专利名称:热电联产机组与风力发电联合供热系统及调度方法
热电联产机组与风力发电联合供热系统及调度方法技术领域
本发明属于清洁能源综合利用技术领域,涉及一种热电联产机组与风力发电联合供热系统及调度方法。
背景技术:
可再生能源具有绿色清洁的特点,近些年发展迅速。但以风电为例,风电在提供清洁低碳能源的同时,风电场的大规模并网也给电网安全经济运行带来了不利影响。大规模风电场并网后,由于其出力波动较大,且功率波动常常与用电负荷波动趋势相反,即在负荷高峰时段无风可用,而在负荷低谷时段又出现风能充沛的情况。风电的这种反调峰特性将导致系统峰谷差的进一步扩大,加大了电网调度的难度,对电网调度运行、电压控制、电网调峰等都将产生一系列影响。由于相关研究并不完善,弃风现象严重。例如,内蒙古电网白天风电都能够满负荷运行,但到后夜用电负荷低谷期,为保证城市居民供热,风电不得已采取“弃风”的措施,非常可惜。发明内容
本发明解决的问题在于提供一种热电联产机组与风力发电联合供热系统及调度方法,通过对热能、电能的综合调控,实现风力发电的平滑出力,提高风力发电的有效利用。
本发明是通过以下技术方案来实现
一种热电联产机组与风力发电联合供热系统,包括
用于产出电力和采暖热水的燃煤抽汽凝汽式热电联产机组;
用于产出电力的风力发电机组;
通过电力电缆网与燃煤抽汽凝汽式热电联产机组和风力发电机组并联的用户的空调器热泵;控制空调器热泵的空调器热泵遥控开关;
采集用户非采暖耗电量的电表;
通过供热管道网与燃煤抽汽凝汽式热电联产机组相连接的用户的热水式采暖散热器;热水式采暖散热器热水消耗计量表,检测热水式采暖散热器的热水消耗量;控制热水式采暖散热器的热水式采暖散热器遥控开关;
第一远程集中控制器,采集燃煤抽汽凝汽式热电联产机组的包括供暖出力热水流量和发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置;第一远程集中控制器还接收综合调度控制装置所发出的调度控制信号,并根据调度控制信号控制燃煤热电联产机组控制执行装置动作;
第二远程集中控制器,采集风力发电机组的发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置;
第三远程集中控制器,记载有用户的热水式采暖散热器与燃煤抽汽凝汽式热电联产机组之间的管道距离信息,并采集包括用户的非采暖用电量和热水式采暖散热器热水消耗计量表检测到的热水流入量和非采暖耗电量的耗能信息,还采集用户输入的热惯性时间;将用户的管道距离信息、采集的耗能信息和热惯性时间传送给综合调度控制装置;
第三远程集中控制器还接收综合调度控制装置所发出的调度控制信号,并根据调度控制信号驱动空调器热泵遥控开关和/或采暖散热器遥控开关执行动作;
综合调度控制装置,根据的接收产能信息、用户的管道距离信息和耗能信息,产生调控控制信号,向第一远程集中控制器和/或第三远程集中控制器发出调控控制信号。
所述的综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息和用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿;
综合调度控制装置发出包括燃煤抽汽凝汽式热电联产机组在调度时间的供暖出力热水流量和发电出力电量,流入用户的热水式采暖散热器热水量和空调器热泵的采暖电力消耗量的调控控制信号。
所述的空调器热泵在消耗电力供热补偿时,还考虑热水流到用户的时间和热惯性时间。
所述综合调度控制装置包括
接收燃煤抽汽凝汽式热电联产机组和风力发电机组的产能信息,用户的耗能信息以及用户管道距离信息的第一数据接收单元;
将接收到的所有数据进行解码的数据解码器单元;
对解码后的所有数据进行存储的数据存储器单元;
生成调度控制信号的调度控制信号计算单元;
将所述调度控制信号进行编码的信号编码器;及
将编码后的调度控制信号传递给第一远程集中控制器、第三远程集中控制器的发送单元。
所述的综合调度控制装置通过电力光纤与云计算服务系统连接,并驱动云计算服务系统计算,以获得调度控制信号;综合调度控制装置通过电力光纤接收云计算服务系统获得的调度控制信号,然后经由电力电缆或无线传输方式将调度控制信号传送给第一远程集中控制器和/或第三远程集中控制器。
