氧化镁(MgO)12-16质量份的范围)将各成分配合而成,所以含有二氧化硅源成分、氧化镁(MgO)源成分和氧化铝源成分等。其中作为规定了平均粒径和含量的氧化铝源成分,优选采用氢氧化铝或氧化铝。本发明的陶瓷结构体制造方法,陶瓷原料中除了主原料外优选含有造孔剂。作为这种造孔剂,可采用像石墨、发泡树脂、吸水性聚合物、小麦粉、淀粉、酚搭树脂、聚曱基丙烯酸甲酯、聚乙烯、聚对苯二甲酸乙二醇酯、Shiras气球、飞灰气球等中空或实心的树脂。最好采用石墨、发泡树脂、吸水性聚合物。另外,这些造孔剂的形状,除了球状外,例如,就控制气孔形状来说,优选是巻菱形状、糖果状等。本发明的陶瓷结构体制造方法,在获得气孔率为50~70%的结构体来作为陶瓷结构体的情况中可以合适地使用。本发明的陶瓷结构体制造方法,在获得4080(TC下的热膨胀系数在1.0xl(T6/°C以下的结构体来作为陶瓷结构体的情况中,可以合适地使用。本发明的陶瓷结构体制造方法,可以合适地用于获得如下结构体来作为陶瓷结构体的情况,即,具有由隔壁形成将二个端面之间进行连通的多个小室的蜂窝状结构,隔壁的厚度为150~700,。作为制造对象的陶瓷结构体,用于催化剂体时,隔壁的厚度优选为200~600pm,更优选为300~500nm,特别优选为大致480jim(大致19mil)。隔壁厚度小于150,时,有时强度不够,抗热震性降低,另一方面,当隔壁的厚度超过700pm时,压力损失趋于增大。另夕卜,lmil为千分之一英寸,约0.025mm。本发明的陶瓷结构体制造方法,可以合适地用于获得如下的结构体来作为陶瓷结构体的情况,即,具有由隔壁形成将2个端面间进行连通的多个小室的蜂窝状结构,小室密度为40~400个小室/in2。作为制造对象的陶瓷结构体用于催化剂体时,小室密度更优选为50300cpsi,进一步优选为60~100cpsi,特別优选为大致80cpsi。小室密度小于40cpsi时,会有与废气的接触效率不够的倾向,另一方面,当小室密度超过300cpsi时,压力损失趋于增大。另外,"cpsi"是"cellspersquareinch"的缩写,是表示每1平方英寸的小室数的单位。10cpsi约为1.55个小室/cm2。以下,根据本发明,提供一种陶资催化剂体的制造方法,即,利用上述任何一个陶资结构体的制造方法,得到具有由隔壁形成将二个端面进行连通的多个小室的蜂窝结构的陶瓷结构体后,对该陶瓷结构体的小室,在二个端面中的任选一个端面上,进行封堵,同时,在各个端面上形成相互成棋盘状配置的封堵部分,进而,在小室的内表面,及形成小室的隔壁的气孔的内表面上形成催化剂层,得到陶瓷催化剂体。本发明的陶覺结构体中,气孔分布是气孔径小于20pm的气孔容积占总气孔容积的15%以下,气孔径20~100pm的气孔容积占总气孔容积的70%以上。这种气孔分布狭窄(偏差小)气孔径20~100|im的气孔容积占据大部分的陶灰分难以堵塞,还能抑制压力损失。另外,由于废气在各气孔内容以均匀地流动,所以即使不加大流入径,也能增大气孔与废气接触的有效表面积,提高催化剂的净化效率,所以,即使在有限的空间内也能设置,并能搭载于汽车等。专利文献2中示出的多孔虫奪窝状过滤器为,气孔径小于lO)im的气孔容积占总气孔容积的15%以下,气孔径10~5(Vm的气孔容积占总气孔容积的75%以上,所以,制成催化剂体时,废气中的煤尘灰分会堵塞,很容易造成压力损失升高,但是,本发明的陶乾结构体,由于气孔径大,所以就不会产生这样的问题。