专利名称:内燃机的控制装置的制作方法
技术领域:
本发明涉及内燃机的控制装置。
背景技术:
自以往在内燃机中作为燃料主要使用化石燃料。可是该情况下当使燃料燃烧时会发生推进地球温室化的co2。与此相对,当使氨燃烧时完全不产生CO2,因此作为燃料使用氨使得不产生CO2的内燃机是公知的(参照专利文献I)。可是,氨与化石燃料相比难以燃烧,因此在作为燃料使用氨的情况下,需要用于使氨容易燃烧的一些功夫。于是,在上述的内燃机中,通过利用排气热来对氨进行改性从而生成包含氢和氮的改性气体,并且使所生成的改性气体中的氢贮留于储氢合金中,向燃烧室·内除了供给氨还供给贮留于储氢合金中的氢,由此即使是作为燃料使用氨的情况也能够容易地燃烧。现有技术文献专利文献专利文献I特开平5-332152号公报
发明内容
如上述那样即使使氨燃烧也不产生C02。可是,当使氨燃烧时会生成对地球的温室化给予影响的N20。可是,该情况下,在配置于内燃机排气通路内的排气净化催化剂活化、排气净化催化剂内的排气的空燃比为理论空燃比或浓时,在燃烧室5内生成的N2O在排气净化催化剂中被还原。因此,此时,N2O基本没有排出到大气中。与此相对,当排气净化催化剂内变为氧过剩的状态、即稀状态时,N2O在排气净化催化剂中基本没有被还原,因此产生N2O向大气中排出的危险性。另外,在排气净化催化剂未活化时,N2O在排气净化催化剂中也基本没有被还原,因此该情况下也具有N2O向大气中排出的危险性。本发明在于提供一种抑制N2O向大气中排出的内燃机的控制装置。第I发明为一种内燃机的控制装置,所述内燃机作为燃料使用第I燃料氨、和比氨容易燃烧的第2燃料,并将这两种燃料供给到燃烧室内使其燃烧,表示供给氨量相对于总供给燃料量的比例的基准氨比率,相应于内燃机的运行状态被预先设定,氨比率通常被设定为与内燃机的运行状态相应的基准氨比率,减速运行时停止燃料的供给后再开始燃料的供给时,使氨比率暂时地低于与内燃机的运行状态相应的基准氨比率。第2发明为一种内燃机的控制装置,所述内燃机作为燃料使用第I燃料氨、和比氨容易燃烧的第2燃料,并将这两种燃料供给到燃烧室内使其燃烧,各燃料被以通常在对应的进气阀开阀之前喷射结束的方式朝向各气缸的进气口内喷射,减速运行时停止燃料的供给后再开始燃料的供给时,使空燃比暂时为浓,并且,至少最初可向燃烧室内供给燃料的气缸中,以在进气阀的开阀中喷射结束的方式喷射各燃料。
第3发明为一种内燃机的控制装置,所述内燃机作为燃料使用第I燃料氨、和比氨容易燃烧的第2燃料,并将这两种燃料供给到燃烧室内使其燃烧,表示供给氨量相对于总供给燃料量的比例的基准氨比率,相应于内燃机的运行状态被预先设定,氨比率通常被设定为与内燃机的运行状态相应的基准氨比率,在配置于内燃机排气通路内的排气净化催化剂的温度比预定的设定温度低时,使氨比率低于与内燃机的运行状态相应的所述基准氨比率。在减速运行时停止燃料的供给后再开始燃料的供给时,排气净化催化剂内变为稀状态,因此此时若在燃烧室内生成N2O,则N2O排出到大气中。因此,在第I发明中,此时通过使氨比率降低,可抑制N2O的生成量,在第2发明中,通过使排气净化催化剂内的排气的空燃比早期地为理论空燃比或浓,可抑制N2O向大气中的排出量。另外,在第3发明中,通过在排气净化催化剂没有活化时使氨比率降低,可抑制N2O的生成量。
图I是内燃机的总体图。图2是表示基本氨比率RA的图(map)的图。图3是表示减速运行时的氨比率等的变化的时间图。图4是用于控制标志的流程图。图5是用于进行燃料喷射控制的流程图。图6是表示内燃机的另一实施例的总体图。图7是表示减速运行时的氨比率等的变化的时间图。图8是用于说明喷射正时的图。图9是用于进行燃料喷射控制的流程图。图10是用于进行燃料喷射控制的流程图。图11是表示氨比率的降低量AR的图。图12是用于进行燃料喷射控制的流程图。
