改善双流式涡轮发动机性能的方法和使用这种方法的涡轮喷气发动机的制作方法

文档序号:5155563阅读:141来源:国知局
专利名称:改善双流式涡轮发动机性能的方法和使用这种方法的涡轮喷气发动机的制作方法
改善双流式涡轮发动机性能的方法和使用这种方法的涡轮
喷气发动机本发明涉及应用于飞行器的双流式涡轮发动机的改进,所述改进可以提高所述涡 轮发动机的性能并且降低其在巡航飞行过程中的噪声。更具体地,本发明涉及这种类型的双流式涡轮发动机(比如在文件WO 2006/123035中所描述的),其环绕纵向轴线包括-发动机舱,其具有发动机舱外罩,并且包含产生冷气流的鼓风机和产生热气流的 中央发生器;-环状冷气流通道,其设置在所述热气流中央发生器的周围;-鼓风机外罩,其在所述发动机舱外罩一侧界定所述环状冷气流通道;-环状冷气流出口,其边缘形成所述发动机舱的后缘,并且该边缘由朝彼此会聚直 至相遇的所述发动机舱外罩和所述鼓风机外罩确定;-鼓风机内罩,其在所述热气流中央发生器一侧界定所述环状冷气流通道,穿过所 述冷气流出口,并且形成向所述涡轮发动机的后部凸出到所述冷气流出口外面的凸出部; 以及_冷气流喷管颈,其设置在所述冷气流出口的前面、在所述鼓风机内罩与所述鼓风 机外罩之间,并且其环状截面具有由涡轮发动机的热力学循环所固定的标称面积,该标称 面积小于所述冷气流出口的面积,使得在所述冷气流通道的后部形成会聚/发散的喷管。当装有此种涡轮发动机的飞行器飞行时,尤其在巡航飞行中,众所周知的是,由于 所述冷气流和所述发动机舱周围的外部流线型气流(1' ecoulement aerodynamique)之 间在所述冷气流出口处存在压力差,因此在所述喷管颈后面的冷气流中,会出现超音超速 区和亚音速区的交替,超音超速区和亚音速区之间的转变是突然的,而非渐进的,也没有中 间速度值,导致了直冲击(chocs droits) 0由此导致,所述冷气流是冲击波所在地,所述冲 击波向所述涡轮发动机后方传播,不仅产生很大的噪声(所谓的“冲击元噪声(bruit de cellules de choc) ”),而且降低了涡轮发动机的性能,从而也降低了装有该涡轮发动机的 飞行器的性能。本发明的目的是消除这些缺点,同时考虑这样一个事实,即通常来说,飞行器,尤 其是民用运输飞机,都是为了重复地完成相似的飞行任务而设计的。为此,根据本发明,改善双流式涡轮发动机性能的方法,该双流式涡轮发动机为如 上所述类型的并且被安装在需要完成确定的飞行任务的飞行器上,所述确定的飞行任务包 含巡航飞行阶段,该方法的特别之处在于-确定所述冷气流的分别对应于所述巡航阶段的开始及结束时的膨胀率极限值;-在所述极限值之间,选择所述膨胀率的参考值;_针对该膨胀率的参考值,确定所述冷气流出口的面积的理论值;-沿所述纵向轴线设置所述冷气流出口,使得其面积与所述理论值相对应。因此,通过本发明,至少基本上使所述涡轮发动机的喷管适应所述飞行任务的巡 航飞行条件,在冷气流出口处的冷气流压力因而可以与发动机舱周围的外部流线型气流的压力相近或者相等。这使得所述冷气流中的超速区和冲击消失,从而改善了涡轮发动机的 性能并且降低了其噪声。我们注意到,文件US 2004/0031258A1提及了一种涡轮发动机,其中,为了避免在 喷管出口处的冲击波,因此选择所述喷管的进口面积和出口面积之比的值。我们还注意到, 文件EP-A-I 619376描述了一种几何构造可通过轴向滑动而变化的喷管。在根据本发明的方法中,所述冷气流的膨胀率的所述值,根据诸如飞行器的类型、 飞行器的质量、期望的性能、所需推进力、飞行高度概况等参数,通过计算而确定。