用于排气后处理的气体/液体混合装置的制作方法

文档序号:5260417阅读:137来源:国知局
专利名称:用于排气后处理的气体/液体混合装置的制作方法
技术领域
本发明示例性的实施例涉及排气处理系统,并且,更具体的,涉及一种用于内燃机的排气处理系统以及包含了该系统的车辆。
背景技术
内燃机制造商必须满足消费者需求并满足减少排放和改进燃料经济性的各种法规。改进燃料经济性的方法的一个例子是将发动机在化学计量比的稀侧(氧量过剩)的空气/燃料比(以下简称为空/燃比)下工作。稀燃发动机的例子包括压缩点火(柴油机) 和稀燃火花点火发动机。然而,尽管稀燃发动机可能改进了燃料经济性,但从这样的发动机,尤其是柴油机排出的排气是不均质的混合物,其包含了诸如一氧化碳(“C0”),未燃尽的碳氢化合物(“He”)以及氮氧化物(“N0X”)的气态排放物以及构成微粒物质(“PM”) 的凝聚相材料(液体和固体)。由于缺乏在稀排气流离开尾管之前从其中除去足够的NOx 以满足法规的有效方法,稀燃发动机的商业应用受到限制。因此,为了满足未来的排放标准并且改进车辆燃料经济性,来自稀燃汽油和柴油排气的NOx在其离开尾管之前的有效的减少是非常重要的。已经提出了一些用于车辆应用的具有潜力的排气处理系统。这些系统采用了各种排气处理装置。一种这样的排气处理系统采用了尿素选择催化剂还原(SCR)催化剂和NOx 还原剂(例如,尿素),该NOx还原剂使用大体上面对下游的流体喷射器喷射到催化剂的上游。NOx还原剂转换为用来将NOx还原为N2的氨。作为还原剂的尿素的使用使得尿素分配基础结构和用于该辅助流体的车载监控系统成为必要。这样的系统需要周期性的进行包括燃料喷射或还原剂喷射的催化剂再生从而再生催化剂的存储材料。一种用于高水平的微粒物质还原的排气处理技术是柴油机微粒过滤器装置 (“DPF”)。在DPF中使用的有一些已知的过滤器结构,其在从排气中除去微粒物质方面展现出了有效性,诸如陶瓷蜂窝壁流过滤器,缠绕或填充式纤维过滤器,开孔泡沫,烧结金属纤维等。陶瓷壁流过滤器在汽车应用中有相当大的接受度。过滤器是用于从排气中除去微粒的物理结构,因此过滤出的微粒的累积将具有增加排气系统背压的效果,该背压由发动机承受。为了处理由排气微粒的累积引起的背压的增加,DPF被周期性地清洁,或再生。在车辆应用中的DPF的再生典型地是自动的并且是基于由发动机和排气系统传感器产生的信号由发动机或其它控制器控制的。为了燃烧累积的微粒,再生事件包括将DPF的温度增加至通常大于600°C的水平。在排气系统中产生用于DPF再生所需的温度的一个方法是将未燃的HC传送到布置在DPF上游的氧化催化剂装置中。可以通过通常使用面向下游的排出流体喷射器将燃料直接喷射到排气系统而传送HC。HC在氧化催化剂装置中氧化,产生了增加排气温度的放热反应。被加热的排气向下游移动到DPF并且燃烧掉微粒累积。当采用SCR催化剂和DPF的系统用作在排气流动气流中NOx和微粒减少时,各种装置的封装已经存在问题,尤其是在具有相对较短轴距的相对较小的车辆中,这是由于在减少的空间中需要将所需的装置的组合与用于各种排气处理流体的导入所需的相关喷射系统进行封装。在一些情况中,当还提供用于将喷射的尿素转化成氨以及HC的汽化所需的混合长度的同时,尤其是如果系统还采用了用于将包括一氧化碳(CO),各种碳氢化合物 (HC),微粒物质(PM)等的其它排气成分还原或氧化的多个排气处理装置的情况下,没有足够的空间用以封装催化剂和过滤器装置。

发明内容