具体实施例方式参照图I, I表不内燃机主体、2表不气缸体、3表不气缸盖、4表不活塞、5表不燃烧室、6表示释放等离子流的等离子流火花塞、7表示进气阀、8表示进气口、9表示排气阀、10表示排气口。图I所示的内燃机中,作为燃料,使用第I燃料氨、和比氨容易燃烧的第2燃料,这两种燃料被供给到燃烧室5内,由等离子流火花塞6点火。作为该第2燃料,可以使用汽油、液化天然气、或者通过将氨改性而得到的含有氢的改性气体。图I表示在这些第2燃料之中,使用通过将氨改性而得到的含有氢的改性气体的情况。那么,参照图I,进气口 8经由进气支管11与平衡罐(surge tank)12连接,在各进气支管11上配置有用于朝向各自对应的进气口 8内喷射气态氨的氨喷射阀13。平衡罐12经由进气导管14与空气滤清器15连接,在进气导管14内配置有由促动器驱动的节流阀(throttle valve) 16和使用了例如热射线的吸入空气量检测器17。另一方面,排气口 10经由排气歧管18与可将排气中所含有的N2O还原的排气净化催化剂19连接。图I所示的实施例中,在该排气净化催化剂19下游的排气通路内配置有改性器20以及气化器21。气化器21经由氨流入管22与燃料罐23连接,在该氨流入管22内设置有在内燃机运行时开阀而在内燃机停止时闭阀的截止阀24以及调压阀25。燃料罐23内充满O. SMPa至I. OMPa程度的高压的液态氨,燃料罐23内的液态氨经由氨流入管22被供给到气化器21内。图I所示的实施例中,气化器21以由排气加热的方式形成,因此供给到气化器21内的液态氨在气化器21内被气化。在气化器21内气化的气态氨,经由氨流出管26被供给到氨气罐27。氨气罐27内的气态氨经由气态氨供给管28被供给到氨喷射阀13,气态氨从氨喷射阀13向对应的进气口 8内喷射。另一方面,气化器21经由氨流出管29与改性器20连接,在该氨流出管29内直列地配置有在改性器20进行改性作用时开阀的改性器控制阀30和能够从气化器21只向改性器20流通的止回阀(逆止阀)31。当改性器控制阀30开阀,并且改性器20内的压力变得比气化器21内的压力低时,气化器21内的气态氨经由氨流出管29被供给到改性器20内。 图I所示的实施例中,改性器20以由排气加热的方式形成,在该改性器20内配置有用于促进氨改性作用的催化剂。当改性器20内的温度变为进行氨改性作用的温度以上、例如数百度时,从气化器21供给到改性器20内的氨分解成氢和氮(2NH3 — N2+3H2)、即被改性。其结果,在改性器20内生成含有氢的改性气体。若氨分解成氢和氮则摩尔数变为2倍,而且也施加了由加热作用所致的改性气体的热膨胀,改性器20内的压力上升。该压力上升了的改性气体,经由改性气体供给管32被送入改性气体贮藏罐33内。如图I所示,在各进气支管11上配置有用于向各自对应的进气口 8内喷射改性气体的第2燃料用燃料喷射阀34,贮藏于改性气体贮藏罐33内的改性气体向燃料喷射阀34供给。改性气体从各燃料喷射阀34向各自对应的进气口 8内喷射。在作为第2燃料使用了汽油的情况下,不需要设置改性器20,贮藏于汽油罐内的汽油从燃料喷射阀34喷射。另一方面,在作为第2燃料使用了液化天然气的情况下,也不需要设置改性器20,贮藏于液化天然气罐内的液化天然气从燃料喷射阀34喷射。另一方面,如图I所示,在排气歧管18上安装有用于向排气歧管18内供给二次空气的二次空气供给阀40。