因此,很容易确定膨胀率的参考值,因为其至少大约等于冷气流的分别对应于所 述巡航阶段的开始及结束时的膨胀率极限值的平均值。有利地,所述冷气流出口的面积的所述理论值(对应于所述膨胀率参考值)是根 据辅助理论值而确定的,该辅助理论值代表所述冷气流出口的理论面积与所述喷管颈的截 面的标称面积之比。因此,所述辅助理论值可以从供空气动力学家使用的表格中提取,该表 格一般称为“等熵膨胀或压缩表-冲击表”(英语为“Expanded Mach Number Chart”)。事实上,我们知道,一方面,在膨胀率(其为总压力Pt与静态压力P (这里指环境 压力)之比Pt/P)与膨胀马赫数M之间存在第一双向单射,另一方面,在膨胀马赫数M与等 熵流管道的截面积(即,出口的理论面积Ath)和马赫数为1处的截面的面积之比(即,喷 管颈的面积Ac)之间存在第二双向单射。因此,对于膨胀率的参考值,上面提及的所述表格首先给出膨胀马赫数M,然后给 出比值Ath/Ac。由于喷管颈面积Ac是标称的并且已知,故很容易由此推导出,为了使冷气 流喷管适应于巡航飞行,冷气流出口而应该具有的面积Ath。在所述鼓风机内罩呈现至少近似桶状的情况下,有利的是,将所述冷气流喷管颈 设置在所述鼓风机内罩的最大截面的后方。因此,所述冷气流喷管颈可以定向成使得所述 冷气流与所述喷管的中锥(Ie cone moyen )在一条直线上。此外,为了使本发明更容易实施,有利的是,至少在所述环状冷气流出口附近,所 述发动机舱外罩和所述鼓风机外罩之间的会聚角等于几度,比如大约5度。附图将有助于更好地理解本发明如何实现。在这些附图中,相同的标记表示相似 的元件。

图1以示意性轴向剖面图示出了根据本发明的涡轮发动机。图2示出了图1中涡轮发动机的冷气流喷管的局部放大示意图。图3再现了供空气动力学家使用的“等熵膨胀或压缩表-冲击表”的一部分。图1示出的具有纵向轴线L-L的双流式涡轮发动机1,包括发动机舱2,发动机舱 2在外部由发动机舱外罩3界定。发动机舱2在前部包括具有前缘5的进气口 4,在后部包括由后缘7界定的出气口 6。 在所述发动机舱2内部设置有-鼓风机8,其指向进气口4并能够产生所述涡轮发动机1的冷气流9 ;-中央发生器10,其公知地包括低压压缩机和高压压缩机、燃烧室、以及低压涡轮 和高压涡轮,并且产生所述涡轮发动机1的热气流11 ;和-环状冷气流通道12,其设置在所述中央发生器10的周围、在布置于中央发生器10 一侧的鼓风机内罩13和布置于所述发动机舱外罩3 —侧的鼓风机外罩14之间。鼓风机外罩14向涡轮发动机1的后部、朝所述发动机舱外罩3的方向会聚,以便 与所述发动机舱外罩3 —起形成所述出口 6的边缘7,其从而构成冷气流出口。在后缘7附 近形成于所述会聚罩3和14之间的角Φ,具有几度的值,例如5度(见图2)。鼓风机内罩13和外罩14在它们之间形成用于所述冷气流9的喷管15,该喷管的 颈T设置在所述出口 6的前方并且在图1中用虚线示出。环状喷管颈T的标称面积Ac由 涡轮发动机1的热力学循环固定。环状冷气流出口 6的面积A大于环状喷管颈T的标称面积Ac,使得比值A/Ac大于 1。因此,喷管15是会聚/发散式的,并且其会聚/发散率(A-Ac)/Ac为百分之几的 数量级,比如从0.5%到1%0另外,在涡轮发动机1的后部一侧,所述鼓风机内罩13相对于所述鼓风机外罩14 形成凸出部16,所述凸出部16在所述冷气流出口 6的外面。可以利用被界定在鼓风机内罩13和中央发生器10之间的环状室17来调整中央 发生器10的温度。为此,来自鼓风机8的新鲜空气(用箭头18表示)在所述环状室17的 前部被抽入,并且通过至少一个通风开口 19在环状室17的后部被排出,所述通风开口 19 形成在鼓风机内罩13上。