在示例性的实施例中,用于内燃机的排气处理系统包括构成为接收来自内燃机的排气口的排气以及将排气向下游传送至排气处理装置的排气导管。喷射器隔室从排气处理装置上游的排气导管向外延伸,并且排出流体喷射器通过喷射器隔室中的开口安装并且与排气导管流体连通,并且在朝上游的方向上定向从而在朝上游的方向上将排出流体传送至向下游流动的排气中。排气流挡板从喷射器隔室向外延伸并且在朝上游的方向上延伸至排气中。排气流挡板位于排出流体喷射器的上游并且构成为在其下游限定出湍流的低压力速度区域并且接近排出流体喷射器。在另一示例性的实施例中,用于内燃机的排气处理系统包括构成为接收来自内燃机的排气口的排气以及将排气向下游传送至多个排气处理装置的排气导管。选择性催化还原装置构成为还原排气中的氮氧化物。从排气导管向外延伸的喷射器隔室位于选择性催化还原装置的上游,并且排出流体喷射器通过喷射器隔室中的开口安装,该喷射器隔室与排气导管流体连通并且沿向上游的方向定向从而沿向上游的方向将氨还原剂传送至排气中。 排气流挡板沿向上游的方向从喷射器隔室向外延伸至排气中。排气流挡板位于排出流体喷射器的上游并且构成为在其下游限定出湍流的低压力速度区域,该区域接近氨还原剂传送。本发明提供以下的技术方案方案1用于内燃机的排气处理系统,包括排气导管,构成为接收来自内燃机的排气口的排气并且将排气向下游传送至排气处理装置;从排气处理装置上游的排气导管向外延伸的喷射器隔室;通过喷射器隔室中的开口安装的排出流体喷射器,其与在排气导管中的排气流体连通,并且定向在向上游的方向从而在向上游的方向将排出流体传送至向下游流动的排气中;以及在向上游的方向从喷射器隔室向外延伸到排气中的排气流挡板,排气流挡板位于排出流体喷射器的上游并且构成为在其下游限定出湍流的低压力低速度区域,该区域接近排出流体喷射器并且可操作以夹带传送的排出流体。方案2.如方案1所述的排气处理系统,排气流挡板还包括构成为将围绕其的排气流分离的拱形的上游面;以及构成为限定出排气流挡板下游的湍流的低压力、低速度区域的凸形的下游面。方案3.如方案1所述的排气处理系统,其中排出流体喷射器以与排气导管的轴线成角度α定向在向上游的方向。方案4.如方案3所述的排气处理系统,其中角度α可以在从约40度至约70度的范围内。方案5.如方案1所述的排气处理系统,其中排气流挡板以与排气导管的轴线成角度Y定向在向上游的方向。方案6.如方案5所述的排气处理系统,其中角度γ可以在从约40度至约70度的范围内。方案7.如方案1所述的排气处理系统,其中排出流体喷射器以与排气导管的轴线成角度α定向在向上游的方向,并且其中排气流挡板以与排气导管的轴线成角度Y定向在向上游的方向。方案8.如方案7所述的排气处理系统,其中角度α与角度、大约相等。方案9.如方案1所述的排气处理系统,其中下游的排气处理装置包括选择性催化还原装置并且排出流体包括氨还原剂。方案10.如方案1所述的排气处理系统,其中下游的排气处理装置包括氧化催化剂装置并且排出流体包括碳氢化合物。方案11.用于内燃机的排气处理系统,包括排气导管,构成为接收来自内燃机的排气口的排气并且将排气向下游传送至多个排气处理装置,包括构成为还原排气中的氮氧化物的选择性催化还原装置;从选择性催化还原装置上游的排气导管向外延伸的喷射器隔室;通过喷射器隔室中的开口安装的排出流体喷射器,其与在排气导管中的排气流体连通,并且定向在向上游的方向从而在向上游的方向将氨还原剂传送至向下游流动的排气中;以及在向上游的方向从喷射器隔室向外延伸至排气的排气流挡板,排气流挡板位于排出流体喷射器的上游并且构成为在其下游、接近排出流体喷射器处限定出湍流的低压力低速度区域。方案12.