另外,在排气净化催化剂19上安装有用于检测排气净化催化剂19的催化剂温度的温度传感器41。另外,在排气净化催化剂19的下游配置有用于检测从排气净化催化剂19流出的排气的空燃比的空燃比传感器42。如图I所示,电子控制单元50包含数字计算机,具备由双向总线51相互连接的ROM (只读存储器)52、RAM (随机存取存储器)53、CPU (微处理器)54、输入端口 55和输出端口 56。吸入空气量检测器17、温度传感器41和空燃比传感器42的输出信号,经由各自对应的AD转换器57输入到输入端口 55。另外,产生与加速踏板60的踩踏量L成比例的输出电压的负荷传感器61与加速踏板60连接,负荷传感器61的输出电压经由对应的AD转换器57输入到输入端口 55。而且,曲轴每旋转例如30°就产生输出脉冲的曲轴转角传感器62与输入端口 55连接。另一方面,输出端口 56与等离子流火花塞6的点火电路63连接,而且输出端口 56经由对应的驱动电路58,与氨喷射阀13、节流阀16的驱动用促动器、截止阀24、调压阀25、改性器控制阀31、燃料喷射阀34和二次空气供给阀40连接。图2示出表示供给氨量相对于总供给燃料量的比例的基本氨比率RA(%)。图2中的各实线RApRA2'…RAi表示等氨比率线,随着从RA1朝向RAi,氨比率变大。再者,在图2中,纵轴L表示内燃机负荷,横轴N表示内燃机转速。氨与第2燃料相比难以燃烧,因此为了在燃烧室5内使氨与第2燃料的混合气体良好地着火而燃烧,点火时的混合气体温度越低则需要使氨比率越小。因此在本发明的实施例中,如图2所示,内燃机负荷L越降低,则使氨比率RA越降低,内燃机转速N越高,则使基本氨比率RA越降低。S卩,内燃机负荷L越降低,使节流阀16的开度越小,因此内燃机负荷L越降低,燃烧室5内的压缩端压力就越低。因此内燃机负荷L越降低,进行点火的压缩行程末期的燃烧室5内的混合气体的温度就越低,这样,如图2所示,当内燃机负荷L降低时,使基本氨比率RA降低。另一方面,内燃机转速N越高,越提前点火正时,因此内燃机转速N越高,进行点火时的燃烧室5内的压力越低。因此内燃机转速N越高,进行点火时的燃烧室5内的混合气
体的温度越低,这样,如图2所示,当内燃机转速N变高时,使基本氨比率RA降低。图2所示的基本氨比率RA,表示通过实验求出的可得到良好的燃烧的氨比率。在本发明的实施例中,该图2所示的基本氨比率RA预先存储于R0M52内,通常作为氨比率使用该存储的基本氨比率RA。接着,参照图3所示的减速运行时的时间图对本发明的第I实施例进行说明。再者,图3示出内燃机转速N、燃烧室5内的燃烧空燃比(A/F)g、排气净化催化剂19内的排气的空燃比(A/F)c以及氨比率的变化。图3中Ne表示供给停止下限转速,在加速踏板60开放、减速运行开始时,内燃机转速N比该供给停止下限转速Ne高时停止燃料的供给。另一方面,图3中Ns表示恢复(复归)转速,在停止燃料的供给后,内燃机转速N变为该恢复转速Ns以下时,再开始燃料的供给。因此如图3所示,减速开始后、内燃机转速N降低到恢复转速Ns的期间,燃料的供给停止。另一方面,如图3所示,减速开始前、即通常,燃烧空燃比(A/F)g变为理论空燃比,排气净化催化剂19内的排气的空燃比(A/F) c也变为理论空燃比。另外,在图3的氨比率中,虚线表示基准氨比率RA,实线表示实际的氨比率。由图3可知,减速开始前、即通常,实际的氨比率为基准氨比率RA。此时在燃烧室5内,氨燃烧,因此生成N20。可是,此时排气净化催化剂19内的排气的空燃比(A/F) c为理论空燃比,因此所生成的N2O在排气净化催化剂19中被还原。另一方面,若开始减速运行,停止燃料的供给,则排气净化催化剂19内的排气的空燃比变为稀。