所述热水式采暖散热器遥控开关,通过第三远程集中控制器以遥控方式与综合调度控制装置耦合;空调器热泵遥控开关,通过第三远程集中控制器以遥控方式与综合调度控制装置耦合;空调器热泵上还设有空调器热泵专用电能表,检测其采暖的耗电量,该耗电量并被第三远程集中控制器所采集;
燃煤抽汽凝汽式热电联产机组控制执行装置,通过第一远程集中控制器以遥控方式与综合调度控制装置耦合;燃煤抽汽凝汽式热电联产机组控制执行装置根据调度控制信号,控制与其连接的燃煤进料阀门、锅炉蒸汽进汽阀门、采暖蒸汽抽汽阀门及发电蒸汽流量阀门动作。
所述第三远程集中控制器包括非采暖电表脉冲计数器、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,及相互连接的控制信号接收解码器和遥控信号发生器;
非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据,用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置;
采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表,用于检测热水流入量,热水流入量再经过脉冲信号编码转换器及计量信号放大发射器处理生成信号,与用户管道信息一起传送至综合调度控制装置;
控制信号接收解码器,接收综合调度控制装置发出的调度控制信息并进行解码, 然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关、热水式采暖散热器流水阀门遥控开关执行动作。
所述燃煤热电联产机组控制执行装置包括调度控制信号收发编码存储器、驱动电路及机械齿轮控制装置,所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃煤热电联产机组调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃煤热电联产机组的燃煤进料阀门动作、采暖蒸汽抽汽阀门动作及发电蒸汽流量阀门动作。
所述的热电联产机组与风力发电联合供热系统的调度方法,包括以下步骤
在0 TX Δ T时间段内,Δ T为采样周期,T为采集的次数,综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息,预测出未来一段时间 T 2ΤΧ Δ T的产能信息,再结合0 TX Δ T时间段内用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿,并考虑热水流到用户的时间和热惯性时间,计算出补充量;
然后在T 2ΤΧ Δ T时间段,综合调度控制装置以Δ T为调控周期,根据电力供给和热能供给的预测和调度计算生成调度控制信号并发送,第一远程集中控制器接收调度控制信号后控制燃煤抽汽凝汽式热电联产机组的供暖出力热水流量和发电出力电量,第三远程集中控制器接收调度控制信号后,控制空调器热泵消耗电力供热来补偿热水式采暖散热器热水减少导致的供热不足。
所述的综合调度控制装置的调度控制信号的生成包括以下步骤
1)采集变量
1. 1)采集燃煤抽汽凝汽式热电联产机组在0 TX Δ T时间段的发电出力Pqip(t) 和热出力Hqip(t),并发送到综合调度控制装置;Δ T为采样周期,T为采集的次数,T为自然数;
采集0 M号风力发电机在0 TX Δ T时间段的发电出力尸; ^),并发送到综合调度控制装置;
1.2)采集0 TX ΔΤ时间段内,0 N个用户的以下信息用户距热源燃煤抽汽凝汽式热电联产机组的管道距离S”非采暖耗电量Pi (t)、热水式采暖散热器的耗热量Hi (t)、 空调器热泵的装机容量ifHP和用户输入的热惯性时间Ti,并发送到综合调度控制装置;
2)计算以下变量M
2. 1)计算风力发电机在0 TX ΔΤ时间段的总出力0) = Σ/Γ、);然后J=O根据总出力A=dW,利用统计分析方法,预测T 2ΤX Δ T时间段的风力发电机总出力Pwind “);
由采集燃煤抽汽凝汽式热电联产机组在0 TX ΔΤ时间段的发电出力PCHP(t)和热出力Hchp(t),预测出T 2TX Δ T时间段的发电出力Pchp(t)和热出力HCHP(t);^ + T
2. 2)计算每个用户到燃煤抽汽凝汽式热电联产机组的等效距离ν ’ ‘ ν为1 AT,热水在管道中的流速;并对将计算结果做取整运算^ =[<];
将相同Si的用户分为同一组,计为第1组,Si = 1 ;总计L组,L为自然数;