如方案11所述的排气处理系统,还包括构成为氧化排气中的碳氢化合物并且增加其温度的氧化催化剂装置;从氧化催化剂装置上游的排气导管向外延伸的喷射器隔室;通过喷射器隔室中的开口安装的排出流体喷射器,其与在排气导管中的排气流体连通,并且定向在向上游的方向从而在向上游的方向将碳氢化合物传送至向下游流动的排气中;在向上游的方向从喷射器隔室向外延伸至排气中的排气流挡板,排气流挡板位于排出流体喷射器的上游并且构成为在其下游、接近排出流体喷射器处限定出湍流的低压力低速度区域;以及氧化催化剂装置下游的排气微粒过滤器,其构成为接收温度增加的排气用于在其中微粒的燃烧。方案13.如方案12所述的排气处理系统,每个排气流挡板还包括构成为将围绕其的排气流动分离的拱形的上游面;以及构成为限定出排气流挡板下游的湍流的低压力、低速度区域的凹进的下游面。方案14.如方案12所述的排气处理系统,其中挡板的轴线平行于氨还原剂和HC排出流体喷射器的轴线。当结合附图,从以下实现本发明的最佳方式的详细说明中,本发明的上述特征和优点,以及其它特征和优点都显而易见。


参照附图,在以下实施例的说明中,仅通过举例展现了其它的特征,优点和细节, 其中图1是在此公开的内燃机和排气处理系统的示例性实施例的示意性的局部横截面视图;图2是取自圆圈2的图1的排气处理系统的放大的、局部横截面透视图,为了描述某些特征采用虚线表示;图3是取自圆圈2的图1的排气处理系统的放大的、局部横截面侧视图;图4是取自圆圈2的图1的排气处理系统的放大的、局部横截面侧视图,示出了其中的排气流动特征;以及图5是取自圆圈2的图1的排气处理系统的放大的、局部横截面平面图,示出了其中的排气流动特征。
具体实施例方式以下的描述本质上仅仅是示例性的并且并不旨在限制本公开,应用或使用。通过附图应当理解,对应的参考数字表示相同或相应的部件和特征。现在参照图1,本发明的示例性实施例涉及一种排气处理系统,其参考标记总体上为10,用于诸如柴油机12的内燃机的受管制的排气成分的减少。应当理解,柴油机12实质上仅仅是示例性的并且在此描述的本发明可以在采用了排气微粒过滤器的各种发动机系统中实施。这样的发动机系统可以包括,但并不限制为,汽油直喷系统以及均质充气压缩点火发动机系统。为了便于描述和讨论,本公开将在柴油机12的情况下进行讨论。排气处理系统包括排气导管14,其可以包括作用为将排气16从柴油机12运送到排气处理系统10的各个排气处理装置的一些部分。排气处理装置可以包括第一柴油机氧化催化剂装置(“D0C 1”)18。DOC 1可以包括流通式金属或陶瓷整体基质20,该基质卷绕在膨胀型底板(未示出)中,该膨胀型底板当加热时膨胀而固定和隔离基质,该基质被封装在具有与排气导管14流体连通的进口和出口的不锈钢壳体或罐21中。基质20具有布置在其上的氧化催化剂化合物(未示出)。氧化催化剂化合物可以用作修补基面涂层并且可以包含钼族金属,诸如钼(Pt),钯(Pd),铑(1 )或其它合适的氧化催化剂,或其组合。DOCl 18在处理未燃气体和不挥发的HC和CO方面是有用的,这些气体被氧化从而形成二氧化碳和水。选择性催化还原装置(“SCR”)22可以布置在DOCl 18的下游。与DOCl类似的方式,SCR 22也可以包括流通式陶瓷或金属整体基质M,该基质卷绕在膨胀型底板(未示出)中,该膨胀型底板当加热时膨胀而固定和隔离基质,该基质被封装在具有与排气导管 14流体联通的进口和出口的不锈钢壳体或罐25中。基质M具有施加在其上的SCR催化剂合成物(未示出)。SCR催化剂合成物优选地包含沸石以及一种或多种贱金属成分,诸如铁(“Fe”),钴(“Co”),铜(“Cu”)或钒,在存在诸如氨(“NH3”)还原剂的喷射的排出流体的情况下,这些金属可以有效地转化排气16中的NOx组分。