接着,再开始燃料的喷射,使燃烧空燃比(A/F)g为理论空燃比。可是,燃料的供给停止的期间,排气净化催化剂19暴露于氧过剩的气氛中,因此在该期间,排气净化催化剂19的基体的表面和细孔内由氧完全埋上。即,排气净化催化剂19内变为氧过剩的稀状态。可是,若这样地排气净化催化剂19内变为稀状态,则即使再开始燃料的喷射,使燃烧空燃比(A/F) g为理论空燃比,也在短暂的期间排气净化催化剂19内维持为稀状态。因此,此时若通过氨的燃烧而生成N2O,则变得不能将该生成的N2O在排气净化催化剂19中还原。其结果,N2O会排出到大气中。
该情况下,为了抑制N2O排出到大气中,只要减少燃烧的氨量即可。于是,在该第I实施例中,减速运行时停止燃料的供给后再开始燃料的供给时,如图3中实线X所示,使氨比率暂时地低于与内燃机的运行状态相应的虚线Y所示的基准氨比率RA。若这样使氨比率降低,则进行燃烧的氨量减少,这样一来,所生成的N2O减少。因此,排出到大气中的N2O的量减少。再者,若排气净化催化剂19内处于稀状态,则排气净化催化剂19内的排气的空燃t匕(A/F)c,如图3所示那样变为稀,此时从排气净化催化剂19流出的排气的空燃比也变为稀。因此在第I实施例中,减速运行时停止燃料的供给后再开始燃料的供给时,在再开始燃料的供给后、从排气净化催化剂19流出的排气的空燃比为稀的期间,使氨比率低于与内燃机的运行状态相应的基准氨比率RA。再者,减速运行时停止燃料的供给后再开始燃料的供给时,也可以如图3中点划线Z所示那样使氨比率为零。该情况下,只供给第2燃料。若只供给第2燃料,即停止氨的 供给的话,则燃烧室5内几乎不生成N2O,这样一来,能够进一步抑制向大气中排出N20。接着,参照图4说明用于燃料喷射控制的各标志的控制程序。该程序通过每隔一定时的中断来执行。参照图4,首先,起初判别是否设定了表示应停止燃料的供给的供给停止标志。该供给停止标志通常被重新设定了,因此进入到步骤71,判别内燃机转速N是否高于供给停止下限转速Ne。N > Ne时,进入到步骤72,判别内燃机负荷L是否为零、即加速踏板60是否开放了。当不是L = O时,结束处理循环。另一方面,当在步骤71中判断为N > Ne、在步骤72中判断为L = O时,判断为是应停止燃料的供给的减速运行时,此时进入到步骤73,设定供给停止标志。接着,在步骤74中,设定表示再开始燃料的供给时的处理未结束的恢复(复归)处理标志。若供给停止标志被设定,则从步骤70进入到步骤75,判别内燃机转速N是否低于恢复转速Ns。当N < Ns时,进入到步骤77,设定供给停止标志。另一方面,在步骤75中判别为N > Ns时,进入到步骤76,判别内燃机负荷L是否为零,在变得不是L = O时,即加速踏板60被踏下了时,进入到步骤77,重新设定供给停止标志。图5表示用于实行第I实施例的燃料喷射控制程序。该程序按对各气缸进行喷射来依次实行。参照图5,首先,起初在步骤80中判别是否设定了供给停止标志。在供给停止标志被设定了时,结束处理循环。此时,停止燃料的供给。与此相对,在重新设定了供给停止标志时,进入到步骤81,进行燃料的喷射控制。S卩,在步骤81中,从图2所示的图算出基本氨比率RA。接着,在步骤82中,算出目标空燃比(A/FH。在该实施例中,该目标空燃比(A/FH被设定为理论空燃比。接着,在步骤83中,判别是否设定了恢复处理标志,在恢复处理标志未被设定时,跳到步骤88,读入由吸入空气量检测器17检测出的吸入空气量。