对每个用户分组,分别计算各组所有用户的总采暖负荷Hlrad(I)和热泵容量 Pehp (1);
Hload(I) = Σ Hi (t,1),Hi (t,1)为第1组用户i在t时刻的采暖负荷;
Pehp(I) =;^Tp(Z)为第ι组用户i的热泵容量;
3)将上述 Pchp ⑴、Hchp (t)、PlMd(t)、Hlrad (1)、Pehp(I)代入,由目标函数(1)和约束条件O 14)组成优化问题进行迭代求解,以获取目标函数最小值为结果,获取各个变量作为调控信号
3. 1)目标函数为 ~2Τ=
Mm Δ产 J>wind⑴+ ;(1)V =τ
其中pwind(t)为调节后的等效风电总出力,^^d为等效风电出力平均值,其表达式分别如下
pwind (t) = Pwind (t) + (pCHP (t) -Pchp (t)) -Pehps (t) ;(2)
其中,Pchp(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,Pchp(t)为预测的燃煤抽汽凝汽式热电联产机组的发电出力,Pehps(t)为t时所有用户空调器热泵耗电功率;
^wind+ ;(3)
3. 2)约束条件
3. 2. 1)热负荷平衡方程
减少热水出力,在供给侧供暖不足的功率为Ah(t),其表达式如下
Ah(t) = HCHP(t)-hCHP(t) ;(4)
其中HCHP(t)为预测出的燃煤抽汽凝汽式热电联产机组的热出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的热出力;
考虑到热水在管道流入用户的时间和热惯性时间,用户使用空调器热泵所需要的补偿Ah(t)表示为L
Ah(t) = 2 Hew (t + /, /) ; (τ < t+1 < 2T)(5)/=0
hEHP(t+l, 1)为t+1时刻第1组用户热泵的供暖功率之和;
3. 2. 2)燃煤抽汽凝汽式热电联产机组约束
发电出力下限=⑴+(6)
发电出力上限αΞΟ^ Αηρ⑴+ Ξ(V)
发电出力限制…温⑴< ^chp(0 < p^it)(8)
供暖出力约束AchpO)(9)
额外约束热电联产发电出力下限pCHP(t)彡Pchp(10)
其中PaiP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的供暖热出力;/=P,WcnS1P ‘ /cHP ‘ STp为燃煤抽汽凝汽式热电联产机组的工况曲线参数,而为了避免燃煤抽汽凝汽式热电联产机组供暖出力为0 时,重启耗时,在式(9)中限制供暖出力下限为5丽;
并限制调节后的燃煤抽汽凝汽式热电联产机组发电出力大于原计划发电出力
pCHP(t) ^PcHp(t) ;(11)
3. 2. 3)用户侧空调器热泵约束条件
热电比约束hEHP(t,1)= COPehp · pEHP (t,1)(12)
hEHP(t, 1)为t时刻第1组用户热泵的供暖功率之和,COPehp为空调器热泵性能系数;
出力上限0彡 pEHP(t,1)彡 min (Pehp(I),Hload⑴/COPehp) ;(13)
各时段所有用户组的空调热泵耗电量之和
L^EHps (O=ZftHP^O(14)1=0
4)综合调度控制装置根据运算结果当中调节后的各变量生成调度控制信号并发出
将燃煤抽汽凝汽式热电联产机组的发电出力pCHP(t)和热出力hCHP(t)信号发送给第一远程集中控制器,控制其在未来调节时间内各时段的动作;
将用户空调器热泵耗电量pEHP(t,1)和供热量hEHP(t,1)发送给第三远程集中控制器,控制其在未来调节时间内各时段的动作。
与现有技术相比,本发明具有以下有益的技术效果
本发明提供的一种热电联产机组与风力发电联合供热系统及调度方法,利用热电联产机组与制热负荷联合控制的风电的平滑出力,用户采用热水散热器和热泵耗电两种方式供热,其中的热水来源于热电联产机组,电力由热电联产机组与风力发电机组联合提供, 通过综合调度控制装置在检测一段历史时间的供能和用户的耗能情况后,利用“多元回归” 统计分析方法对未来一段时间做出预测;然后在此基础上进行调度
在保证满足电力供给和热能供给的条件下,减少供暖出力热水流量,由消耗电力供热来补偿,耗电供热既可以补偿热水供暖的不足,也可以增加电力低谷时段的负荷;