另外,专利文献3中示出的蜂窝型陶瓷过滤器,由于气孔分布宽(范围大),因此废气优先流入大的气孔内,存在的问题是在相对小的气孔中担栽的催化剂得不到有效利用,然而,本发明的陶瓷结构体,由于气孔分布尖锐(狭窄),气孔径105(^m的气孔占据大部分,所以整体上容易均匀地流动废气,也就不会产生这样的问题。本发明的陶瓷结构体,在其最优选的方式中,由于气孔率为50~70%,因此在降低压力损失之后,可以降低热容量,保持作为结构体的机械强度。该陶瓷结构体用于催化剂体时,其气孔率更优选为60~70%,特别优选为大致65%。本发明的陶瓷结构体,在其优选的方式中,由于40-800。C下的热膨胀系数为1.0x1(TV"C以下,所以能将暴露于高温废气时的热应力抑制到较低水平,从而能防止热应力造成的破坏,40-800。C下的热膨胀系数,在将陶瓷结构体用作催化剂体时,更优选为0~0.8xlO-6/°C,特别优选为0~0.5xl(T6/°C。图1是示意地表示使用了本发明陶瓷结构体的陶瓷催化剂体的一个实施方式的正^L图。图2是示意地表示使用了本发明陶瓷结构体的陶瓷催化剂体的一个实施方式的截面图。图3是示意地表示使用了本发明陶瓷结构体的陶瓷催化剂体的一个实施方式的局部放大图。图4是示意地表示现有的陶资催化剂体的一个实施方式的正视图。图5是示意地表示现有陶瓷催化剂体的一个实施方式的截面图。图6是示意地表示现有陶瓷催化剂体的一个实施方式的局部放大图。图7是表示实施例中的平均粒径15pm的氧化铝含量与气孔分布和平均气孔径的关系曲线图。图8是表示实施例中的气孔径小于20,的气孔容积占总气孔容积的比率与压力损失的增加率的关系的曲线图。图9是表示实施例中的气孔径20~lOO[im的气孔容积占总气孔容积的比率与CO净化效率的关系的曲线图。符号说明1,11:陶瓷催化剂体、2a,2b:端面、3:小室、4:隔壁、5,15:催化剂层、10:封堵部、20:外壁、25:气孔、35:担载催化剂层的气孔、D:小室水力直径、P:小室间距、T:隔壁的厚度。具体实施例方式以下对本发明,适当地一边参照附图一边对实施方式进行说明,但本发明并不限定子此被解释。在不损害本发明宗旨的范围内,才艮据本领域人员的知识,可进行各种变更、修正、改进、置换。例如,附图表示本发明的优选的实施方式,但本发明并不受附图的表现形式和附图示出的信息所限定。就实施或4企1企本发明来说,可适用和本说明书中讲述一样的方法或同等的方法,但最佳的方法是如下讲述的方法。首先,针对陶瓷结构体,列举适用于陶瓷催化剂体的情况进行说明。图l是示意地表示应用本发明的陶瓷结构体的陶瓷催化剂体的一个实施方式的正视图。另外,图2是示意地表示应用本发明的陶瓷结构体的陶瓷催化剂体的一个实施方式的截面图。此外,图3是示意地表示应用本发明的陶瓷结构体的陶瓷催化剂体的一个实施方式的局部放大图。图1~3中示出的陶瓷催化剂体1,是在具有由具有大量细小气孔的多孔隔壁4形成将二个端面2a,2b之间进行连通的多个小室3而成的蜂窝状结构的陶瓷结构体(蜂窝结构体)上,形成封堵部10和催化剂层5,15的结构体。在陶瓷催化剂体l中,封堵部10的配置是在任何一个端面2a,2b上,对小室3进行封堵。催化剂层5以层状被担载在气孔25的内表面上,在隔壁4上形成许多个能使气体通过的担载了催化剂的气孔35(参照图3)。另外,催化剂层15以层状被担载在小室3的内表面上。另外,在本说明书中,表现小室的内表面,这是指形成小室并与其相对隔壁(实体部分)的表面,表现气孔的内表面,这是指形成气孔并与其相对隔壁(实体部分)的表面。另外,图1中符号P表示小室间距,符号D表示小室水力直径,符号T表示隔壁的厚度。一般讲,废气在流路内流通时,废气中所含被净化成分的传递的容易程度与流路的水力直径的平方成反比例。