接着,在步骤89中,基于基本氨比率RA、目标空燃比(A/F)t以及吸入空气量,算出从氨喷射阀13应喷射的氨量和从燃料喷射阀34应喷射的第2燃料量,基于这些算出值,从氨喷射阀13以及燃料喷射阀34分别喷射氨以及第2燃料。另一方面,在步骤83中判断为设定了恢复处理标志时,进入到步骤84,从基准氨比率RA减去一定值ARA。S卩,降低应作为目标的氨比率RA。该情况下,也可以使应作为目标的氨比率RA为零。接着,在步骤85中,读入由空燃比传感器42检测出的从排气净化催化剂19流出的排气的空燃比(A/F) C。接着,在步骤86中,判别该空燃比(A/F) c是否变得比理论空燃比(A/F) ο小。在步骤86中判别为(A/F) c > (A/F) ο时,即来自排气净化催化剂19的流出排气的空燃比(A/F)c为稀时,跳到步骤88。此时,在步骤84中基于算出的氨比率RA算出燃料喷射量。另一方面,在步骤86中判断为(A/F)c <(A/F)o时,即从排气净化催化剂19流出的排气的空燃比(A/F)c变为理论空燃比或者浓时,进入到步骤87,重新设定恢复处理标志。接着,进入到步骤88。图6表示用于实施第I实施例的变形例的内燃机的另一实施例。如图6所示,在该变形例中,燃料喷射阀34配置于燃烧室5内。在该变形例中,在再开始燃料的供给时,使氨比率为零,只供给第2燃料的情况下,第2燃料在排气行程时被供给到燃烧室5内。在该 变形例中,通过将第2燃料在排气行程时供给到燃烧室5内,在从排气净化催化剂19流出的排气的空燃比(A/F) c变为理论空燃比后、可在燃烧室5内燃烧的时期,开始供给燃料。图7表示第2实施例的时间图。在该图7中,与图3同样地示出了内燃机转速N、燃烧室5内的燃烧空燃比(A/F)g、排气净化催化剂19内的排气的空燃比(A/F)c以及氨比率的变化。由图7可知,在该第2实施例中,减速运行时停止燃料的供给后再开始燃料的供给时,使燃烧空燃比(A/F)g暂时地为浓。即,在该第2实施例中,如图7所示,在再开始燃料的供给后、从排气净化催化剂19流出的排气的空燃比(A/F) c为稀的期间,使空燃比为浓。若这样地使空燃比为浓,则可以缩短排气净化催化剂19成为稀状态的时间,这样一来可以抑制向大气中排出N2O。而且,在该第2实施例中,在应该再开始燃料喷射时,为了使排气净化催化剂19内的空燃比尽可能早地成为理论空燃比,对于在应该再开始燃料喷射时至少最初应供给燃料的气缸,即使燃料的喷射结束正时变为进气阀7的开阀中,也进行燃料的喷射作用。对此参照图8进行说明。图8表示进气阀7以及排气阀9的提升(lift)量W和燃料喷射持续期。在该第2实施例中,通常,进行按照点火顺序对各气缸依次喷射燃料的同步喷射。进行着该同步喷射时的喷射持续期,在图8中作为喷射持续期I示出。在进行同步喷射的情况下,设定喷射持续期I,使得在进气阀7开阀的稍靠前的曲轴转角θ X时燃料喷射结束,使得全部喷射燃料被供给到燃烧室5内。可是,若平时进行这样的同步喷射,则在减速运行时,对于应该再开始燃料喷射时最初应供给燃料的气缸,已经通过了喷射持续期I的开始正时的情况下,对于该气缸,不进行燃料喷射。可是,若这样对于最初应供给燃料的气缸停止燃料喷射,则直到使排气净化催化剂19内的空燃比成为理论空燃比需要时间。该情况下,如图8中喷射持续期II所示,如果直到进气阀7闭阀的稍靠前的曲轴转角Θ Y使燃料喷射的结束正时延迟,即进行使喷射正时延迟了的非同步喷射,则有时对于最初应供给燃料的气缸能够供给燃料。在这样的情况下,若进行燃料喷射,则排气净化催化剂19内的空燃比(A/F)c早期地变为理论空燃比,这样一来,变得能够使氨比率高的燃料的燃烧早期地开始。于是,在该第2实施例中,至少对于最初应供给燃料的气缸,即使变为进气阀7的开阀中也进行燃料的非同步喷射,以使燃料的喷射结束正时由图8的喷射持续期II表示。