同时,燃煤抽汽凝汽式热电联产机组减少供暖出力热水流量,其发电出力也相应的改变,可根据调节需要增大或减少发电出力,根据用电负荷的变化与风力发电配合来满足供给;
这样风力发电、热电联产综合起来调控,根据风力发电的波动性调整热电联产的出力和用户耗电负荷情况的变化,基于实时检测和预测连续性调控方式,以相等的检测周期和调节周期,从而实现风电等效的在用户侧的平滑出力,如图6所示的调节前后的变化,效果非常显著。
而且,本发明还考虑到了两种不同的供热方式的差异性热水在管道输送的延时性,电力补偿供热的瞬时性,以及用户的热惯性时间(用户可接受的停止供暖时间);这样在电力补偿时就需要对用户到热源的不同管道距离区分对待,在用户补偿供热时就是考虑供热时间差异的补偿,充分的考虑到供给侧和用户侧的能量变化,既有利用风电的平滑输出,又兼顾到了用户的实际需求和能源的有效利用。
图1为本发明热电联产机组与风力发电联合供热系统的连接示意图2为综合调度控制装置的结构示意图3为综合调度控制装置与云计算连接示意图4为第三远程集中控制器的结构示意图5为热电联产机组执行装置的结构示意图6为原风电出力与调节后的风电等效出力曲线对比图。
具体实施方式
本发明提供的一种热电联产机组与风力发电联合供热系统及调度方法,在供给侧电力由热电联产机组与风力发电机组联合提供,热水来源于热电联产机组,用户采用热水散热器和热泵耗电两种方式供热,在历史检测的基础上,预测未来一段时间的供能和耗能情况,减少热水出力用耗电供热来补偿,这样相对于风力发电的波动性,用户用电负荷也具有调整的空间(耗电供热既可以补偿热水供暖的不足,也可以增加电力低谷时段的负荷)。 而在两种方式供热的补偿时,考虑管道输送的延时性,电力补偿供热的瞬时性以及用户的热惯性时间,实现整个系统的有效调节。下面结合具体的系统构成和调节方法对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
参见图1 图5,一种热电联产机组与风力发电联合供热系统,包括
用于产出电力和采暖热水的燃煤抽汽凝汽式热电联产机组A ;
用于产出电力的风力发电机组B ;
通过电力电缆网113与燃煤抽汽凝汽式热电联产机组A和风力发电机组B并联的用户的空调器热泵108 ;控制空调器热泵108的空调器热泵遥控开关117 ;
采集用户非采暖耗电量的电表;
通过供热管道网114与燃煤抽汽凝汽式热电联产机组A相连接的用户的热水式采暖散热器110 ;热水式采暖散热器热水消耗计量表111,检测热水式采暖散热器110的热水消耗量;控制热水式采暖散热器110的热水式采暖散热器遥控开关116 ;
第一远程集中控制器1121,采集燃煤抽汽凝汽式热电联产机组A的包括供暖出力热水流量和发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置115 ; 第一远程集中控制器1121还接收综合调度控制装置115所发出的调度控制信号,并根据调度控制信号控制燃煤热电联产机组控制执行装置118动作;
第二远程集中控制器1122,采集风力发电机组B的发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置115 ;
第三远程集中控制器1123,记载有用户的热水式采暖散热器110与燃煤抽汽凝汽式热电联产机组A之间的管道距离信息,并采集包括用户的非采暖用电量和热水式采暖散热器热水消耗计量表111检测到的热水流入量和非采暖耗电量的耗能信息,还采集用户输入的热惯性时间(即用户接受的停止供暖时间);将用户的管道距离信息、采集的耗能信息和热惯性时间传送给综合调度控制装置115 ;
第三远程集中控制器1123还接收综合调度控制装置115所发出的调度控制信号, 并根据调度控制信号驱动空调器热泵遥控开关117和/或采暖散热器遥控开关116执行动作;
综合调度控制装置115,根据的接收产能信息、用户的管道距离信息和耗能信息, 产生调控控制信号,向第一远程集中控制器1121和/或第三远程集中控制器1123发出调控控制信号。
具体的综合调度控制装置115根据接收的燃煤抽汽凝汽式热电联产机组A、风力发电机组B的产能信息和用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组A的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵108消耗电力供热来补偿;在空调器热泵108消耗电力供热补偿时, 还考虑热水流到用户的时间和热惯性时间;