并且,在陶瓷催化剂体l(陶瓷结构体)中,就小室3的水力直径和气孔25的水力直径而言,气孔25的水力直径格外小。因此,陶瓷催化剂体l中,就担载于小室3内表面上的催化剂层15和担载于气孔25内表面上的催化剂层5而言,废气中所含的被净化成分更容易传递到担载于气孔25内表面上的催化剂层5。因此,与小室3内表面上形成的(担载的)催化剂层15中所含催化剂(贵金属)的量相比,通过增加气孔25内表面上形成的(担载的)催化剂层5中所含催化剂(贵金属)的量,可提高废气的净化效率。作为催化剂层5,15中所含的催化剂(贵金属),可列举有净化汽油发动机废气的三效催化剂、净化汽油发动机或柴油发动机废气用的氧化催化剂,和选择还原Nox用的SCR催化剂等催化剂。更具体讲,最好用Pt、Rh、或Pd,或将它们组合的贵金属。另夕卜,在陶瓷催化剂体l中,在与小室的连通方向垂直的面上,按径方向切割的截面形状,呈圓形状,但将陶瓷结构体用作催化剂体时,可制成适合于想要设置其的废气系的内部形状的形状,优选这样做。具体讲除圆形外,可采用椭圓形、长圓形、梯形、三角形、四角形、六角形或左右不对称的异形形状。接着,以下对本发明的陶瓷结构体的制造方法进行说明。首先,作为坯土用材料,准备堇青石化原料。堇青石化原料是按照堇青石结晶的理论成分,配合各个成分,所以要配合氧化硅源成分、氧化镁源成分、及氧化铝源成分等。这其中,作为氧化铝源成分,最重要的是使用平均粒径在13pm以上的氧化铝源成分。就杂质少来说,氧化铝源成分可采用氧化铝或氢氧化铝中的一种,或这两种。作为氧化镁源成分,可列举有滑石、菱镁矿等,这其中,优选是滑石。堇青石化原料中优选含有37~43质量%的滑石。从降低热膨胀系数考虑,滑石的粒径优选为20~50(im,更优选为30~40^im。氧化镁(MgO)源成分,可含有Fe203、CaO、Na20、&0等杂质。接着,准备向堇青石化原料中添加的坯土用材料(添加剂)。作为添加剂,至少要用粘合剂和造孔剂,除此之外,还可使用分散剂、表面活性剂。这其中,作为造孔剂,例如,可列举有石墨、小麦粉、淀粉、酚醛树脂、聚曱基丙烯酸甲酯、聚乙烯、聚对苯二曱酸乙二醇酯等的中空或实心的树脂、发泡树脂、吸水性聚合物等,发泡树脂,具体可举出丙烯酸系微胶嚢等。另外,这些造孔剂的形状,除了球状外,就控制气孔形状而言,优选是巻菱形状、糖果状等。并且,造孔剂的粒径优选为30nm以上,60lam以下。作为粘合剂,可以举出如羟丙基曱基纤维素、甲基纤维素、羟乙基纤维素、羧曱基纤维素、聚乙烯醇等。另外,作为分散剂,可举出如糊精、多元醇等。另外,作为表面活性剂,可举出如脂肪酸皂。另外,上述添加剂,根据目的可使用1种,也可组合2种以上来使用。接着,准备封堵部的原料。封堵部的原料,可以用与陶瓷结构体主体相同的坯土用材料构成,也可由与其不同的配合的材料构成。例如,将陶瓷原料、表面活性剂和水混合,根据需要添加烧结助剂、造孔剂等,形成浆状,通过使用混合器进行混炼来得到。作为封堵部的原料中的陶瓷原料,可釆用a-氧化铝、煅烧的铝矾土、硫酸铝、氯化铝、氢氧化铝、金红石、锐钬矿型钛、钛铁矿、电熔镁、菱镁矿、电熔尖晶石、高岭石、硅玻璃、石英、熔融二氧化硅等。作为表面活性剂,可举出脂肪酸皂、脂肪酸酯、多元醇等。接着,将上述坯土用材料进行混炼,得到坯土,利用挤出成形法、注射成形法、冲压成形法等,将上述陶土加工成形为例如具有蜂窝结构的形状,得到生的陶瓷成形体。连续成形很容易。例如,因为可使堇青石结晶定向而形成低热膨胀性,所以优选采用挤出成形法。挤出成形法可使用真空捏炼机、活塞式挤出成形机、双轴螺杆式连续挤出成形机等装置来进行。