由还原剂供给箱19通过导管 17供给的NH3还原剂23,可以在SCR 22的上游位置使用向上游定向或面对的喷射器沈喷射到排气导管14中。当其通过向上游定向或面对的喷射器沈传递至排气16时,还原剂可以是液体或尿素水溶液的形式。混合器或紊流器27也可以紧邻该面向上游的喷射器沈的下游而布置在排气导管14内部,从而进一步帮助还原剂23与排气16的充分混合。在一个示例性实施例中,排气过滤器组件,在这种情况下是柴油机微粒过滤器装置(“DPF”08,位于排气处理系统10内、SCR 22的下游并且运行从而过滤掉排气16的碳以及其它微粒。DPF观可以使用陶瓷壁流式整体过滤器30构成,该过滤器卷绕在膨胀型底板中,该膨胀型底板当加热时膨胀而固定和隔离过滤器,该过滤器被封装在具有与排气导管14流体联通的进口和出口的不锈钢壳体或罐31中。进入过滤器30的排气16被驱使通过相邻的纵向延伸壁(未示出)移动,并且通过该壁流机构排气16被过滤掉碳以及其它微粒。被过滤出的微粒堆积在过滤器30中,并且随着时间的推移,将具有增加由柴油机12承受的排气背压的效果。应当理解陶瓷壁流整体过滤器30实质上仅仅是示例性并且DPF 28 可以包括其它的过滤器装置,诸如缠绕或填充式纤维过滤器,开孔泡沫,烧结金属纤维等。在示例性实施例中,由微粒物质的堆积引起的排气背压的增加需要将DPM8周期性地清洁或再生。再生包括通常在高温(> 600°C )环境下氧化或燃烧堆积的碳和其它微粒。为了再生目的,第二柴油机氧化催化剂装置(“D0C2”)58可以位于过滤器30的上游,接近其上游端。在图1所示的实施例中,D0C2 58是流通式金属或陶瓷整体基质60,该基质卷绕在膨胀型底板(未示出)中,该膨胀型底板当加热时膨胀而固定和隔离被封装在DPF 28 的罐31中的基质。基质20具有布置在其上的氧化催化剂化合物(未示出)。氧化催化剂化合物可以用作修补基面涂层并且可以包含钼族金属,诸如钼(Pt),钯(Pd),铑(Rh)或其它合适的氧化催化剂,或其组合。尽管描述的实施例包括布置在DPF 28的罐31中的D0C2 58,可以设想的是,取决于封装以及其它系统限制,D0C2 58还可以布置在位于DPF观的上游的单独的罐(未示出)内部。布置在DPF 28的上游,与排气导管14中的排气16流体连通的是上游朝向或面对的HC或燃料喷射器62。通过燃料导管61与燃料供给箱63中的HC 65流体连通的燃料喷射器62,构成为将未燃的HC 65导入到排气流,用于传送至与DPF观联合的D0C2 58。混合器或紊流器64也可以紧邻HC喷射器62的下游布置而在排气导管14内部,从而进一步帮助将HC与排气16的充分混合。诸如车辆控制器66的控制器可操作地连接到排气处理系统10,并且通过与多个传感器的信号通信监控排气处理系统10。如在此所使用的,术语-控制器可以包括专用集成电路(ASIC)、电子电路、执行一个或多个软件或固件程序的处理器(共享的,专用的或分组的)以及存储器、组合逻辑电路、和/或提供所述功能的其它合适部件。在示例性实施例中,位于DPF 28的上游的背压传感器68产生表示在陶瓷壁流整体过滤器30中的碳和微粒负载的信号。一旦确定背压已经到达需要再生DPF28的预定水平,控制器66启动HC喷射器62从而将HC 65传送至排气导管14中用于与排气16混合。 燃料/排气混合物进入D0C2 58中,引起排气16中的HC氧化并且将排气温度提升至适于再生过滤器30中的碳和微粒物质的水平(例如> 600°C )。控制器66可以通过温度传感器70监测D0C2 58中的放热氧化反应以及陶瓷壁流整体过滤器30的温度,并且调整喷射器62的HC传送速率从而维持预定温度。类似地,位于SCR 22下游的NOx传感器72产生表示离开SCR 22的排气16中的 NOx水平的信号。一旦确定NOx水平已经到达预定水平,控制器66启动喷射器沈从而将还原剂23传送至排气导管14用于与排气16混合。氨/排气混合物进入SCR22中,在那儿氨