综合调度控制装置115发出包括燃煤抽汽凝汽式热电联产机组A在调度时间的供暖出力热水流量和发电出力电量,流入用户的热水式采暖散热器110热水量和空调器热泵 108的采暖电力消耗量的调控控制信号。
参见图2,所述综合调度控制装置115包括
接收燃煤抽汽凝汽式热电联产机组A和风力发电机组B的产能信息,用户的耗能信息以及用户管道距离信息的第一数据接收单元201 ;
将接收到的所有数据进行解码的数据解码器单元202 ;
对解码后的所有数据进行存储的数据存储器单元203 ;
生成调度控制信号的调度控制信号计算单元204 ;
将所述调度控制信号进行编码的信号编码器205 ;及
将编码后的调度控制信号传递给第一远程集中控制器1121、第三远程集中控制器 1123的发送单元206。
参见图3,综合调度控制装置115通过电力光纤120与云计算服务系统917连接, 并驱动云计算服务系统917计算,以获得调度控制信号;综合调度控制装置115通过电力光纤120接收云计算服务系统917获得的调度控制信号,然后经由电力电缆或无线传输方式将调度控制信号传送给第一远程集中控制器1121和/或第三远程集中控制器1123。
具体的遥控方式为
所述热水式采暖散热器遥控开关116,通过第三远程集中控制器1123以遥控方式与综合调度控制装置115耦合;空调器热泵遥控开关117,通过第三远程集中控制器1123 以遥控方式与综合调度控制装置115耦合;空调器热泵108上还设有空调器热泵专用电能表109,检测其采暖的耗电量,该耗电量并被第三远程集中控制器所采集;
燃煤抽汽凝汽式热电联产机组控制执行装置118,通过第一远程集中控制器1121 以遥控方式与综合调度控制装置115耦合;燃煤抽汽凝汽式热电联产机组控制执行装置118根据调度控制信号,控制与其连接的燃煤进料阀门、锅炉蒸汽进汽阀门、采暖蒸汽抽汽阀门及发电蒸汽流量阀门动作。
参见图4,所述第三远程集中控制器1123包括非采暖电表脉冲计数器、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,及相互连接的控制信号接收解码器和遥控信号发生器;
非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据,用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置115;
采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表111,用于检测热水流入量,热水流入量再经过脉冲信号编码转换器及计量信号放大发射器处理生成信号,与用户管道信息一起传送至综合调度控制装置115 ;
控制信号接收解码器,接收综合调度控制装置115发出的调度控制信息并进行解码,然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关117、热水式采暖散热器流水阀门遥控开关116执行动作。
参见图5,所述燃煤热电联产机组控制执行装置118包括调度控制信号收发编码存储器302、驱动电路303及机械齿轮控制装置304,所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃煤热电联产机组调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃煤热电联产机组的燃煤进料阀门动作、采暖蒸汽抽汽阀门动作及发电蒸汽流量阀门动作。
基于上述热电联产机组与风力发电联合供热系统的调度方法,包括以下步骤
在0 TX Δ T时间段内,Δ T为采样周期,T为采集的次数,综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息,利用“多元回归”统计分析方法预测出未来一段时间T 2ΤΧ Δ T的产能信息,再结合0 TX Δ T时间段内用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿,并考虑热水流到用户的时间和热惯性时间,计算出补充量;
然后在T 2ΤΧ Δ T时间段,综合调度控制装置以Δ T为调控周期,根据电力供给和热能供给的预测和调度计算生成调度控制信号并发送,第一远程集中控制器接收调度控制信号后控制燃煤抽汽凝汽式热电联产机组的供暖出力热水流量和发电出力电量,第三远程集中控制器接收调度控制信号后,控制空调器热泵消耗电力供热来补偿热水式采暖散热器热水减少导致的供热不足。