并且,例如,在生的陶瓷成形体(蜂窝状成形体)的一个端面上,对一部分小室实施掩^t,并将该端面在贝i存有封堵部原料的贮存容器中进行浸渍,使未掩模的小室中填充上封堵部的原料,通过这种方法形成封堵部。接着,使形成封堵部的生的陶瓷成形体干燥。陶瓷成形体的干燥可利用热风干燥、纟效波干燥、高频干燥、減压干燥、真空干燥、冷冻干燥等进行。优选将热风千燥与微波干燥或高频干燥进行组合来干燥,因为这能快速且均匀地使整体干燥。最后对千燥的陶瓷成形体进行烧成。烧成,对于使用堇青石化原料的陶瓷成形体,通常在大气环境中,14101440。C的温度下烧成315小时。另外,千燥和烧结可连续进行。实施例以下利用实施例具体地说明本发明,但本发明不受这些实施例所限定。(实施例1~9,比4交例1~3)根据表1中所示的平均粒径、配合比率来混合主原料(堇青石化原料),调制各种原料。如表i所示,实施例1~9中,含有粒径为15(xm的氧化铝。与此相对,比较例13中不含有粒径为15^m的氧化铝,氧化铝的粒径为2~12|im。另外,粒径是使用堀埸制作所制粒度分布测定机LA-910测定的平均粒径。接着,对这些原料100质量份,混合表l所示量(质量份)的造孔剂、粘合剂、分散剂,并进行混炼,得到可塑性的坯土,用真空捏炼机将得到的坯土加工成圆柱状后,再用挤出成形机成形为具有蜂窝结构的形状,得到陶瓷成形体。将如此得到的堇青石化原料不同的各种陶瓷成形体进行高频干燥,再用热风干燥进行绝对干燥后,再在142(TC下烧结10小时一次,得到隔壁厚度为480nm、小室密度为80cpsi的、未封堵小室的陶瓷结构体。接着,使用和上述相同的坯土用材料,并以相同的比率配合而形成封堵部的原料,用该原料形成的浆料对没有封堵小室的陶瓷结构体(蜂窝状结构体)的、其小室开口的两个端面,以交错的方式(棋盘状)进行封堵后,再次在1420。C下烧成4小时,得到隔壁厚度为480|im,小室密度为80cpsi,尺寸为cj)100mmxl00mm(长度)的陶瓷结构体。这样,不在得到的陶瓷结构体上形成催化剂层,而是对原态的陶瓷结构体进行后述的气孔分布、平均气孔径、气孔率、热膨胀系数的评价。结果示于表1。接着,向使用二亚硝基二氨铂溶液以公知方法浸渍担载铂的、包含7八1203粉末70质量份、CeO2粉末20质量份、Zr02粉末IO质量份的粉末中,配合水使得固体成分为30%,通过湿式賴、淬100小时,得到90%粒径(D90)为5pm(用堀埸制作所制的激光书f射/散射式粒径分布测定装置测定)的Pt催化剂涂敷液。当将对陶瓷结构体的催化剂涂敷量取为50g/L(陶瓷结构体体积)时,二亚硝基二氨柏溶液的用量设定成Pt含有量为lg/L(陶瓷结构体体积)的比率。另外,向使用硝酸铑溶液,同样浸渍担载铑的7-八1203粉末中,配合水,使得固体成分为30%,通过湿式粉碎100小时,得到90%粒径(D9o)为5pm的Rh催化剂涂敷液。当将陶乾结构体的催化剂涂敷量取为10g/L(陶瓷结构体体积)时,硝酸铑溶液的用量设定成Rh含量为0.2g/L(陶瓷结构体体积)的比率。然后,使用得到的Pt催化剂涂敷液和Rh催化剂涂敷液,在陶瓷结构体上形成催化剂层。具体讲,以公知的浸渍法,首先,将陶瓷结构体在Pt催化剂涂敷液中浸渍,取出后,用压缩空气将剩余液吹去,置于15(TC热风下进行干燥后,再在550。C下实施1小时热处理,完成Pt催化剂涂敷。Pt催化剂涂敷液的涂敷量,在不足50g/L时,通过反复进行浸渍和干燥过程,进行调整,使得在热处理后的状态下达到50g/L(陶瓷结构体体积)。接着,用Rh催化剂涂敷液,进行同样实施,达到10g/L(陶瓷结构体体积)的涂敷。接着,对形成催化剂层的陶瓷结构体(也称作带有催化剂的陶瓷结构体)进行下述的发动机耐久试验,并评价试验前后的质量增加、压力损失相对指数、净化效率、结果示于表l。