将NOx还原为N2。在示例性实施例中,并且参照图2和3,放大视图示出了排气处理系统10的排气导管14的一部分,其中氨还原剂喷射器沈以面向上游的构形定位。选择该视图以示出氨还原剂喷射器26的特征;然而,类似的特征和描述也可以适用于HC喷射器62的安装、定位以及操作。排气导管14包括可以形成在导管中或通过焊接等连接在其上的喷射器隔室40。 喷射器隔室40包括喷射器安装凸缘42,该安装凸缘具有形成在其中的开口 44,该开口用于在其中接收喷射器26的喷射部分或尖端46。密封环48环绕喷射器沈以在喷射器与排气导管14之间形成密封从而当将喷射器沈安装就位时由此防止喷射器与排气导管之间的排气16的泄漏。喷射器隔室40的构造以及安装凸缘42的定向相配合从而以面对上游的方式定向喷射器26,由此如图3所示,喷射器沈的轴线52相对于排气导管14的轴线M形成角度α。取决于诸如流动体积与速度的排气特性,角度α (alpha)优选地在从约40度至约 70度的范围。在喷射器沈的喷射部分或尖端46的上游从喷射器隔室40向排气16流向外延伸的是排气流挡板65。挡板65在向上游的方向以角度γ (gamma)延伸,使得在排气16流中的挡板大体上平行于喷射器26的轴线52。排气流挡板65的面对上游的表面72具有面向外的(在向上游的方向)凸出的拱形结构,该结构与鞋拔的后部在某方面有些类似。拱形上游面72构成为将排气16的顺流在排气流挡板65周围分离。围绕排气流挡板65的排气16流的分离将具有将排气16的速度和压力增加为相对于挡板65上游的排气压力的更高的压力和更高的速度区域78的效果。排气流挡板65的面对下游的表面74是凸形的或 C形的并且在排气流挡板的下游限定了湍流的低压力、低速度区域76,如图5所示,氨还原剂23以朝向上游的定向被喷射到该区域76中。湍流的低压力、低速度区域76是排气流挡板65的下游的相对不流动的区域,较高速度的排气速度区域78向排气导管14的中心衰弱为该相对不流动的区域,由此将氨还原剂23的雾滴以均勻分布的方式夹带至排气16流中, 而没有将喷雾冲击到排气处理系统10的表面上。排气流挡板65下游的高速排气速度区域 78的衰弱给予了湍流的低压力、低速度区域76压力特性,该压力特性近似于吸力,允许被夹带的氨还原剂23或其它排出流体雾滴(例如,在HC喷射器62的情况下为HC)变为在其中空间地分布并且随后在边界层77由高速区域78带走,并且向下游带至SCR22,或排气处理系统10的其它的催化剂装置。与必须朝下游定向或垂直于排气16的流定向的更传统的混合器装置27,64相比, 具有挡板65的面向上游的喷射器沈,62的使用允许排出流体诸如氨还原剂23或HC 65以较短的轴向长度和较少的流动阻力喷射至排气16流中。在一些情况下,可以省去传统的混合器装置27,64。此外,氨23喷雾的夹带为所需反应(例如,转化为NH3)提供了在排气中足够的输送时间,例如,从而在排气进入SCR 22之前发生。此外,挡板65的使用便于朝上游面对或定向的喷射器26或62的使用,否则由于由其上的排气16的无保护的冲击在喷射尖端46处产生的沉积物形成与过热的温度,所述喷射器的使用将是不可能的。