这样基于实时检测和预测连续性调控方式,以相等的检测周期和调节周期在系统内进行调节。
具体的综合调度控制装置的调度控制信号的生成包括以下步骤
1)采集变量
1. 1)采集燃煤抽汽凝汽式热电联产机组在0 TX Δ T时间段的发电出力Pqip(t) 和热出力Hchp(t),并发送到综合调度控制装置;Δ T为采样周期(具体可以为15 30min), T为采集的次数,T为自然数;
采集0 M号风力发电机在0 TX Δ T时间段的发电出力尸厂,并发送到综合调度控制装置;
1.2)采集0 TX ΔΤ时间段内,0 N个用户的以下信息用户距热源燃煤抽汽凝汽式热电联产机组的管道距离S”非采暖耗电量Pi (t)、热水式采暖散热器的耗热量Hi (t)、 空调器热泵的装机容量ifHP和用户输入的热惯性时间Ti,并发送到综合调度控制装置;
2)计算以下变量M
2. 1)计算风力发电机在0 TX ΔΤ时间段的总出力0) = Σ尸Γ"、);然后J=O根据总出力A=dW,利用统计分析方法,预测T 2ΤΧ ΔΤ时间段的风力发电机总出力Pwind “);
由采集燃煤抽汽凝汽式热电联产机组在ο TX δτ时间段的发电出力pCHP(t)和热出力Hchp(t),预测出T 2TX Δ T时间段的发电出力Pchp(t)和热出力HCHP(t);^ + T
2. 2)计算每个用户到燃煤抽汽凝汽式热电联产机组的等效距离:*_ ν +Ι' ν为1 AT,热水在管道中的流速;并对将计算结果做取整运算^ =[<];
将相同Si的用户分为同一组,计为第1组,Si = 1 ;总计L组,L为自然数;
对每个用户分组,分别计算各组所有用户的总采暖负荷H1mJI)和热泵容量 Pehp (1);
Hload(I) = Σ Hi (t,1),Hi (t,1)为第1组用户i在t时刻的采暖负荷;
Pehp(I) = ΣΡΓ(0 ;if,/)为第1组用户i的热泵容量;
3)将上述 Pchp ⑴、Hchp (t)、PlMd(t)、Hlrad (1)、Pehp(I)代入,由目标函数(1)和约束条件O 14)组成优化问题进行迭代求解,以获取目标函数最小值为结果,获取各个变量 (即未来一段时间该变量的调控量)作为调控信号
3. 1)目标函数为Υττ=
Mm Ap= ^(Pmnd(O-Pmnd)2/(T + l) ;(1)V t=T
其中pwind(t)为调节后的等效风电总出力,^^d为等效风电出力平均值,其表达式分别如下
Pwind (t) = Pwind (t) + (pCHP (t) -PCHp (t)) -Pehps (t) ;(2)
其中,pCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的发电出力,Pchp(t)为预测的燃煤抽汽凝汽式热电联产机组的发电出力,Pehps(t)为t时所有用户空调器热泵耗电功率;
^wind+ ;(3)
3. 2)约束条件
3.2. 1)热负荷平衡方程
减少热水出力,在供给侧供暖不足的功率为Ah(t),其表达式如下
Ah(t) = HCHP(t)-hCHP(t) ;(4)
其中HCHP(t)为预测出的燃煤抽汽凝汽式热电联产机组的热出力,hCHP(t)为调节后的燃煤抽汽凝汽式热电联产机组的热出力;
考虑到热水在管道流入用户的时间和热惯性时间,用户使用空调器热泵所需要的补偿Ah(t)表示为
权利要求
1.一种热电联产机组与风力发电联合供热系统,其特征在于,包括用于产出电力和采暖热水的燃煤抽汽凝汽式热电联产机组(A);用于产出电力的风力发电机组(B);通过电力电缆网(11 与燃煤抽汽凝汽式热电联产机组(A)和风力发电机组(B)并联的用户的空调器热泵(108);控制空调器热泵(108)的空调器热泵遥控开关(117);采集用户非采暖耗电量的电表;通过供热管道网(114)与燃煤抽汽凝汽式热电联产机组(A)相连接的用户的热水式采暖散热器(110);热水式采暖散热器热水消耗计量表(111),检测热水式采暖散热器(110) 的热水消耗量;控制热水式采暖散热器(110)的热水式采暖散热器遥控开关(116);第一远程集中控制器(1121),采集燃煤抽汽凝汽式热电联产机组(A)的包括供暖出力热水流量和发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置(115); 