当装有涡轮发动机1的飞行器(未示出)运动时,外部的流线型气流20在发动机 舱2周围流动,而冷气流9和热气流11分别由出口 6和中央发生器10排出因此冷气流9 环绕热气流11,而其本身被流线型气流20所环绕。因而在冷气流9和热气流11之间形成 了滑面21,并且在所述外部的流线型气流20和所述冷气流9之间形成了滑面22。另外,由 开口 19排出的通风空气18首先与冷气流9混合,然后与热气流11混合,并且合并入这两 者之间的滑面21中。采用根据本发明的如图1和图2所示的喷管15后,冷气流9中不再发生造成噪声 以及涡轮发动机1性能下降的被直冲击隔开的超速区和亚音速区的交替,这将在下文进行解释。首先,由于鼓风机内罩13呈现至少近似桶状,因此有利地是,将喷管颈T定位在所 述鼓风机内罩13的最大截面23的附近,但在所述最大截面的后方,以便受益于轻微的曲度 效应,其允许使所述喷管颈T定向成使得所述冷气流9与所述喷管15的中锥在一直线上。另外,在装有涡轮发动机1的飞行器主要应该执行的飞行任务的巡航阶段的开始 和结束时,通过计算确定喷管15的膨胀率的值。之后,确定这两个值的平均值以获得膨胀 率参考值VR,所述膨胀率代表冷气流9的总压力的值Pt与环状出口 6处的静态(环境)压 力的值P之间的比Pt/P。如图3部分地示出的,供空气动力学家使用的“等熵膨胀或压缩表25-冲击表”将 多个相互对应的空气动力学参量进行了重组。在图3中,表25所示的部分示出了马赫数M、 临界马赫数Mc、代表静态压力与总压力之比的参量Π、以及代表等熵流管道截面积与马赫 数等于1处的截面的面积之比的参量Σ。因此,对于如上所确定的膨胀率的值VR(其对应于参量1/ Π ),通过查阅表25,可 以首先确定膨胀马赫数Μ,然后确定出口 6的理论面积Ath与喷管颈T的面积Ac之间的比值Ath/Ac (其对于参量Σ )。例如,如果参考值VR等于2. 625——也就是说,如果Π等于0. 3809——则表25示 出膨胀马赫数M等于1. 260,并且对于这一 M值,参量Σ等于1. 050。因此,在这个特定的例 子中,冷气流出口 6的理论面积Ath将应该等于1. 050 X Ac,也就是说,冷气流喷管15的会 聚-发散率将等于5%。因此确定了,为了使所述喷管15至少大致与装有涡轮发动机1的飞机应该执行的 任务的巡航阶段相适应,冷气流出口 6的面积A应当具有的理论值Ath。所以,沿着所述轴线L-L将所述出口 6设置在位置26处,在该处考虑到鼓风机内 罩13的形状,其面积A取理论值Ath。当然,开口 19应当设置成位于所述出口 6的后方。
权利要求
一种改善双流式涡轮发动机性能的方法,所述双流式涡轮发动机被安装在需要完成确定的飞行任务的飞行器上,所述确定的飞行任务包括巡航飞行阶段,所述涡轮发动机环绕其纵向轴线(L L)包括 发动机舱(2),其具有发动机舱外罩(3),并且包含产生冷气流(9)的鼓风机(8)和产生热气流(11)的中央发生器(10); 环状冷气流通道(12),其设置在所述热气流中央发生器(10)的周围; 鼓风机外罩(14),其在所述发动机舱外罩(3)一侧界定所述环状冷气流通道(12); 环状冷气流出口(6),其边缘(7)形成所述发动机舱(2)的后缘并且由朝彼此会聚直至相遇的所述发动机舱外罩(3)和所述鼓风机外罩(14)确定; 鼓风机内罩(13),其在所述热气流中央发生器(10)一侧界定所述环状冷气流通道(12),穿过所述冷气流出口(6),并且形成向所述涡轮发动机的后部凸出到所述冷气流出口(6)外面的凸出部(16);以及 冷气流喷管颈(T),其设置在所述冷气流出口(6)的前面、在所述鼓风机内罩(13)与所述鼓风机外罩(14)之间,并且其环状截面具有由所述涡轮发动机的热力学循环所固定的标称面积(Ac),该标称面积(Ac)小于所述冷气流出口(6)的面积(A),使得在所述冷气流通道(12)的后部形成会聚/发散的喷管(15),其特征在于 确定所述冷气流的分别对应于所述巡航阶段的开始及结束时的膨胀率极限值; 在所述极限值之间,选择所述膨胀率的参考值(VR); 针对所述膨胀率的参考值(VR),确定所述冷气流出口(6)的面积的理论值(Ath); 沿所述纵向轴线(L L)设置所述冷气流出口(6),使得其面积与所述理论值(Ath)相对应。