尽管参照示例实施例已经描述了本发明,但本领域技术人员将要理解的是在没有背离本发明的范围的情况下可以作出各种变化并且等同形式可以替代其部件。此外,在本发明的教导下在没有背离其实质范围的情况下,可以作出许多修改以适应特别的情形或材料。因此,本发明并不限于作为用于实施该发明而构想的最佳模式而公开的特别的实施例, 而是本发明将包括落在本申请的范围内的全部实施例。
权利要求
1.一种用于内燃机的排气处理系统,包括排气导管,构成为接收来自内燃机的排气口的排气并且将排气向下游传送至排气处理装置;在排气处理装置的上游从排气导管向外延伸的喷射器隔室;通过喷射器隔室中的开口安装的排出流体喷射器,其与在排气导管中的排气流体连通,并且定向在向上游的方向以便在向上游的方向将排出流体传送至向下游流动的排气中;以及在向上游的方向从喷射器隔室向外延伸到排气中的排气流挡板,排气流挡板位于排出流体喷射器的上游并且构成为在其下游限定出湍流的低压力低速度区域,该低压力低速度区域接近排出流体喷射器并且可操作以夹带传送的排出流体。
2.如权利要求1所述的排气处理系统,排气流挡板还包括 拱形的上游面,其构成为围绕该上游面将排气流分离;以及构成为限定出排气流挡板下游的湍流的低压力、低速度区域的凸形的下游面。
3.如权利要求1所述的排气处理系统,其中排出流体喷射器以与排气导管的轴线成角度α定向在向上游的方向。
4.如权利要求3所述的排气处理系统,其中角度α可以在从约40度至约70度的范围内。
5.如权利要求1所述的排气处理系统,其中排气流挡板以与排气导管的轴线成角度Y 定向在向上游的方向。
6.如权利要求5所述的排气处理系统,其中角度γ可以在从约40度至约70度的范围内。
7.如权利要求1所述的排气处理系统,其中排出流体喷射器以与排气导管的轴线成角度α定向在向上游的方向,并且其中排气流挡板以与排气导管的轴线成角度Y定向在向上游的方向。
8.如权利要求7所述的排气处理系统,其中角度α与角度γ大约相等。
9.如权利要求1所述的排气处理系统,其中下游的排气处理装置包括选择7性催化还原装置,并且排出流体包括氨还原剂。
10.一种用于内燃机的排气处理系统,包括排气导管,构成为接收来自内燃机的排气口的排气并且将排气向下游传送至多个排气处理装置,所述多个排气处理装置包括构成为还原排气中的氮氧化物的选择性催化还原装置; 在选择性催化还原装置的上游从排气导管向外延伸的喷射器隔室; 通过喷射器隔室中的开口安装的排出流体喷射器,其与在排气导管中的排气流体连通,并且定向在向上游的方向从而在向上游的方向将氨还原剂传送至向下游流动的排气中;以及在向上游的方向从喷射器隔室向外延伸到排气中的排气流挡板,排气流挡板位于排出流体喷射器的上游并且构成为在其下游、接近排出流体喷射器处限定出湍流的低压力、低速度区域。
全文摘要
本发明涉及用于排气后处理的气体/液体混合装置。用于内燃机的排气处理系统包括构成为接收和将排气传送至下游的排气处理装置的排气导管。喷射器隔室从排气处理装置上游的排气导管向外延伸,并且排出流体喷射器通过喷射器隔室中的开口安装并且与排气导管流体连通并且定向在向上游的方向从而在向上游的方向将排出流体传送至排气中。排气流挡板从喷射器隔室向外延伸并且在向上游的方向延伸至排气中。排气流挡板位于排出流体喷射器的上游并且构成为在其下游、接近排出流体喷射器处限定出湍流的低压力、速度区域。
文档编号F01N3/035GK102191975SQ20111009366
公开日2011年9月21日 申请日期2011年3月2日 优先权日2010年3月2日
发明者E·D·托马斯 申请人:通用汽车环球科技运作有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1