图9表示用于实行第2实施例的燃料喷射控制程序。该程序除了一部分以外与图5所示的程序完全相同。S卩,参照图9,首先,起初在步骤90中判别是否设定了供给停止标志。在未设定供给停止标志时,进入到步骤91,由图2所示的图算出基本氨比率RA。接着,在步骤92中,算出目标空燃比(A/F) t。在该实施例,该目标空燃比(A/F) t也设定为理论空燃比。接着,在步骤93中,判别是否设定了恢复处理标志,在没有设定恢复处理标志时,跳到步骤98,读入由吸入空气量检测器17检测出的吸入空气量。接着,在步骤99中,基于基本氨比率RA、目标空燃比(A/F)t以及吸入空气量,算出从氨喷射阀13应喷射的氨量和 从燃料喷射阀34应喷射的第2燃料量,基于这些算出值,从氨喷射阀13以及燃料喷射阀34分别喷射氨以及第2燃料。此时,进行图8中喷射持续期I所示的同步喷射。另一方面,在步骤93中判断为设定了恢复处理标志时,进入到步骤94,从目标空燃比(A/F)t减去一定值Λ (A/F)。即,使作为目标的空燃比为浓空燃比。接着,在步骤95中,读入由空燃比传感器42检测出的从排气净化催化剂19流出的排气的空燃比(A/F) C。接着,在步骤96中,判别该空燃比(A/F ) c是否变得小于理论空燃比(A/F ) ο。在步骤96中,判别为(A/F)c > (A/F)o时,即从排气净化催化剂19流出的排气的空燃比(A/F) c为稀时,跳到步骤98,并进入到步骤99。此时,至少对于最初应供给燃料的气缸,即使燃料的喷射结束正时变为进气阀7的开阀中也进行燃料的喷射作用。另一方面,在步骤96中判断为(A/F)c <(A/F)o时,即从排气净化催化剂19流出的排气的空燃比(A/F) c变为理论空燃比或者浓时,进入到步骤97,重新设定恢复处理标志。接着,进入到步骤98。可是,如该第2实施例中那样,若在再开始燃料的供给时使燃烧空燃比(A/F) g为浓的话,则从燃烧室5排出的未燃氨的量增大。因此,在第2实施例的变形例中,为了将从燃烧室5排出的未燃氨氧化,在使燃烧空燃比(A/F)g为浓时,从二次空气供给阀40向排气歧管18内供给二次空气。图10表示用于实行该第2实施例的变形例的燃料喷射控制程序。图10所示的程序和图9所示的程序不同之处仅是在图10所示的程序中,在步骤94后追加了步骤94a。即,在图10所示的程序中,在步骤93中判断为设定了恢复处理标志,进入到步骤94,在目标空燃比(A/F) t为浓空燃比时进入到步骤94a,从二次空气供给阀40供给二次空气。接着,参照图11说明第3实施例。如前述,在排气净化催化剂19未活化时,在排气净化催化剂19中未良好地进行N2O的还原作用。此时,为了抑制向大气中排出N2O,需要减少进行燃烧的氨量、即使氨比率降低。因此,在该第3实施例中,如图11所示,在排气净化催化剂19的温度TC低于预定的设定温度Ttl时,使氨比率的降低量Λ R增大,使氨比率低于与内燃机的运行状态相应的基准氨比率RA。再者,在图11所示的例中,设定温度Ttl设为排气净化催化剂19的活化温度。因此在图11所示的例中,若排气净化催化剂19的温度TC变为活化温度Ttl以下,则使氨比率急剧降低,在TC < T0的温度区域中,催化剂温度TC越降低,则越逐渐降低氨比率。