2.根据权利要求1的方法,其特征在于,所述冷气流的膨胀率的所述极限值通过计算确定。
3.根据权利要求1或2的方法,其特征在于,所述膨胀率的参考值(VR)至少大约等于 所述冷气流(9)的分别对应于所述巡航阶段的开始及结束时的所述膨胀率极限值的平均值。
4.根据权利要求1至3之一的方法,其特征在于,所述冷气流出口(6)的面积的所述理 论值(Ath)根据辅助理论值而确定,所述辅助理论值代表所述冷气流出口的理论面积与所 述喷管颈的截面的标称面积之比。
5.根据权利要求4的方法,其特征在于,所述辅助理论值从“等熵膨胀或压缩表”中提取。
6.一种双流式涡轮发动机,其安装在需要完成确定的飞行任务的飞行器上,所述确定 的飞行任务包括巡航飞行阶段,所述涡轮发动机环绕其纵向轴线(L-L)包括-发动机舱(2),其具有发动机舱外罩(3),并且包含产生冷气流(9)的鼓风机(8)和产 生热气流(11)的中央发生器(10);-环状冷气流通道(12),其设置在所述热气流中央发生器(10)的周围; -鼓风机外罩(14),其在所述发动机舱外罩(3) —侧界定所述环状冷气流通道(12); -环状冷气流出口(6),其边缘(7)形成所述发动机舱(2)的后缘并且由朝彼此会聚直 至相遇的所述发动机舱外罩(3)和所述鼓风机外罩(14)确定;-鼓风机内罩(13),其在所述热气流中央发生器(10) —侧界定所述环状冷气流通道 (12),穿过所述冷气流出口(6),并且形成向所述涡轮发动机的后部凸出到所述冷气流出口 (6)外面的凸出部(16);以及_冷气流喷管颈(T),其设置在所述冷气流出口(6)的前面、在所述鼓风机内罩(13)与 所述鼓风机外罩(14)之间,并且其环状截面具有由所述涡轮发动机的热力学循环所固定 的标称面积(Ac),该标称面积(Ac)小于所述冷气流出口(6)的面积(A),使得在所述冷气 流通道(12)的后部形成会聚/发散的喷管(15);所述涡轮发动机实施由权利要求1至5中 任一项所限定的方法,并且所述鼓风机内罩(13)呈现至少近似桶状,其特征在于,所述冷 气流喷管颈(T)设置在所述鼓风机内罩(13)的最大截面(23)的后方。
7.根据权利要求6的涡轮发动机,其特征在于,所述冷气流喷管颈(T)定向成使得所述 冷气流(9)与所述喷管(15)的中锥(24)在一条直线上。
8.根据权利要求6或7之一的涡轮发动机,其特征在于,至少在所述环状冷气流出口 (6)的附近,所述发动机舱外罩(3)与所述鼓风机外罩(14)之间的会聚角等于几度。
全文摘要
本发明涉及改善双流式涡轮发动机性能的方法,其中,冷气流(9)的环状出口(6)的面积与所述冷气流(9)的膨胀率参考值相适应,该膨胀率参考值包含于所述膨胀率的分别对应于巡航阶段的开始及结束时的极限值之间。
文档编号F02K3/06GK101970844SQ200880114775
公开日2011年2月9日 申请日期2008年10月30日 优先权日2007年11月6日
发明者D·普拉特, F·克罗斯塔 申请人:空中巴士营运公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1