第一远程集中控制器(1121)还接收综合调度控制装置(11 所发出的调度控制信号,并根据调度控制信号控制燃煤热电联产机组控制执行装置(118)动作;第二远程集中控制器(1122),采集风力发电机组(B)的发电出力电量的产能信息,将采集的产能信息传送给综合调度控制装置(115);第三远程集中控制器(1123),记载有用户的热水式采暖散热器(110)与燃煤抽汽凝汽式热电联产机组(A)之间的管道距离信息,并采集包括用户的非采暖用电量和热水式采暖散热器热水消耗计量表(111)检测到的热水流入量和非采暖耗电量的耗能信息,还采集用户输入的热惯性时间;将用户的管道距离信息、采集的耗能信息和热惯性时间传送给综合调度控制装置(115);第三远程集中控制器(112 还接收综合调度控制装置(11 所发出的调度控制信号, 并根据调度控制信号驱动空调器热泵遥控开关(117)和/或采暖散热器遥控开关(116)执行动作;综合调度控制装置(115),根据的接收产能信息、用户的管道距离信息和耗能信息,产生调控控制信号,向第一远程集中控制器(1121)和/或第三远程集中控制器(112 发出调控控制信号。
2.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,综合调度控制装置(11 根据接收的燃煤抽汽凝汽式热电联产机组(A)、风力发电机组(B)的产能信息和用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组(A)的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵(108)消耗电力供热来补偿;综合调度控制装置(11 发出包括燃煤抽汽凝汽式热电联产机组(A)在调度时间的供暖出力热水流量和发电出力电量,流入用户的热水式采暖散热器(110)热水量和空调器热泵(108)的采暖电力消耗量的调控控制信号。
3.根据权利要求2所述的热电联产机组与风力发电联合供热系统,其特征在于,在空调器热泵(108)消耗电力供热补偿时,还考虑热水流到用户的时间和热惯性时间。
4.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述综合调度控制装置(11 包括接收燃煤抽汽凝汽式热电联产机组(A)和风力发电机组(B)的产能信息,用户的耗能信息以及用户管道距离信息的第一数据接收单元O01);将接收到的所有数据进行解码的数据解码器单元O02);对解码后的所有数据进行存储的数据存储器单元O03);生成调度控制信号的调度控制信号计算单元O04);将所述调度控制信号进行编码的信号编码器O05);将编码后的调度控制信号传递给第一远程集中控制器(1121)、第三远程集中控制器 (1123)的发送单元(206)。
5.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,综合调度控制装置(115)通过电力光纤(120)与云计算服务系统(917)连接,并驱动云计算服务系统(917)计算,以获得调度控制信号;综合调度控制装置(11 通过电力光纤(120)接收云计算服务系统(917)获得的调度控制信号,然后经由电力电缆或无线传输方式将调度控制信号传送给第一远程集中控制器(1121)和/或第三远程集中控制器(1123)。
6.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述热水式采暖散热器遥控开关(116),通过第三远程集中控制器(112 以遥控方式与综合调度控制装置(11 耦合;空调器热泵遥控开关(117),通过第三远程集中控制器(1123)以遥控方式与综合调度控制装置(11 耦合;空调器热泵(108)上还设有空调器热泵专用电能表(109),检测其采暖的耗电量,该耗电量并被第三远程集中控制器所采集;燃煤抽汽凝汽式热电联产机组控制执行装置(118),通过第一远程集中控制器(1121) 以遥控方式与综合调度控制装置(11 耦合;燃煤抽汽凝汽式热电联产机组控制执行装置 (118)根据调度控制信号,控制与其连接的燃煤进料阀门、锅炉蒸汽进汽阀门、采暖蒸汽抽汽阀门及发电蒸汽流量阀门动作。