使用Micrometric公司制的水银压入式孔率计测定气孔分布及平均气孔径(体积换算中值直径)(参看表1)。如表1所示,实施例1~9中,气孔分布是气孔径d、于20pm的气孔容积占总气孔容积的15%以下,气孔径20~1OOjim的气孔容积占总气孔容积的71%以上。另外,气孔径超过1OOpm的气孔容积占总气孔容积的26%以下(除实施例5,在21%以下),可以确认实施例19中得到的陶瓷结构体最适宜制作压力损失小的催化剂体。另一方面,比较例1~3中,气孔分布是气孔径超过100,的气孔容积占总气孔容积的4%以下,而气孔径小于20pm的气孔容积占总气孔容积的24~36%,气孔径20~100pm的气孔容积不过占总气孔容积的61~73%。图7中示出了平均径15lim的氧化铝含量与气孔分布以及平均气孔径的关系。平均径15[im的氧化铝为0质量%时相当于比较例3,5质量%时相当于实施例7,15质量%时相当于实施例8,25质量%时相当于实施例1,35质量%时相当于实施例9。通过使用5%以上的平均粒径15pm的氧化铝,可使气孔径小于20pm的气孔容积在15%以下。另外,氧化铝在35质量%以上时,得不到堇青石组成。将堇青石的真比重取为2.52g/cm3,由使用Micrometric公司制的水银压入式孔率计测得的总气孔容积计算出气孔率。[热膨胀系数]按照社团法人汽车技术协会标准会议制定的汽车标准汽车废气净化催化剂用陶瓷整体载体的试验方法(JASOM505-87)中记载的方法进行测定。[发动机耐久试验〗在V型6汽缸、3.5L台架汽油发动机的废气管线中,搭载上带有催化剂的陶瓷结构体,以90km/hr的固定速度连续运转200小时。[质量增加]在发动机耐久试验前后测定带有催化剂的陶瓷结构体的质量,由两者之差计算出因发动机耐久试验导致的质量增加。另外,在整个测定结束后,对带有催化剂的陶资结构体,从出口侧用压缩气体猛吹,,分析回收的粒状粉状物质结果,可以确认出在发动机耐久试验中,由来自发动机排出的煤尘、Ca等的灰分的体积所导致的质量增加。利用压力损失测定装置,在20。C下测定发动机耐久试验前的带有催化剂陶瓷结构体的初期压力损失,由该测定结果与发动机耐久试验后同样测定的压力损失之差,计算出因发动机耐久试验导致的压力损失的增加率。将比较例1的初期压力损失取为100,以相对指数表示发动机耐久试验前后的压力损失(参看表l)。图8中示出了气孔径小于20^im的气孔容积占总气孔容积的比率与压力损失的增加率之间的关系。由压力损失的结果可知气孔分布中小于20|am的气孔容积越小,压力损失的增加率也越小。认为这是由于小于20pm的气孔很少,而可以减少堵塞气孔的灰分、煤尘的缘故。在串联4汽缸、1.8L的台架汽油发动机的废气管线中,搭载上发动机耐久试验后的带有催化剂的陶瓷结构体。使发动机进行正常运转,通过在带有催化剂的陶资结构体的上流侧,向发动机废气(化学计量组成)中混合冷却气体,将带有催化剂的陶乾结构体的入口气体温度调整到400°C,求出废气的净化效率。入口气体温度的测定位置位于从带有催化剂的陶瓷结构体的截面中心的入口侧端面开始,上溯至废气流动方向上流侧10mm处。在带有催化剂的陶瓷结构体的前方和后方,测定废气中的CO、HC、NOx的浓度(堀埸制作所制的废气分析计),并利用净化效率(%)=(前方浓度-后方浓度)/前方浓度x100,求出净化效率。图9中示出了气孔径20~1OOpm的气孔容积占总气孔容积的比率与CO的净化效率之间的关系。可以确认20-100|om的气孔容积越大,越能提高净化效率。