图12表示用于实行第3实施例的燃料喷射控制程序。参照图12,首先,起初在步骤100中由图2所示的图算出基本氨比率RA。接着,在步骤101中,算出目标空燃比(A/F)t。在该实施例也将该目标空燃比(A/F) t设为理论空燃比。接着,在步骤102中,读入由温度传感器41检测出的排气净化催化剂19的温度TC。接着,在步骤103中,由图11所示的关系算出氨比率的降低量AR。接着,在步骤104中,从基准氨比率RA减去降低量AR。S卩,此时如果Λ R > 0,则降低应作为目标的氨比率RA。接着,在步骤105中,读入由吸入空气量检测器17检测出的吸入空气量。接着,在步骤106中,基于在步骤104中算出的氨比率RA、目标空燃比(A/F)t以及吸入空气量,算出从氨喷射阀13应喷射的氨量和从燃料喷射阀34应喷射的第2燃料量,基于这些算出值,从氨喷射阀13以及燃料喷射34分别喷射氨以及第2燃料。附图标记说明 5 燃烧室7 进气阀8 进气口13 氨喷射阀20 改性器 21 气化器23 燃料罐27 氨气罐33 改性气体贮藏罐34 燃料喷射阀
权利要求
1.一种内燃机的控制装置,所述内燃机作为燃料使用第I燃料氨、和比氨容易燃烧的第2燃料,并将这两种燃料供给到燃烧室内使其燃烧, 表示供给氨量相对于总供给燃料量的比例的基准氨比率,相应于内燃机的运行状态被预先设定,氨比率通常被设定为与该内燃机的运行状态相应的基准氨比率,减速运行时停止燃料的供给后再开始燃料的供给时,使氨比率暂时地低于与内燃机的运行状态相应的所述基准氨比率。
2.根据权利要求I所述的内燃机的控制装置,减速运行时停止燃料的供给后再开始燃料的供给时,氨比率被设定为零,只供给第2燃料。
3.根据权利要求2所述的内燃机的控制装置,所述第2燃料在排气行程时被供给到燃烧室内。
4.根据权利要求I所述的内燃机的控制装置,减速运行时停止燃料的供给后再开始燃料的供给时,在再开始燃料的供给后、从配置于内燃机排气通路内的排气净化催化剂流出的排气的空燃比为稀的期间,使氨比率低于与内燃机的运行状态相应的所述基准氨比率。
5.一种内燃机的控制装置,所述内燃机作为燃料使用第I燃料氨、和比氨容易燃烧的第2燃料,并将这两种燃料供给到燃烧室内使其燃烧,各燃料被以通常在对应的进气阀开阀之前喷射结束的方式朝向各气缸的进气口内喷射,减速运行时停止燃料的供给后再开始燃料的供给时,使空燃比暂时为浓,并且,至少对于最初应该供给燃料的气缸,即使燃料的喷射结束正时变为进气阀的开阀中也进行燃料的喷射作用。
6.根据权利要求5所述的内燃机的控制装置,在使空燃比暂时为浓时,向内燃机排气通路内供给二次空气。
7.根据权利要求5所述的内燃机的控制装置,减速运行时停止燃料的供给后再开始燃料的供给时,在再开始燃料的供给后、从配置于内燃机排气通路内的排气净化催化剂流出的排气的空燃比为稀的期间,使空燃比为浓,并且,至少对于最初应该供给燃料的气缸,即使燃料的喷射结束正时变为进气阀的开阀中也进行燃料的喷射作用。
8.一种内燃机的控制装置,所述内燃机作为燃料使用第I燃料氨、和比氨容易燃烧的第2燃料,并将这两种燃料供给到燃烧室内使其燃烧,表示供给氨量相对于总供给燃料量的比例的基准氨比率,相应于内燃机的运行状态被预先设定,氨比率通常被设定为与该内燃机的运行状态相应的基准氨比率,在配置于内燃机排气通路内的排气净化催化剂的温度比预定的设定温度低时,使氨比率低于与内燃机的运行状态相应的所述基准氨比率。
全文摘要
作为燃料使用第1燃料氨和比氨容易燃烧的第2燃料。氨比率通常被设定为相应于内燃机的运行状态被预定的基准氨比率。减速运行时停止燃料的供给后再开始燃料的供给时,使氨比率暂时地低于与内燃机的运行状态相应的基准氨比率。
文档编号F02M25/00GK102906410SQ20118002523
公开日2013年1月30日 申请日期2011年4月19日 优先权日2010年5月21日
发明者麻生纩司, 藤原孝彦, 田中比吕志 申请人:丰田自动车株式会社