7.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述第三远程集中控制器(112 包括非采暖电表脉冲计数器、采暖热水流量脉冲计数器、脉冲信号编码转换器、计量信号放大发射器,及相互连接的控制信号接收解码器和遥控信号发生器;非采暖电表脉冲计数器连接用户非采暖电表,用于检测用户非采暖耗电数据,用户非采暖耗电数据经过脉冲信号编码转换器及计量信号放大发射器处理后传送至综合调度控制装置(115);采暖热水流量脉冲计数器连接热水式采暖散热器热水消耗计量表(111),用于检测热水流入量,热水流入量再经过脉冲信号编码转换器及计量信号放大发射器处理生成信号, 与用户管道信息一起传送至综合调度控制装置(115);控制信号接收解码器,接收综合调度控制装置(11 发出的调度控制信息并进行解码,然后通过控制信号遥控发射器将控制信号发送给空调器热泵遥控开关(117)、热水式采暖散热器流水阀门遥控开关(116)执行动作。
8.根据权利要求1所述的热电联产机组与风力发电联合供热系统,其特征在于,所述燃煤热电联产机组控制执行装置(118)包括调度控制信号收发编码存储器(302)、驱动电路(30 及机械齿轮控制装置(304),所述调度控制信号经调度控制信号收发编码存储器解码以后生成燃煤热电联产机组调度控制指令,经过驱动电路输出的电力拖动信号触发机械齿轮控制装置,机械齿轮控制装置再控制燃煤热电联产机组的燃煤进料阀门动作、采暖蒸汽抽汽阀门动作及发电蒸汽流量阀门动作。
9.权利要求1所述的热电联产机组与风力发电联合供热系统的调度方法,其特征在于,包括以下步骤在0 TX Δ T时间段内,Δ T为采样周期,T为采集的次数,综合调度控制装置根据接收的燃煤抽汽凝汽式热电联产机组、风力发电机组的产能信息,预测出未来一段时间T 2ΤΧ ΔΤ的产能信息,再结合0 TX ΔΤ时间段内用户的耗能信息,在保证满足电力供给和热能供给的条件下,减少燃煤抽汽凝汽式热电联产机组的供暖出力热水流量,减少热水流量导致用户所需要的供热不足由空调器热泵消耗电力供热来补偿,并考虑热水流到用户的时间和热惯性时间,计算出补充量;然后在T 2ΤΧ Δ T时间段,综合调度控制装置以ΔΤ为调控周期,根据电力供给和热能供给的预测和调度计算生成调度控制信号并发送,第一远程集中控制器接收调度控制信号后控制燃煤抽汽凝汽式热电联产机组的供暖出力热水流量和发电出力电量,第三远程集中控制器接收调度控制信号后,控制空调器热泵消耗电力供热来补偿热水式采暖散热器热水减少导致的供热不足。
10.如权利要求9所述的热电联产机组与风力发电联合供热系统的调度方法,其特征在于,综合调度控制装置的调度控制信号的生成包括以下步骤1)采集变量1. 1)采集燃煤抽汽凝汽式热电联产机组在O TX ΔΤ时间段的发电出力Ρ,α)和热出力Hqip (t),并发送到综合调度控制装置;Δ T为采样周期,T为采集的次数,T为自然数; 采集0 M号风力发电机在0 TX Δ T时间段的发电出力尸ΠΟ,并发送到综合调度控制装置;1.2)采集0 TX ΔΤ时间段内,0 N个用户的以下信息用户距热源燃煤抽汽凝汽式热电联产机组的管道距离S”非采暖耗电量Pi (t)、热水式采暖散热器的耗热量Hi (t)、空调器热泵的装机容量ifHP和用户输入的热惯性时间Ti,并发送到综合调度控制装置;2)计算以下变量M-2.1)计算风力发电机在0 TX ΔΤ时间段的总出力凡
全文摘要
本发明公开了一种热电联产机组与风力发电联合供热系统及其调度方法,用户采用热水散热器和热泵耗电两种方式供热,其中的热水来源于热电联产机组,电力由热电联产机组与风力发电机组联合提供,通过综合调度控制装置在检测一段时间的供能和用户的耗能情况后,对未来一段时间做出预测;然后在此基础上进行调度,在保证满足电力供给和热能供给的条件下,减少供暖出力热水流量,由消耗电力供热来补偿,耗电供热既可以补偿热水供暖的不足,也可以增加电力低谷时段的负荷;这样根据风力发电、热电联产综合起来,将风力发电的波动性调整热电联产的出力和用户耗电负荷情况的变化,以相等的检测周期和调节周期,从而实现风电等效的在用户侧的平滑出力。
文档编号F01D15/10GK102506519SQ201110324048
公开日2012年6月20日 申请日期2011年10月23日 优先权日2011年10月23日
发明者何建军, 侯兴哲, 吴锴, 徐焜耀, 徐瑞林, 龙虹毓 申请人:西安交通大学, 重庆市电力公司, 重庆市电力公司电力科学研究院