认为这是由于气孔均匀,在气孔内废气均匀流动,催化剂的净化效率变好的缘故。表1<table>tableseeoriginaldocumentpage15</column></row><table><table>tableseeoriginaldocumentpage16</column></row><table>化剂体最适宜用来净化汽车用、建筑机械用、及工业用固定发动机,以及燃烧设备等排出的废气中所含的一氧化碳(CO)、碳氢化合物(HC)、氮氧化物(NOx)、及石克氧化物(SOx)等被净化成分。权利要求1.一种陶瓷结构体,其是可控制气孔分布的、以堇青石为主晶相的材料所形成的陶瓷结构体,其中,所述气孔分布是气孔径小于20μm的气孔容积占总气孔容积的15%以下,气孔径20~100μm的气孔容积占总气孔容积的70%以上。2.才財居权利要求1记载的陶乾结构体,其中,所述气孔分布是气3W嫂过100pm的气^4^R占总气^^^只的25%以下,其中,气3W圣小于20jom的气3L^^只和气3L径20~100拜的气《L^^只和^W鍵过lOO(jm的气314^只的总和等于总气314^只。3.才財居权利要求1或2记载的陶瓷结构体,其中,^L率为50700/0。4.才財居权利要求1~3中任一项记载的陶f:结构体,其中,40800。C下的热膨胀系数为1.0xlO卞C以下。5.根据权利要求1~4中^-"项记载的陶瓷结构体,其具有由隔壁形成将二个端面之间进行连通的多个小室的蜂窝状结构。6.—种陶瓷结构体的制造方法,其是使用以堇青石化原料为主原料的陶變源料来制造陶瓷结构体的方法,其中,所述堇青石化原料含有5~35质量%的平均冲立径为13pm以上的氧4匕紹。7.根据权利要求6记载的陶瓷结构体制妙法,其中,作为所述陶瓷结构体,得到气孔率为50~70%的结构体。8.根据权利要求6或7记载的陶瓷结构体制造方法,其中,作为所述陶瓷结构体,得到40800。C下的热膨胀系数为1.0xlO"VC以下的结构体。9.才財居权利要求68中^—项记载的陶t:结构体制it^法,其中,作为所述陶瓷结构体,得到具有由隔壁形成将二个端面之间进行连通的多个小室的蜂窝状结构,Jli斤述隔壁的厚度为150~700pm的结构体。10.才財居权利要求69中^~"项记载的陶瓷结构体制妙法,其中,作为所述陶资结构体,得到具有由隔壁形成将二个端面之间进行连通的多个小室的蜂窝状结构,JL^斤述小室的密度为40~400个小室/in2的结构体。11.一种陶乾催化剂体的制妙法,其中,利用权利要求610中^f可一项记载的陶瓷结构体制造方法,得到具有由隔壁形成将二个端面之间进行连通的多个小室的蜂窝状结构的所述陶f:结构体后,2对该陶资結构体的所述小室,在所述二个端面中的^f可一个端面进行封堵,同时在M端面上交错配置Af其盘状,来形成封堵部,再在所述小室的内表面上,及形成所述小室的所述隔壁的^L的内表面上形成催化剂层,得到陶乾催化剂体。全文摘要本发明提供一种气孔分布可控制的、以堇青石为主晶相的材料所形成的陶瓷结构体。气孔分布是气孔径小于20μm的气孔容积占总气孔容积的15%以下,气孔径20~100μm的气孔容积占总气孔容积的70%以上。根据这种陶瓷结构体实现了净化效率优良、压力损失小,即使在有限的空间内也能搭载的陶瓷催化剂体。文档编号F01N3/28GK101395099SQ20078000789公开日2009年3月25日申请日期2007年3月7日优先权日2006年3月7日发明者渡边武彦,牧野恭子,野口康申请人:日本碍子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1